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Motivation

• Flavor transitions in a remarkable 
agreement with the SM 
predictions, so far… 

• However, the origin of flavor still a 
mystery 

• Flavor - hint of new fundamental 
symmetries
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• Dark matter existence is an 
empirical evidence for physics 
beyond the SM 

• New symmetries required to insure 
DM stability
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Flavor symmetries
• In the limit of 

vanishing Yukawa 
interactions, SM 

quark sector has a 
global symmetry 

• The SM quarks 
transform as 

• Flavor breaking 

• Flavor breaking 
spurions 

• Center group
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EFT analysis [6, 8]. In particular, the flavor constraints from extra fermonic states, and the

fact that the condensates of the scalar flavor Higgs fields (flavons) need to reproduce the

quark masses, makes the structure of the theory much more rigid and predictive.

The paper is structured as follows....JFK: Finish!

II. STABILITY OF FLAVORED DARK MATTER

We start by formulating the general conditions required for flavored DM to be stable due

to flavor triality. The SM exhibits a large global flavor symmetry U(3)Q⇥U(3)U ⇥U(3)D ⇥
U(3)L⇥U(3)E in the limit of vanishing Yukawa interactions (and hypercharge). In this paper

we focus on the quark sector. This has the global symmetry GSM
F ⇥U(1)Y ⇥U(1)B⇥U(1)PQ.

The three U(1) factors are the hypercharge, baryon number (B), and the Peccei-Quinn

symmetry, respectively. The remaining semisimple group is GSM
F = SU(3)Q ⇥ SU(3)U ⇥

SU(3)D. The SM quarks transform under it as (we work with left handed chiral fields)

QL ⇠ (3, 1, 1) , U c
R ⇠ (1, 3̄, 1) , Dc

R ⇠ (1, 1, 3̄) . (1)

The GSM
F global symmetry is broken by the SM Yukawa terms

LY = Q̄LH̃yuUR + Q̄LHydDR + h.c. , (2)

where H̃ = i�2H
⇤. The LY is formally invariant under GF , if Yu,d are promoted to spurions

that transform as (3, 3̄, 1) and (3, 1, 3̄) [21]. If Yu,d are the only flavor breaking spurions also

in the New Physics (NP) sector, the theory is of MFV type.

The SM Yukawas (2) break U(1)PQ and break GSM
F to its center group ZUDQ

3 , under which

all three generations of quarks transform as {UR, DR, QL} ! ei2⇡/3{UR, DR, QL} . In the

SM the ZUDQ
3 can be identified with a subgroup of U(1)B. This is no longer true in the

presence of NP. In MFV for instance, ZUDQ
3 remains exact, while U(1)B can be broken, e.g.,

by dimension 9 operators [22] (see also [7]).

The ZUDQ
3 can be the origin of DM stability. To make this explicit it is useful to introduce

Z�
3 , a diagonal subgroup of ZUDQ

3 ⇥Zc
3. Here Zc

3 is the center group of color SU(3)c, under

which {UR, DR, QL} ! e�i2⇡/3{UR, DR, QL} . All the SM fields are thus Z�
3 singlets. In

MFV NP Z�
3 is exact, so that the lightest Z�

3 odd particle is stable and can be a DM

candidate [7].
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I. INTRODUCTION

The stability of dark matter (DM) is commonly assumed to be due to an exact discrete

symmetry, Zn. This can either be imposed by hand or have a dynamical origin. Examples

include R�parity in the MSSM [1], and flavor symmetries in the leptonic sector [2–5]. In

this paper we explore the intriguing possibility raised in Refs. [6, 7] that the stability of DM

is due to the Z3 centre group of the global GSM
F ⌘ SU(3)Q ⇥ SU(3)U ⇥ SU(3)D quark flavor

symmetry. While GSM
F is broken by the SM Yukawa interactions, its subgroup Z3 remains

unbroken in the SM. More generally, it remains exact also in the presence of NP, if the flavor

breaking is of Minimally Flavor Violating (MFV) type, i.e. only due to the SM Yukawas.

The lightest neutral state that is odd under Z3 is therefore absolutely stable and is a DM

candidate. This is the idea behind the MFV dark matter [6–8].

However, restricting to MFV is not necessary. In this paper we formulate a general

condition for viable flavored DM using flavor triality (see Eq. (3) below). For example,

any spurion in the bifundamental of GSM
F will leave the above Z3 unbroken. The flavor

breaking can thus be quite far from MFV and still have stability of DM guaranteed by the

flavor dynamics. To illustrate this point we consider the model of Ref. [9] where the flavor

breaking spurions have the form Y �1
u,d and are thus canonically not of the MFV type. In this

model the SM quark flavor symmetry GSM
F is fully gauged, the Yukawa’s are promoted to

physical scalar fields, and in addition there is a set of chiral fermions that cancel the flavor

gauge anomalies.

Using this renormalizable model we show below that a thermal relic DM can be in a

nontrivial representation of GSM
F . There are two conflicting constraints on the setup. Flavor

Changing Neutral Current (FCNC) constrains impose lower bounds on the masses of states

in nontrivial flavor representations. On the other hand, DM relic density consistent with

observations requires large enough DM annihilation cross section so that some of these same

particles need to be su�ciently light. Both of these requirements are satisfied for O(TeV)

DM mass. This is low enough that it may be tested by direct and indirect DM detection

experiments and searched for at high energy particle colliders.

While the phenomenology of flavored DM models can be found in Refs. [7, 10–20], the

construction of an explicit renormalizable model with inclusion of flavor gauge interactions

is new. Within our framework, the constraints on DM are more severe compared to a generic

3
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fact that the condensates of the scalar flavor Higgs fields (flavons) need to reproduce the

quark masses, makes the structure of the theory much more rigid and predictive.

The paper is structured as follows....JFK: Finish!

II. STABILITY OF FLAVORED DARK MATTER

We start by formulating the general conditions required for flavored DM to be stable due

to flavor triality. The SM exhibits a large global flavor symmetry U(3)Q⇥U(3)U ⇥U(3)D ⇥
U(3)L⇥U(3)E in the limit of vanishing Yukawa interactions (and hypercharge). In this paper

we focus on the quark sector. This has the global symmetry GSM
F ⇥U(1)Y ⇥U(1)B⇥U(1)PQ.

The three U(1) factors are the hypercharge, baryon number (B), and the Peccei-Quinn

symmetry, respectively. The remaining semisimple group is GSM
F = SU(3)Q ⇥ SU(3)U ⇥

SU(3)D. The SM quarks transform under it as (we work with left handed chiral fields)

QL ⇠ (3, 1, 1) , U c
R ⇠ (1, 3̄, 1) , Dc

R ⇠ (1, 1, 3̄) . (1)

The GSM
F global symmetry is broken by the SM Yukawa terms

LY = Q̄LH̃yuUR + Q̄LHydDR + h.c. , (2)

where H̃ = i�2H
⇤. The LY is formally invariant under GF , if Yu,d are promoted to spurions

that transform as (3, 3̄, 1) and (3, 1, 3̄) [21]. If Yu,d are the only flavor breaking spurions also

in the New Physics (NP) sector, the theory is of MFV type.

The SM Yukawas (2) break U(1)PQ and break GSM
F to its center group ZUDQ

3 , under which

all three generations of quarks transform as {UR, DR, QL} ! ei2⇡/3{UR, DR, QL} . In the

SM the ZUDQ
3 can be identified with a subgroup of U(1)B. This is no longer true in the

presence of NP. In MFV for instance, ZUDQ
3 remains exact, while U(1)B can be broken, e.g.,

by dimension 9 operators [22] (see also [7]).

The ZUDQ
3 can be the origin of DM stability. To make this explicit it is useful to introduce

Z�
3 , a diagonal subgroup of ZUDQ

3 ⇥Zc
3. Here Zc

3 is the center group of color SU(3)c, under

which {UR, DR, QL} ! e�i2⇡/3{UR, DR, QL} . All the SM fields are thus Z�
3 singlets. In

MFV NP Z�
3 is exact, so that the lightest Z�

3 odd particle is stable and can be a DM
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new scalar fields that transform as

Yu ⇠ (3̄, 3, 1) , Yd ⇠ (3̄, 1, 3) , (4)

under GSM
F . The minimal set of new (left-handed) Weyl fermions that ensures anomaly

cancelation of the new gauged sector is

 c
uR ⇠ (3̄, 1, 1) ,  c

dR ⇠ (3̄, 1, 1) ,  uL ⇠ (1, 3, 1) ,  dL ⇠ (1, 1, 3) . (5)

Together with the SM fermions they therefore form vector-like representations of GSM
F . The

SM gauge quantum numbers of  c
uR, c

dR, uL, dL are the same as for U c
R, Dc

R, UR, DR,

respectively, i.e., they are SU(2)L singlets, but charged under U(1)Y . Remarkably, with the

above fermonic content all the gauge anomalies cancel. In fact, one could also gauge two

additional flavor diagonal U(1)’s, U(1)B�L and U(1)PQ, a possibility that we do not pursue

further.

The relevant Yukawa and mass terms in the Lagrangian are [9]

Lmass � �uQ̄LH̃ uR + �0

u ̄uLYu uR + Mu ̄uLUR

+ �dQ̄LH dR + �0

d ̄dLYd dR + Md ̄dLDR + h.c.,
(6)

where �
(0)
u,d are flavor universal coupling constants and Mu,d flavor universal mass parameters.

The mass terms (6) mix the states  uL,uR and UL,R forming mass eigenstates ui and u0i,

where i = 1, 2, 3 is the generation index (and similarly for down-quark states). After the

electroweak symmetry breaking the masses for the two mass-eigenstate sets are, in the limit

mu0i � mui , [9, 23]

mui ⇡ vp
2

�uMu

�0

uhYuii , mu0i ⇡ �0

uhYuii. (7)

The mass matrix for the FGBs, Aa
A, A = Q, U, D and a = 1, . . . , 8, are governed by the

condensates of the Yu,d scalar fields and the gauge coupling constants, [9, 23]

�M2
AB

�
ab
=

1

4
gAgB Tr

⇥hYui{�a, �b}hYu

↵
†

⇤
(�AB�AQ�2�AQ�BU +Q $ U

�
+U, u $ D, d, (8)

with �a,b the Gell-Mann SU(3) matrices. The lightest gauge boson is found to be along the

diagonal T8 direction JZ: or is it divided by 1/g2
A?.

The SM Yukawas, yu,d, are generated after Yu,d condense, and  i fields are integrated

out. This gives, to first order in Mu,d/hYu,di,

yu =
�uMu

�0

uhYui , yd =
�dMd

�0

dhYdi . (9)
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If these are the only flavor breaking spurions 
in new physics (NP) sector, the theory is of 

minimal flavor violation (MFV) type.
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We can generalize this observation beyond MFV. To do so, we introduce the notion of

flavor triality. Consider a field X in the GSM
F representation X ⇠ (nX

Q , mX
Q ) ⇥ (nX

U , mX
U ) ⇥

(nX
D , mX

D), where nX
i , mX

i are the Dynkin coe�cients of the corresponding SU(3)i group. We

call flavor triality the quantity

(nX � mX)mod 3, (3)

where nX = nX
Q + nX

U + nX
D and mX = mX

Q + mX
U + mX

D .

The basic requirements for flavored DM to be stable due to Z�
3 are then the following.

First of all, GSM
F needs to be a good symmetry in the UV. The GSM

F needs to be broken

only by spurions h�i with zero flavor triality, (n
h�i

� m
h�i

)mod 3 = 0 (the spurions h�i
need to be color singlets in order not to break color). This ensures that Z�

3 is unbroken.

The lightest Z�
3 odd state is therefore stable. If it is a color singlet it is a potential DM

candidate. This also means that DM is in a nontrivial flavor representation with nonzero

flavor triality, (n� � m�)mod 3 6= 0.

The above shows that the models with flavored DM can deviate significantly from MFV.

In particular, Z�
3 would not be broken by any field that is in an adjoint or in a bifundamental

of GSM
F . Specifically, any function f(Yu, Yd) will automatically leave Z�

3 unbroken. More

generally, one can have additional flavor breaking sources that transform as (8, 1, 1), (1, 3, 3̄),

..., and still the DM will remain stable. While the flavor structure of such NP models will not

be of MFV type in general, the stability of DM would still be a consequence of an unbroken

flavor subgroup. DM would be in a nontrivial representation of the flavor group, leading to

distinct phenomenology depending on the nature of the flavor breaking and in which flavor

multiplet � belongs to.

That GSM
F is a good symmetry in the UV is most easily achieved, if it is gauged. We

explore this possibility in the remainder of the paper.

III. GAUGED FLAVOR INTERACTIONS AND DARK MATTER

To fully gauge the SM quark flavor symmetry GSM
F the fermonic sector needs to be ex-

tended in order to cancel the anomalies. We use the model of Ref. [9] which allows for

O(TeV) flavored gauge bosons (FGBs). The SM Yukawa’s arise from the condensates of
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there other implications of flavor triality in EFT besides constraints on B and L vio-
lation? AG: Operators from Eq.6 from Chris paper violate Baryon or Lepton number
but preserve flavour triality. For instance, ✏↵��✏ij((u↵)TCu�)((u�)TCe)((li)TClj) in the
notation of 1008.4884v2. Unfortunately, Chris had additional suppression from MFV
so these dim 9 operators could live at TeV scale. Does not look good. :( :( :(

I now think Eq. (6) in 1105.1723 is wrong actually. One cannot write a GF (3)
invariant operator in MFV which would violate L and/or B by mod3 6= 0. Specifically
(EYe) ⇠ (3, 1) under SU(3)L ⇥ SU(3)E and not (3̄, 1) as needed to form Eq. (7b). The
only operator really invariant is D4U2 leading to neutron oscillations.

II. B AND L VIOLATION IN PRESENCE OF FLAVOR TRIALITY

JFK: TODO

• Write down all lowest dimensional B & L violating operators invariant under flavor triality.

• For each operator consider the most stringent experimental constraints (neutrinoless double
beta decay, single & double nucleon decay, nucleon-antinucleon oscillations, c.f. [3]) .

III. EXPLICIT FLAVOR MODEL IMPLEMENTATIONS OF THE IDEA

JFK: TODO

• SU(3): flavor triality constraints on viable flavor breaking spurions (adjoints, bi-
fundamentals, etc..), resulting (collider, flavor, B and L violation) phenomenology

• SU(2) ⇥ U(1): flavor triality constraints on SU(2)xU(1) constructions (i.e. U(1) charges of
SU(2) spurions), major di↵erences to SU(3) case (i.e., now SU(2) fundamental spurions are
possibly allowed...).

IV. RANDOM THOUGHTS

JFK: TODO

• How could one test flavor triality breaking? (Except observing B & L violation by 3n-1 or
3n-2.)

• DM from flavor triality and connections to models of flavor? Possibly one could use a linear
combination of the scalars involved in spontaneous flavor breaking. It would have to be
non-condensing in order to be charged under the unbroken flavor triality.
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which is broken only by Yukawa interactions. When con-
sidering theories of physics beyond the SM, the MFV
principle dictates that new particles also respect Gq and
the only sources of flavor breaking arise from insertions of
the SM Yukawa matrices Yu and Yd [2, 3]. Formally, this
is achieved by promoting the Yukawa matrices to spu-
rion fields which transform nontrivially under Gq. The
SM Yukawa interactions are written as

− LY ⊃ Q̄YddRH + Q̄YuuRH
† + h.c., (1)

so that the Yukawa spurions transform as Yu ∼ (3, 3̄,1),
Yd ∼ (3,1, 3̄) under Gq.

A number of studies considering new MFV matter con-
tent exist in the literature [10–15]. In all of these works,
the Gq representations of the new particles have been
chosen such that renormalizable tree-level couplings to
the SM fermions are allowed. An immediate consequence
of this is that such particles are unstable and decay to SM
quarks or leptons. We now investigate the generality of
this conclusion, and show in particular that MFV implies
stability for particles in certain representations of Gq.
With further assumptions about their electroweak quan-
tum numbers, these stable particles become perfectly vi-
able DM candidates.

Let χ be a matter multiplet that transforms non-
trivially under flavor but is color-neutral, i.e. a singlet
under SU(3)c. The most general operator that induces
the decay of χ then reads

Odecay = χ Q . . .︸ ︷︷ ︸
A

Q̄ . . .︸ ︷︷ ︸
B

uR . . .︸ ︷︷ ︸
C

ūR . . .︸ ︷︷ ︸
D

dR . . .︸ ︷︷ ︸
E

d̄R . . .︸ ︷︷ ︸
F

(2)

× Yu . . .︸ ︷︷ ︸
G

Y †
u . . .

︸ ︷︷ ︸
H

Yd . . .︸ ︷︷ ︸
I

Y †
d . . .

︸ ︷︷ ︸
J

Oweak,

where A is the number of Q fields, B is the number of Q̄
fields, etc. Oweak is a potential electroweak operator so
that (2) is rendered invariant under SU(2)L×U(1)Y . The
flavor and color indices of the remaining fields are to be
contracted by use of the SU(3) group invariant tensors
δ and ϵ so that (2) becomes a color and flavor singlet.
This, however, can only be achieved if the triality ti of
each SU(3)i tensor product (p, q)i with p factors of 3i

and q factors of 3̄i, vanishes for the operator Odecay:

ti ≡ (p− q)i mod 3 = 0, i = c, Q, uR, dR. (3)

On the contrary, the decay operator (2) will be forbid-
den if ti ̸= 0 for at least one i. Denoting the irreducible
representation of χ under Gq as

χ ∼ (nQ,mQ)Q × (nu,mu)uR
× (nd,md)dR

, (4)

where nQ, mQ, etc. can take values 0, 1, 2, . . . , the triality

(n,m) SU(3)Q × SU(3)uR × SU(3)dR Stable?

(0, 0) (1,1, 1)

(1, 0) (3,1,1), (1,3, 1), (1,1,3) Yes

(0, 1) (3̄,1,1), (1, 3̄,1), (1,1, 3̄) Yes

(2,0)
(6,1,1), (1,6, 1), (1,1,6)

Yes
(3,3,1), (3,1, 3), (1,3,3)

(0,2)
(6̄,1,1), (1, 6̄,1), (1,1, 6̄)

Yes
(3̄, 3̄,1), (3̄,1, 3̄), (1, 3̄, 3̄)

(1,1)

(8,1,1), (1,8, 1), (1,1,8)

(3, 3̄,1), (3,1, 3̄), (1,3, 3̄)

(3̄,3,1), (3̄,1, 3), (1, 3̄,3)

TABLE I. Flavored DM candidates. Listed are the lowest-
dimensional representations of Gq , organized according (n,m)
where n ≡ nQ + nu + nd, m ≡ mQ +mu +md. We have also
indicated the representations that are stable once MFV is
imposed. Depending on their electroweak quantum numbers,
these multiplets may contain viable DM candidates.

conditions (3) become

tc = (A−B+C−D+E−F )mod 3 = 0, (5)

tQ = (nQ−mQ+A−B+G−H+I−J)mod 3 = 0, (6)

tuR
= (nu−mu+C−D−G+H)mod 3 = 0, (7)

tdR
= (nd−md+E−F−I+J) mod 3 = 0. (8)

Adding together Eqs. (6-8) and subtracting Eq. (5), we
find that a necessary condition for Odecay to be allowed,
and thus for χ to be unstable is (n−m)mod3 = 0, where
n ≡ nQ + nu + nd and m ≡ mQ +mu + md. It follows
that that Odecay is forbidden and χ is stable if

(n−m) mod 3 ̸= 0. (9)

Once (9) holds, χ contains a stable component. In this re-
gard, it is important to note that for operators with mul-
tiple fields χ, χ† which may potentially mediate a loop
induced decay, the stability condition above still holds.
Table I lists the lowest-dimensional representations of Gq

that are stable according to the condition (9).
In order to provide a viable theory of DM, any stable

state in the flavored multiplet χ must further be electri-
cally neutral. It thus remains to specify the electroweak
quantum numbers of χ. One possibility is that χ is a SM
gauge singlet [16]. Alternatively, as discussed in Ref. [17],
χ may be a n-plet of SU(2)L with hypercharge Y such
that a component of χ is neutral, Q = T3+Y = 0, with T3

being the diagonal SU(2)L generator. According to this
condition, a SU(2)L doublet has hypercharge Y = ±1/2,
a SU(2)L triplet has hypercharge Y = 0,±1, and so on.
Note that the logic leading to the stability condition (9)

made no assumption about renormalizability. Therefore,

DM candidates 
if color singlets

1309.4462 - Batell, Lin, Wang

1105.1781 - Batell, Pradler, Spannowsky

Consider diagonal subgroup of                     - SM 
quarks transform trivially.

EFT analysis [6, 8]. In particular, the flavor constraints from extra fermonic states, and the

fact that the condensates of the scalar flavor Higgs fields (flavons) need to reproduce the

quark masses, makes the structure of the theory much more rigid and predictive.

The paper is structured as follows....JFK: Finish!

II. STABILITY OF FLAVORED DARK MATTER

We start by formulating the general conditions required for flavored DM to be stable due

to flavor triality. The SM exhibits a large global flavor symmetry U(3)Q⇥U(3)U ⇥U(3)D ⇥
U(3)L⇥U(3)E in the limit of vanishing Yukawa interactions (and hypercharge). In this paper

we focus on the quark sector. This has the global symmetry GSM
F ⇥U(1)Y ⇥U(1)B⇥U(1)PQ.

The three U(1) factors are the hypercharge, baryon number (B), and the Peccei-Quinn

symmetry, respectively. The remaining semisimple group is GSM
F = SU(3)Q ⇥ SU(3)U ⇥

SU(3)D. The SM quarks transform under it as

QL ⇠ (3, 1, 1) , U c
R ⇠ (1, 3̄, 1) , Dc

R ⇠ (1, 1, 3̄) . (1)

The GSM
F global symmetry is broken by the SM Yukawa terms

LY = Q̄LH̃yuUR + Q̄LHydDR + h.c. , (2)

where H̃ = i�2H
⇤. The LY is formally invariant under GF if Yu,d are promoted to spurions

that transform as (3, 3̄, 1) and (3, 1, 3̄) [21]. The New Physics (NP) is of MFV type if Yu,d

are the only flavor breaking spurions also in the NP sector.

The SM Yukawa couplings (2) break U(1)PQ and break GSM
F to its center group ZUDQ

3 , un-

der which all three generations of quarks transform as {UR, DR, QL} ! ei2⇡/3{UR, DR, QL} .
In the SM the ZUDQ

3 can be identified with a subgroup of U(1)B. This is no longer true in

the presence of NP. In MFV for instance, ZUDQ
3 remains exact, while U(1)B can be broken,

e.g., by dimension 9 operators [22] (see also [7]).

The ZUDQ
3 can be the origin of DM stability. To make this explicit it is useful to introduce

Z�
3 , a diagonal subgroup of ZUDQ

3 ⇥Zc
3. Here Zc

3 is the center group of color SU(3)c, under

which {UR, DR, QL} ! e�i2⇡/3{UR, DR, QL} . All the SM fields are thus Z�
3 singlets. In

MFV NP Z�
3 is exact, so that the lightest Z�

3 odd particle is stable and can be a DM

candidate [7].
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• GF needs to be a good symmetry in UV 

• GF needs to be broken only by spurions with zero 
flavor triality. 

• DM candidate is color singlet and in a nontrivial 
flavor representation with nonzero flavor triality.

Flavored DM stability conditions

6

Gauge symmetry…

To insure Z3 remains unbroken. Flavor DM 
models can significantly deviate from MFV. 
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by new exotic quarks, necessary to cancel the anomalies: in particular the new quarks are
two coloured RH SU(3)QL-triplets, one LH SU(3)UR-triplet and one LH SU(3)DR-triplet.
In table 1, we list all the fields present in the theory and their transformation properties
under the gauge groups.

QL UR DR H  uR  dR  uL  dL Yu Yd

SU(3)c 3 3 3 1 3 3 3 3 1 1

SU(2)L 2 1 1 2 1 1 1 1 1 1

U(1)Y +1/
6

+2/
3

�1/
3

+1/
2

+2/
3

�1/
3

+2/
3

�1/
3

0 0

SU(3)QL 3 1 1 1 3 3 1 1 3 3

SU(3)UR 1 3 1 1 1 1 3 1 3 1

SU(3)DR 1 1 3 1 1 1 1 3 1 3

Table 1: The transformation properties of the fields under the SM and flavour gauge sym-
metries.

With this matter content, the most general renormalisable Lagrangian invariant under
the SM and flavour gauge groups can be divided into three parts:

L = Lkin + Lint � V [H, Yu, Yd] . (2.1)

The first one, Lkin, contains the kinetic terms of all the fields and the couplings of fermions
and scalar bosons to the gauge bosons. The covariant derivative entering Lkin accounts
for SM gauge boson-fermion interactions and additional flavour interactions involving new
gauge bosons and fermions:

Dµ �
X

f=Q,U,D

i gf Nf (Af )µ , (Af )µ ⌘
8X

a=1

(Aa
f )µ

�a
SU(3)

2
, (2.2)

where gf are the flavour gauge coupling constants, Nf the quantum numbers, Aa
f the flavour

gauge bosons and �a
SU(3)

the Gell-Mann matrices.
The second term in eq. (2.1), Lint, contains the quark mass terms and the quark-scalar

interactions:

L
int

= �u QLH̃  uR + �0
u uLYu uR +Mu uLUR+

+ �d QLH  dR + �0
u dLYd dR +Md dLDR + h.c. ,

(2.3)

where Mu,d are universal mass parameters and �
(0)
u,d are universal coupling constants that

can be chosen real, through a redefinition of the fields.
The last term in eq. (2.1), V [H, Yu, Yd], is the scalar potential of the model, containing

the SM Higgs and the flavons Yu,d. The mechanisms of both electroweak and flavour

5

New gauge 
symmetries

Yukawas 
promoted to 
scalar fields

New fermions to cancel 
gauge anomalies 

Scalar potential not specified in 
this work. See for instance: 

1009.2049 - Grinstein, Redi, Villadoro

1103.2915 - Alonso, Gavela, Merlo, Rigolin

1009.2049 - Grinstein, Redi, Villadoro

1112.4477 - Buras, Carlucci, Merlo, Stamou

For analysis of U(1) gauged 
flavor models see:

1501.07268 - Calibbi, Crivellin, Zaldivar
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Inverted hierarchy

Universal mass 
parameter

fields that transform as

Yu ⇠ (3̄, 3, 1) , Yd ⇠ (3̄, 1, 3) , (4)

under GSM
F . The minimal set of new (left-handed) Weyl fermions that ensures anomaly

cancelation of the new gauged sector is

 c
uR ⇠ (3̄, 1, 1) ,  c

dR ⇠ (3̄, 1, 1) ,  uL ⇠ (1, 3, 1) ,  dL ⇠ (1, 1, 3) . (5)

Together with the SM fermions they therefore form vector-like representations of GSM
F . The

SM gauge quantum numbers of  c
uR, c

dR, uL, dL are the same as for U c
R, Dc

R, UR, DR,

respectively, i.e., they are SU(2)L singlets, but charged under U(1)Y . Remarkably, with the

above fermonic content all the gauge anomalies cancel. In fact, one could also gauge two

additional flavor diagonal U(1)’s, U(1)B�L and U(1)PQ, a possibility that we do not pursue

further.

The relevant Yukawa and mass terms in the Lagrangian are [9]

Lmass � �uQ̄LH̃ uR + �0

u ̄uLYu uR + Mu ̄uLUR

+ �dQ̄LH dR + �0

d ̄dLYd dR + Md ̄dLDR + h.c.,
(6)

where �
(0)
u,d are flavor universal coupling constants and Mu,d flavor universal mass parameters.

The mass terms (6) mix the states  uL,uR and UL,R forming mass eigenstates ui and u0

i,

where i = 1, 2, 3 is the generation index (and similarly for down-quark states). After the

electroweak symmetry breaking the masses for the two mass-eigenstate sets are, in the limit

mu0
i

� mu
i

, [9, 23]

mui ⇡ vp
2

�uMu

�0

uhYuii , mu0
i

⇡ �0

uhYuii. (7)

The mass matrix for the FGBs, Aa
A, A = Q, U, D and a = 1, . . . , 8, are governed by the vevs

of the Yu,d scalar fields and the gauge coupling constants, [9, 23]

�M2
AB

�
ab
=

1

4
gAgB Tr

⇥hYui{�a, �b}hYu

↵
†

⇤
(�AB�AQ�2�AQ�BU +Q $ U

�
+U, u $ D, d, (8)

with �a,b the Gell-Mann SU(3) matrices. The mass matrix is 24 ⇥ 24 dimensional. We

denote the eigenstates by Am, m = 1, . . . , 24, where A24 is the lightest one. The lightest

gauge boson is found to be along the diagonal T8 direction JZ: or is it divided by 1/g2
A?.

The SM Yukawas, yu,d, are generated after Yu,d obtain a vev and  i fields are integrated

out. This gives, to first order in Mu,d/hYu,di,

yu ' �uMu

�0

uhYui , yd ' �dMd

�0

dhYdi . (9)

6

symmetry breaking arise from the minimisation of this scalar potential. It has not been
explicitly constructed in Ref. [12] and it is beyond the scope of the present paper to provide
such a scalar potential (see Ref. [16] for a recent analysis). Therefore, we assume that the
spontaneous breaking of the electroweak symmetry proceeds as in the SM through the
Higgs mechanism and that the spontaneous flavour symmetry breaking is driven by the
flavon fields Yu,d which develop the following VEVs:

hYdi = Ŷd , hYui = Ŷu V . (2.4)

Here Ŷu,d are diagonal 3⇥3 matrices and V is a unitary matrix. We emphasise that, despite
the similarity to eq. (1.5) of MFV, the matrix V is not the CKM matrix and the vacuum
expectation values hYu,di do not coincide with the SM Yukawa matrices. This is illustrated
by moving to the fermion-mass eigenbasis. In what follows we focus on the up-quark sector,
but analogous formulae can also be written for the down-quark sector. The LH and RH
up-quarks mix separately giving rise to SM up-quarks ui

R,L and exotic up-quarks u0i
R,L:

 
ui
R,L

u0i
R,L

!
=

 
cu(R,L)i

�su(R,L)i

su(R,L)i
cu(R,L)i

! 
U i
R,L

 i
uR,L

!
, (2.5)

where cu(R,L)i
and su(R,L)i

are cosines and sines, respectively. Denoting with mf i the mass of
the up-type f i = {ui, u0i} quark, what follows is a direct inverse proportionality between
mui and mu0i :

mui mu0i = Mu �u
vp
2
. (2.6)

We can express these masses in terms of the flavour symmetry breaking parameters:

mui =
suRi suLi

c2uRi
� s2uLi

�0
u(Ŷu)i , mu0i =

cuRi cuLi

c2uRi
� s2uLi

�0
u(Ŷu)i , (2.7)

where a straightforward calculation gives

suLi =

vuutmui

Mu

�����
�u v mu0i �

p
2Mu muip

2
�
m2

u0i �m2

ui

�

����� , suRi =

vuutmui

�u v

�����

p
2Mu mu0i � �u v mui

m2

u0i �m2

ui

����� .

(2.8)
These results are exact and valid for all quark generations. However, taking the limit

mu0i � mui , we find simple formulae that transparently expose the behaviour of the pre-
vious expressions. In this limit we find

mui ⇡ vp
2

�u Mu

�0
u (Ŷu)i

, mu0i ⇡ �0
u (Ŷu)i , (2.9)

suLi ⇡
s

mui

mu0i

�u vp
2Mu

, suRi ⇡

s
mui

mu0i

p
2Mu

�u v
, (2.10)

as it is in the usual see-saw scheme in the limit of (Ŷu)i � Mu , v. These simplified relations
are valid for all the fermions, apart from the top-quark for which the condition mt0 � mt

is not satisfied and large corrections to eq. (2.10) are expected.
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under GSM
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F . The

SM gauge quantum numbers of  c
uR, c

dR, uL, dL are the same as for U c
R, Dc

R, UR, DR,

respectively, i.e., they are SU(2)L singlets, but charged under U(1)Y . Remarkably, with the

above fermonic content all the gauge anomalies cancel. In fact, one could also gauge two

additional flavor diagonal U(1)’s, U(1)B�L and U(1)PQ, a possibility that we do not pursue

further.

The relevant Yukawa and mass terms in the Lagrangian are [9]
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u ̄uLYu uR + Mu ̄uLUR
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d ̄dLYd dR + Md ̄dLDR + h.c.,
(6)

where �
(0)
u,d are flavor universal coupling constants and Mu,d flavor universal mass parameters.

The mass terms (6) mix the states  uL,uR and UL,R forming mass eigenstates ui and u0

i,

where i = 1, 2, 3 is the generation index (and similarly for down-quark states). After the

electroweak symmetry breaking the masses for the two mass-eigenstate sets are, in the limit

mu0
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, [9, 23]
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The mass matrix for the FGBs, Aa
A, A = Q, U, D and a = 1, . . . , 8, are governed by the vevs

of the Yu,d scalar fields and the gauge coupling constants, [9, 23]
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with �a,b the Gell-Mann SU(3) matrices. The mass matrix is 24 ⇥ 24 dimensional. We

denote the eigenstates by Am, m = 1, . . . , 24, where A24 is the lightest one. The lightest

gauge boson is found to be along the diagonal T8 direction JZ: or is it divided by 1/g2
A?.

The SM Yukawas, yu,d, are generated after Yu,d obtain a vev and  i fields are integrated

out. This gives, to first order in Mu,d/hYu,di,
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dhYdi . (9)
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Universal coupling 
constants
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by new exotic quarks, necessary to cancel the anomalies: in particular the new quarks are
two coloured RH SU(3)QL-triplets, one LH SU(3)UR-triplet and one LH SU(3)DR-triplet.
In table 1, we list all the fields present in the theory and their transformation properties
under the gauge groups.

QL UR DR H  uR  dR  uL  dL Yu Yd

SU(3)c 3 3 3 1 3 3 3 3 1 1

SU(2)L 2 1 1 2 1 1 1 1 1 1

U(1)Y +1/
6

+2/
3

�1/
3

+1/
2

+2/
3

�1/
3

+2/
3

�1/
3

0 0

SU(3)QL 3 1 1 1 3 3 1 1 3 3

SU(3)UR 1 3 1 1 1 1 3 1 3 1

SU(3)DR 1 1 3 1 1 1 1 3 1 3

Table 1: The transformation properties of the fields under the SM and flavour gauge sym-
metries.

With this matter content, the most general renormalisable Lagrangian invariant under
the SM and flavour gauge groups can be divided into three parts:

L = Lkin + Lint � V [H, Yu, Yd] . (2.1)

The first one, Lkin, contains the kinetic terms of all the fields and the couplings of fermions
and scalar bosons to the gauge bosons. The covariant derivative entering Lkin accounts
for SM gauge boson-fermion interactions and additional flavour interactions involving new
gauge bosons and fermions:

Dµ �
X

f=Q,U,D

i gf Nf (Af )µ , (Af )µ ⌘
8X

a=1

(Aa
f )µ

�a
SU(3)

2
, (2.2)

where gf are the flavour gauge coupling constants, Nf the quantum numbers, Aa
f the flavour

gauge bosons and �a
SU(3)

the Gell-Mann matrices.
The second term in eq. (2.1), Lint, contains the quark mass terms and the quark-scalar

interactions:

L
int

= �u QLH̃  uR + �0
u uLYu uR +Mu uLUR+

+ �d QLH  dR + �0
u dLYd dR +Md dLDR + h.c. ,

(2.3)

where Mu,d are universal mass parameters and �
(0)
u,d are universal coupling constants that

can be chosen real, through a redefinition of the fields.
The last term in eq. (2.1), V [H, Yu, Yd], is the scalar potential of the model, containing

the SM Higgs and the flavons Yu,d. The mechanisms of both electroweak and flavour
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We assume that the number density fractions, n'
i

/n', maintain their equilibrium values

before, during and after freeze-out. Here n'
i

is the 'i number density, while n' =
P

n'
i

is the total number density. This approximation is valid for large enough 'i ! 'jX rates,

where X represents the cosmic thermal background. The system of coupled Boltzmann

equations then reduces into a single one [26].

To obtain the relic density we first define the e↵ective annihilation cross section

�e↵ = S

X

ij

�('i'̄j ! X)rirj , (B1)

where the S = 1 (1/2) for bosons (Dirac fermions) [25], and

ri =
gi
ge↵

(1 +�i)
3
2 exp(�x�i) . (B2)

The gi is the number of 'i degrees of freedom, �i is the relative mass splitting in the DM
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Flavor constraints
• Inverted hierarchy provides mechanism of flavor 

protection 
• Flavor violation roughly controlled by the Yukawas, 

suppressing transitions for the light generations 
 
 

• FCNCs at acceptable level even for NP at electroweak 
scale 

• In the numerical scan of the parameter space we check 
if the present flavor constraints are satisfied following 
the methodology of Buras et al.
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1112.4477 - Buras, Carlucci, Merlo, Stamou

For the spectrum given 
in previous slide

2.1 Vectors and Scalars

The VEVs of Yu,d give also a mass to the flavor gauge bosons,

Lmass = Tr|gUAUYu � gQYuAQ|2 +Tr|gDADYd � gQYdAQ|2

=
1

2
VAa(M

2
V )

Aa,BbVBb , (2.6)

where

VAa = {AQa , AU a , ADa} , AQ = AQa
�a

2
, AU = AU a

�a

2
, AD = ADa

�a

2
, (2.7)

�a=1,...,8 are the Gell-Mann matrices and �9 is proportional to the identity.

The flavor gauge bosons couple to the quark currents,

Jµ ij,A = (gQQ
i
L�

µQj
L, gUU

i
R�

µU j
R, gDD

i
R�

µDj
R). (2.8)

Integrating out the vector fields SM four-fermion operators are produced, which in the flavor basis

read

� 1

8
(M2

V )
�1
Aa,Bb �

a
ij�

b
hk J

ij,A
µ Jµhk,B . (2.9)

In order to get the four-fermion operators in the mass eigenstate basis a further rotation by the unitary

matrix V is needed on the left-handed up-quarks.

The flavor gauge bosons mediate FCNC since their masses break all flavor symmetries. Naively this

implies the masses of all the gauge bosons to be around 105 TeV or higher in order to comply with flavor

bounds. This expectation is however completely incorrect in our model because the masses depend

on the inverse Yukawas. Roughly speaking the gauge bosons associated with transitions between light

generation are automatically much heavier than the ones associated with the third generation with a

hierarchy determined by the inverse Yukawas. As a consequence FCNC, which roughly scale as

⇠ 1

Y 2
u,d

(q̄�µq)2 , (2.10)

are highly suppressed for the light generations.

To better understand how this works let us consider for simplicity the case where only Yu is present.

Since Yu can be taken to a diagonal form there are no flavor violating processes and the individual

family numbers are not broken so the associated gauge bosons remain massless. The masses of the

flavor gauge bosons can be computed analytically in this case. Assuming equal couplings for SU(3)QL

and SU(3)UR the mass terms can be written as follows,

Lmass =
1

2
g2|Vij |2(Ŷ i

u � Ŷ j
u )

2 +
1

2
g2|Aij |2(Ŷ i

u + Ŷ j
u )

2

⇡ 1

2
g2|Vij |2

✓
�uMu

�0
u

◆2✓ 1

yiu
� 1

yju

◆2

+
1

2
g2|Aij |2

✓
�uMu

�0
u

◆2✓ 1

yiu
+

1

yju

◆2

, (2.11)

where V and A are the combinations (AQ + AU )/
p
2 and (AQ � AU )/

p
2 respectively. From this

it follows that 4-fermion operators with light quarks obtained integrating out heavy gauge bosons
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Figure 1: The box-diagrams contributing to K0�K̄0 mixing. Similarly for B0
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Âm is a flavour gauge boson mass eigenstate.

The e↵ective Hamiltonian for �F = 2 transitions can then be written in a general form
as

H�F=2

e↵

=
G2

F M2

W

4⇡2

X

ui

Ci(µ)Qi, (3.1)

where MW is the mass of the W -boson, Qi are the relevant operators for the transitions,
that we list below, and Ci(µ) their Wilson coe�cients evaluated at a scale µ, which will
be specified in the next section.

While in the SM only one operator contributes to each�F = 2 transition, i.e. QVLL

1

(M)
in the list of eq. (3.2), in the model in question there are more dimension-six operators. In
the absence of flavon exchanges, the relevant operators for the M0–M̄0 (M = K,Bd, Bs)
systems are [18]:

QVLL

1

(K) = (s̄↵�µPLd
↵)(s̄��µPLd

�) , QVLL

1

(Bq) = (b̄↵�µPLq
↵)(b̄��µPLq

�) ,

QVRR

1

(K) = (s̄↵�µPRd
↵)(s̄��µPRd

�) , QVRR

1

(Bq) = (b̄↵�µPRq
↵)(b̄��µPRq

�) ,

QLR

1

(K) = (s̄↵�µPLd
↵)(s̄��µPRd

�) , QLR

1

(Bq) = (b̄↵�µPLq
↵)(b̄��µPRq

�) ,

QLR

2

(K) = (s̄↵PLd
↵)(s̄�PRd

�) , QLR

2

(Bq) = (b̄↵PLq
↵)(b̄�PRq

�) .

(3.2)

where PL,R = (1⌥ �
5

)/2.
In the next section, we collect the Wilson coe�cients of these operators separating the

contributions from box-diagrams and from the tree-level heavy gauge boson exchanges so
that

C
(M)

i = �(M)

Box

Ci +�(M)

A

Ci , (3.3)

where M = K, Bd, Bs.
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the corresponding mass Lagrangian reads

L
mass

=
1

2
�T M2

A � with M2

A =

0

B@
M2

QQ M2

QU M2
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M2

UQ M2

UU 0

M2

DQ 0 M2

DD

1

CA , (2.15)

and

�
M2
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�
ab
=
1

4
g2Q Tr

h
hYui

�
�a
SU(3)

,�b
SU(3)

 
hYui† + hYdi

�
�a
SU(3)

,�b
SU(3)

 
hYdi†

i

�
M2

UU

�
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=
1

4
g2U Tr

h
hYui

�
�a
SU(3)

,�b
SU(3)

 
hYui†

i

�
M2

DD

�
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=
1

4
g2D Tr

h
hYdi

�
�a
SU(3)

,�b
SU(3)

 
hYdi†

i

�
M2

QU

�
ab
=
�
M2

UQ

�
ba
= �1

2
gQ gU Tr

h
�a
SU(3)

hYui† �b
SU(3)

hYui
i

�
M2

QD

�
ab
=
�
M2

DQ

�
ba
= �1

2
gQ gD Tr

h
�a
SU(3)

hYdi† �b
SU(3)

hYdi
i
.

(2.16)

In general, the diagonalisation of this mass-matrix is only numerically possible; for the
rest of the paper we shall indicate with M̂2

A the diagonal matrix of the gauge boson mass
eigenstates Âm, where m = 1, . . . , 24, and with W(Âm, Aa

f ), where f = {Q, U, D} and
a = 1, . . . , 8, the transformation to move from the flavour-basis to the mass-basis (see
App. A.2).

3 �F = 2 Transitions

3.1 E↵ective Hamiltonian

In the model in question the e↵ective Hamiltonian for�F = 2 observables with external
down-type quarks consists at the leading order in weak and flavour-gauge interactions of
two parts:

- Box-diagrams with SM W -boson and up-type quark exchanges. Due to the mixing
among light and heavy quarks, there are three di↵erent types of such diagrams:
with light quarks only, with heavy quarks only or with both light and heavy quarks
running in the box, as shown in Fig. 1. If only exchanges of SM quarks are considered,
the GIM mechanism is broken in these contributions. It is recovered when also the
exchanges of heavy quarks are taken into account.

- The tree-level contributions from heavy gauge boson exchanges of Fig. 2, that gen-
erate new neutral current-current operators, which violate flavour.

In principle one could consider box-diagrams with flavour-violating neutral heavy boson
exchanges but they are negligible with respect to the tree-level contributions.
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Figure 1: The box-diagrams contributing to K0�K̄0 mixing. Similarly for B0

q �B̄0

q mixing.
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Figure 2: The tree-diagrams contributing to K0�K̄0 mixing. Similarly, for B0

q�B̄0

q mixing.

Âm is a flavour gauge boson mass eigenstate.

The e↵ective Hamiltonian for �F = 2 transitions can then be written in a general form
as
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W

4⇡2

X

ui

Ci(µ)Qi, (3.1)

where MW is the mass of the W -boson, Qi are the relevant operators for the transitions,
that we list below, and Ci(µ) their Wilson coe�cients evaluated at a scale µ, which will
be specified in the next section.

While in the SM only one operator contributes to each�F = 2 transition, i.e. QVLL

1

(M)
in the list of eq. (3.2), in the model in question there are more dimension-six operators. In
the absence of flavon exchanges, the relevant operators for the M0–M̄0 (M = K,Bd, Bs)
systems are [18]:

QVLL

1

(K) = (s̄↵�µPLd
↵)(s̄��µPLd

�) , QVLL

1

(Bq) = (b̄↵�µPLq
↵)(b̄��µPLq

�) ,

QVRR

1

(K) = (s̄↵�µPRd
↵)(s̄��µPRd

�) , QVRR

1

(Bq) = (b̄↵�µPRq
↵)(b̄��µPRq

�) ,

QLR

1

(K) = (s̄↵�µPLd
↵)(s̄��µPRd

�) , QLR

1

(Bq) = (b̄↵�µPLq
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In the next section, we collect the Wilson coe�cients of these operators separating the

contributions from box-diagrams and from the tree-level heavy gauge boson exchanges so
that
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where

adsl =

�����

�
�d
12

�
SM�

Md
12

�
SM

����� sin�d = (5.4± 1.0)⇥ 10�3 sin�d ,

assl =

����
(�s

12

)SM
(M s

12

)SM

���� sin�s = (5.0± 1.1)⇥ 10�3 sin�s ,

(4.2)

with
�d = arg

⇣
�

�
Md

12

�
SM

/
�
�d
12

�
SM

⌘
= �4.3� ± 1.4� ,

�s = arg
⇣
� (M s

12

)SM / (�s
12

)SM

⌘
= 0.22� ± 0.06� .

(4.3)

In the presence of NP, these expressions are modified. Since we have already discussed
the NP e↵ects on M q

12

in the previous sections, we focus now only on �q
12

. It is useful to
adopt a notation for �q

12

similar to the one in eq. (3.27) for M q
12

:

�q
12

= (�q
12

)
SM

C̃Bq e
�2 i '̃Bq , (4.4)

where C̃Bq is a real parameter. With such a notation we get,

aqsl =

�����

�
�d
12

�
SM�

Md
12

�
SM

�����
C̃Bq

CBq

sin
�
�d + 2'Bq + 2'̃Bq

�
. (4.5)

Notice, that in the MGF context we are considering, the phase '̃Bq is vanishing, while C̃Bq

is mainly given by c2uL2
cdLb

cdLq ⇡ 1. As a result the only NP modifications are provided
by the NP contributions on M q

12

.

5 The B̄ ! Xs� Decay

5.1 E↵ective Hamiltonian

The decay B̄ ! Xs� is mediated by the photonic dipole operators Q
7� and Q0

7� and
through mixing also by the gluonic dipole operators Q

8G and Q0
8G. In our conventions they

read
Q

7� =
e

16⇡2

mb s̄↵ �
µ⌫ PR b↵ Fµ⌫ ,

Q
8G =

gs
16⇡2

mb s̄↵ �
µ⌫ PR T a

↵� b� G
a
µ⌫

(5.1)

and the corresponding primed dipole operators are obtained by substituting PR with PL.
The e↵ective Hamiltonian for b ! s� at a scale µ in the SM normalisation and consid-

ering only the dipole operators reads

Hb!s�
e↵

= �4G
Fp
2
V ⇤
tsVtb

h
�C

7�(µ)Q7� +�C
8G(µ)Q8G+

+�C 0
7�(µ)Q

0
7� +�C 0

8G(µ)Q
0
8G

i
.

(5.2)
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We have kept the contributions of the primed dipole operators Q0
7� and Q0

8G even though
their Wilson coe�cients are suppressed by ms/mb with respect to the unprimed Wilson
coe�cients. However, the mixing of neutral current-current operators into Q0

7� and Q0
8G

can a↵ect �C 0
7�(µb) as shown in Ref. [17].

Similarly to the Hamiltonian for the �F = 2 transitions, the Wilson coe�cients in the
Hamiltonian can be separated into two parts:

- The SM-like contribution from diagrams with W -bosons with modified couplings to
both SM and exotic quarks of charge +2/3, denoted below by u and u0, respectively:

ui, u′i

W

ui, u′ib s

γ, g

W

ui, u′i

W

b s

γ

- The contribution of heavy neutral gauge bosons exchanges with virtual SM and exotic
quarks of charge �1/3, denoted below by d and d0, respectively:

di, d′i

Âm

di, d′i
b s

γ, g

The first contribution has already been considered in Ref. [12], while the second, the
impact of the heavy neutral gauge bosons on b ! s�, has been recently pointed out in
Ref. [17]. In particular it has been found that the QCD renormalisation group e↵ects in
the neutral gauge boson contributions can strongly a↵ect the branching ratio of B̄ ! Xs�
and cannot be neglected a priori.

5.2 Contributions of W -exchanges

For the W -exchange the matching is performed at the EW scale, µW . The Wilson
coe�cients are the sum of t and t0 contribution, since c0 and u0 contributions are suppressed
by their small couplings to b and s quarks. Hence, the Wilson coe�cients of Q

7� and Q
8G

are

�WC
7�(µW ) = cdL2 cdL3

�
c2uL3

CSM
7� (xt) + s2uL3

CSM
7� (x0

t)
�
, (5.3)

�WC
8G(µW ) = cdL2 cdL3

�
c2uL3

CSM
8G (xt) + s2uL3

CSM
8G (x0

t)
�
, (5.4)

with

CSM
7� (x) =

3x3 � 2x2

4(x� 1)4
ln x� 8x3 + 5x2 � 7x

24(x� 1)3
, (5.5)

CSM
8G (x) =

�3x2

4(x� 1)4
ln x� x3 � 5x2 � 2x

8(x� 1)3
(5.6)
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Di-jet resonances

Vector-like quarks

E. Searches at the LHC

The searched at the LHC are sensitive to the lightest new states in our models. The

searches for dijet resonances impose constraints on the lightest FGB [54], while the search

for vector-like T and B quarks impose constraints on the lightest quark partners u0

i, d
0

i [55].

The FGBs are narrow resonances that can have flavor conserving or flavor-violating cou-

plings to the SM quarks, ui, di, and the quark partners, u0

i, d
0

i. The FGBs are not colored

and thus do not directly couple to gluons. They can appear as resonances in the di-jet

invariant mass spectrum. At the partonic level the production process is dominated by

qiq̄j ! Am ! qkq̄l. For the most part, the LHC di-jet resonance searches are relevant only

for the lightest FGB which has, to a very good approximation, flavor-diagonal couplings to

quarks. In this case, the cross section for pp ! jj is given by [56, 57]

�(pp ! qj q̄j) =

Z s

2m
j

dM
Z Y

B

�Y
B

dyB

Z z
o

�z
o

dz
2M
s

⇥
X

i

fi
�p

⌧eyB
�
fī
�p

⌧e�y
B

� 1
2

X

k,`

d

dz
�̂(īi ! jj̄).

(37)

The partonic di↵erential cross section is given by

d

dz
�̂(īi ! jj̄) =

1

32⇡
�f

M 2

(M 2 � m2
Am

)2 + m2
Am

�2
Am

⇣��Ĝu,d
V

��2
ii,m

+
��Ĝu,d

A

��2
ii,m

⌘

⇥
⇣��Ĝu,d

V

��2
jj,m

+
��Ĝu,d

A

��2
jj,m

⌘ �
1 + �2

fz
2
�
+ 4

⇣��Ĝu,d
V

��2
jj,m

� ��Ĝu,d
A

��2
jj,m

⌘ m2
j

M 2

�
,

(38)

where, in the partonic center of mass frame, M is the total energy, �f is the velocity of the

final state quarks, z = cos ✓⇤ is the cosine of the polar angle of the outgoing quark w.r.t. the

direction of the incoming quark, and the couplings ĜV , ĜA are the coe�cients of the �µ, �µ�5

terms respectively. We have only included the s�channel contribution which dominates on

the FGB resonance peak. Terms odd in z were dropped in the di↵erential cross-section since

they vanish after integration. The constraints from [54] are then given in Figs..JZ: to be

finished. We also need to say how often the points do not pass the search..

The quark partners, u0

i, d
0

i, have an inverted mass hierarchy with t0 and b0 being the

lightest and next to lightest state respectively in most of our scan points. JZ: is this true?

The bound on the t0 mass depends on the branching ratios of the t0 into the bW , tZ, and tH

22

• FGB can appear as a resonance in di-
jet invariant mass distribution
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• The lightest exotic quarks are top and bottom partners 
• CMS and ATLAS limits on vector-like quarks apply trivially after 

correcting for branching ratios
final states. In the MGF model, these partial widths are given by JZ: we did not define

the angles anywhere else in the paper

�(t0 ! bW ) =
g2
w

64⇡
|su

L

3V33cd
L

3|2 m3
t0

m2
W

�
1� x2

W

�2 �
1 + 2x2

W

�

�(t0 ! tZ) =
g2
w

128⇡
(cu

L

3su
L

3)
2 m3

t0

m2
W

q⇥
1� (xz + xt)

2⇤ ⇥1� (xz � xt)
2⇤

⇥ ��
1� x2

z

� �
1 + 2x2

z � x2
t

�� x2
t

�
1� x2

t

� 

�(t0 ! tH) =
�2
u

64⇡
mt0

q⇥
1� (xh + xt)

2⇤ ⇥1� (xh � xt)
2⇤

⇥ ��
s2u

R

3s
2
u
L

3 + c2u
R

3c
2
u
L

3

� �
1 + x2

t � x2
h

�� 4su
R

3 su
L

3 cu
R

3 cu
L

3 xt

 

(39)

where xi = mi/mt0 . The Feynman rules used to derive these decay widths are given in [23]

with the exception of the Higgs couplings which are given in App. A. The definitions of the

couplings can be also be found in [23]. Note that we took the limit xb ! 0 in the first line of

Eq. (39) which is justified since the experimental bounds require Mt0 & 782 [GeV] (taking

the PDG value for the purpose of illustration).

F. Flavor constraints

JZ: Manos? Can simply review the constraints obtained in [23].

V. BENCHMARKS

In order to illustrate the most relevant phenomenology of fermionic flavored DM we

select four representative benchmark points I, II, III, IV. The main features of the four

benchmarks are summarized in Figs. 8, to 11. The upper left panels in the figures show

the FGB, quark and �i spectra. Each FGB is represented by four shaded 3⇥ 3 rasters. The

shade of the entries in the rasters is JZ: logarithimically? proportional to the size of the

couplings to uR, dR, uL and dL, respectively. The upper right panels in the figures show

the pull in selected flavor observables, i.e. the di↵erence between theoretical prediction and

measurements normalized to the combined theory and experimental 1-� uncertainities. The

DM relic abundances as functions of �1 mass are shown in bottom left panels, while the

corresponding LUX DM direct detection constraint are given in bottom-right panels. The
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SU(3)3 model and DM candidate

12

Note that yu,d are non-analytic in spurions hYu,di. This signals that the theory is not strictly

speaking MFV. The NP states, u0

i, d
0

i and Aa
A, have masses that are non-analytic in terms of

the SM Yukawas, yu,d ⇠ hYU,Di�1. The low energy observables, with only the SM fields on the

external legs, however, can be MFV-like. If the Mu,d/hYu,di suppressed terms are kept in (9),

the yu,d become more complicated functions of hYu,di�1. These are analytic in hYu,di�1 since

the e↵ects of NP states decouple in the hYu,di ! 1 limit. Similarly, the NP contributions to

the low energy observables Ci take the form �Ci = F (hYui�1, hYdi�1) = F̃ (yu, yd), with F, F̃

analytic functions. One can thus expand �Ci = a1yuy
†

u+a2(yuy†

u)
2+ b1yuy

†

uydy
†

d+ · · · , where
we assumed for illustration that the transition is due to the left-handed quark current. As

long as there are no large flavor conserving ratios, i.e., as long as (�uMu/�
0

u)/(�dMd/�
0

d) ⌧
1/|Vcb|, the Taylor expansion can be truncated after a few terms (see [24] for more detailed

discussion). In this limit the low energy e↵ects are of the MFV type, suppressing the FCNCs

to acceptable levels already for NP states at the electroweak scale. In a detailed numerical

analysis that we perform below we find... JZ: to be completed, we need to say whether

we find deviations from MFV in our observables

JFK: Manos, can you check the ratio �(Bd ! µ+µ�)/�(Bs ! µ+µ�)? In any variant of

MFV this is strictly (VtdfB/VtsfB
s

)2... Also, are the vevs of Yu,d stored somewhere, so we

could compare explicitly with Mu,d?

Since hYu,di are in the bi-fundamental representation of GSM
F , the Z�

3 remains unbroken.
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A. Fermionic Flavored Dark Matter

The first model has two DM Weyl fermions, �L and �c
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�L ⇠ (1, 3, 1) , �c
R ⇠ (1, 3̄, 1) , (10)

so that they do not induce gauge anomalies. They form a Dirac DM fermion in the funda-

mental of SU(3)U , � = (�L, �R), with a mass term

L�
mass = m0

��̄L�R + h.c. . (11)
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Figure 1: Radiative corrections due to FGBs, AQ, Au, AD, split the DM multiplet �.

The DM fermions are charged under Z�
3 so that the lightest member of the � triplet is

stable. Note that the largest global group which could be gauged is GSM
F ⇥ SU(3)�, with �

transforming under SU(3)�. That we identify SU(3)� with SU(3)U is a dynamical choice.

The DM flavor triplet, �, is split by radiative corrections due to the exchanges of FGBs,

see Fig. 1. The DM mass splitting at 1-loop is in the m0
� ⌧ mA limit given by

�m� = �3

4

g2
U

16⇡2
m0

�

⇣
⌅� 1

3
Tr⌅

⌘
, (12)

where �m� is a 3 ⇥ 3 matrix and so is ⌅ = �a(logM2
A/µ2)ab�b. The FGB mass matrix

M2
A is given in Eq. (8), while the a, b indices run only over the eight SU(3)U generators.

The µ dependence cancels in the r.h.s. of (12). The �i, i = 1, 2, 3, mass eigenstates are

obtained by diagonalizing the mass matrix �m�. The ⌅ is a function of Y †

uYu and Y †

uYdY
†

d Yu

combinations of condensates, making the � mass eigen-basis slightly misaligned from the

up-quark one. The lightest state is the �1, i.e. with the predominantly up-quark flavor,

while the heaviest is the top-flavored state, �3.

In the numerics we use the exact 1-loop expressions for the DM mass splitting,

⌅ =
3

2
�aWa+8,m

⇥
B1(m

2
�, m

2
A

m

, m2
�)� B0(m

2
�, m

2
A

m

, m2
�)
⇤W†

m,c+8
�c . (13)

The summation over FGM mass eigenstate indices m = 1, . . . , 24 and over a, c = 1, . . . , 8

is understood. The 24 ⇥ 24 dimensional matrix W diagonalizes the gauge boson mass

matrix, while B0,1 are the Veltman-Passarino functions. The typical values of the splitting

are m�2 � m�1 ⇠ O(few GeV) and m�3 � m�
s,1 ⇠ O(10s GeV) for m� ⇠ O(TeV) and

gQ,U,D ' 0.5, see Fig. 2.

The DM multiplet can be split more significantly if there is additional flavor breaking

beyond hYui, hYdi. As an example we consider an additional scalar field in the adjoint of

SU(3)U , �U ⇠ (1, 8, 1). The DM mass Lagrangian now reads

L0�
mass = m0

��̄L�R + ���L�U�R + h.c. , (14)

8

0.0 0.1 0.2 0.3 0.4 0.5

0.01

0.1

1

10

gU

D
m
c
HGe

V
L

mcŒ@0.2,1.0DTeV, gQ=0.4, gD=0.5

Figure 2: Typical radiative splitting of the fermionic DM multiplet. JFK: Need to specify other
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and yields DM masses which are split already at tree level, �m� = ��h�Ui. We assume that

h�Ui is aligned with Y †

UYU and the two diagonalize in the same basis, giving O(1) splitting

between all three members of the multiplet. The alignment is not needed in general, but

does simplify our analysis. For the same reason we also take the first state to be the lightest

one, m�1 < m�2,3 .

The �i interact with the SM through FGBs. This also leads to the decay of the heavier

two states in the DM multiplet, �2,3, to �1. We parametrize the relevant interactions with

L� ⇢(ĝm
� )ij�̄i�

µ�jA
m
µ + ūq0�

µ
⇣�Ĝu

R

�
q0q,m

PR +
�Ĝu

L

�
q0q,m

PL

⌘
uqA

m
µ

+ d̄q0�
µ
⇣�Ĝd

R

�
q0q,m

PR +
�Ĝd

L

�
q0q,m

PL

⌘
dqA

m
µ ,

(15)

where PR,L ⌘ 1
2
(1± �5). The couplings of �i to the gauge bosons are

(ĝm
� )ji = (�1

2
gUU †�U

nWnmU)ji , (16)

where U diagonalizes the m� mass matrix, U †m�U = m̂�, and W diagonalizes the gauge

boson mass matrix. The explicit form of FGB couplings to the SM quarks,
�Ĝu/d

L/R

�
q0q,m

, can

be found in Appendix A.2 of [23]. JFK: Need also to define Ĝq
L,R?

The partial decay width for �1,2 ! �3qq̄
0 is, neglecting hadronization e↵ects,

�(�i ! �jqq̄
0) =

3

(2⇡)3
�m5

ij

15

h���
X

m

(ĝm
� )ji

1

m2
Am

�Ĝu
L

�
q0q,m

���
2

+ L ! R
i
, (17)

where the sum runs over the gauge mass eigenstates m = 1, . . . , 24. The expression (17) is

valid in the �mij ⌧ m�
i

limit, where �mij ⌘ m�
i

�m�
j

, and neglecting the quark masses.
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� )ij�̄i�

µ�jA
m
µ + ūq0�
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2
(1± �5). The couplings of �i to the gauge bosons are
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2
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, can

be found in Appendix A.2 of [23]. JFK: Need also to define Ĝq
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Figure 1: Radiative corrections due to FGBs, AQ, Au, AD, split the DM multiplet �.

The DM fermions are charged under Z�
3 so that the lightest member of the � triplet is

stable. Note that the largest global group which could be gauged is GSM
F ⇥ SU(3)�, with �

transforming under SU(3)�. That we identify SU(3)� with SU(3)U is a dynamical choice.

The DM flavor triplet, �, is split by radiative corrections due to the exchanges of FGBs,

see Fig. 1. The DM mass splitting at 1-loop is in the m0
� ⌧ mA limit given by

�m� = �3

4

g2
U

16⇡2
m0

�

⇣
⌅� 1

3
Tr⌅

⌘
, (12)

where �m� is a 3 ⇥ 3 matrix and so is ⌅ = �a(logM2
A/µ2)ab�b. The FGB mass matrix

M2
A is given in Eq. (8), while the a, b indices run only over the eight SU(3)U generators.

The µ dependence cancels in the r.h.s. of (12). The �i, i = 1, 2, 3, mass eigenstates are

obtained by diagonalizing the mass matrix �m�. The ⌅ is a function of Y †

uYu and Y †

uYdY
†

d Yu

combinations of condensates, making the � mass eigen-basis slightly misaligned from the

up-quark one. The lightest state is the �1, i.e. with the predominantly up-quark flavor,

while the heaviest is the top-flavored state, �3.

In the numerics we use the exact 1-loop expressions for the DM mass splitting,

⌅ =
3

2
�aWa+8,m

⇥
B1(m

2
�, m

2
A

m

, m2
�)� B0(m

2
�, m

2
A

m

, m2
�)
⇤W†

m,c+8
�c . (13)

The summation over FGM mass eigenstate indices m = 1, . . . , 24 and over a, c = 1, . . . , 8

is understood. The 24 ⇥ 24 dimensional matrix W diagonalizes the gauge boson mass

matrix, while B0,1 are the Veltman-Passarino functions. The typical values of the splitting

are m�2 � m�1 ⇠ O(few GeV) and m�3 � m�
s,1 ⇠ O(10s GeV) for m� ⇠ O(TeV) and

gQ,U,D ' 0.5, see Fig. 2.

The DM multiplet can be split more significantly if there is additional flavor breaking

beyond hYui, hYdi. As an example we consider an additional scalar field in the adjoint of

SU(3)U , �U ⇠ (1, 8, 1). The DM mass Lagrangian now reads

L0�
mass = m0

��̄L�R + ���L�U�R + h.c. , (14)
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The DM multiplet can be split more significantly if there is additional flavor breaking

beyond hYui, hYdi. As an example we consider an additional scalar field in the adjoint of
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2) Complex scalar in fundamental of SU(3)U

The above approximations are valid for all the values of parameter for which the correct

relic abundance is obtained, and the FCNC, collider and direct DM detection constraints

are satisfied.

If the mass splitting is less that the pion mass the decay through �i ! �jqq̄
0 transition

is no longer kinematically allowed. The heavier �i states then decay radiatively through

�i ! �j��. For our purposes an order of magnitude estimate of the decay width su�ces.

Naive dimensional analysis (NDA) estimate gives

� (�j ! �i��) ⇠ �m9
ij

8⇡

1

16⇡2

⇣ ↵

4⇡

⌘2

2

4
�����
X

m,f

(ĝm
� )ji

m̂2
Am

Q2
u

m2
f

⇣�Ĝu
L

�
ff,m

� �Ĝu
R

�
ff,m

⌘�����

2

+ u ! d

3

5 ,

(18)

where Qu = 2/3 and Qd = �1/3 are the electromagnetic charges of up and down quarks.

The sum over m runs over the FGB mass eigenstates, while the sum over f is over the SM

quarks and exotic states, with mf their mass (for up, down and strange quarks this needs

to be replaced with ⇤QCD).

B. Scalar Flavored Dark Matter

The second model has scalar DM, �, in a fundamental representation of SU(3)U

� ⇠ (1, 3, 1) . (19)

The major di↵erence with the fermonic flavored DM from the previous subsection is that

the scalar DM interacts with the visible sector through two di↵erent types of interactions.

The first are the couplings to the FGBs, which is similar to the case of the fermionic DM.

In addition there is also a direct coupling to the Higgs

LDM
int = �H(�

†�)(H†H) . (20)

For a thermal relic the DM annihilations proceed predominantly through the Higgs portal.

The interactions through FGBs are subdominant except if m� ' ma
A/2 for some Aa. The fact

that the DM carries a flavor quantum number is then exhibited only through the multiplicity

of the states.

After electroweak symmetry breaking the DM-Higgs interactions are given by

LDM
int � �H

�
vh + v2/2

�
�†� , (21)
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†�)(H†H) . (20)

For a thermal relic the DM annihilations proceed predominantly through the Higgs portal.

The interactions through FGBs are subdominant except if m� ' ma
A/2 for some Aa. The fact

that the DM carries a flavor quantum number is then exhibited only through the multiplicity

of the states.
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Higgs portal

and the DM mass term m2
0�

†� is shifted by the Higgs condensate to give the DM mass of

m2
� = m2

0 + v2/2 . (22)

The scalar fields that higgs the FGBs, Yu and Yd, split the DM multiplet at tree level

through interactions of the form

L � (�†�a�)Tr(Y †

u�aYu) . (23)

The spectrum is also split by radiative corrections due to FGBs. These are quadratically

divergent and proportional to the FGB mass-squared or, equivalently, to hY †

uYui. Explicitly,
in MS and Feynman gauge we get for the FGB contribution

�m2
� =

g2
U

16⇡2

3

4
�b
h
M2

A

⇣2
✏̂
� log

⇣M2
A

µ2

⌘
+

1

3

⌘i

ba
�a. (24)

In principle it is possible to fine tune the tree-level and loop contributions to give almost

degenerate DM flavor multiplet. Given the hierarchical FGB masses, it is, however, more

likely, that the DM multiplet is split completely, and only the lightest state is relevant for

DM phenomenology. Depending on the sign of  in (23) the lightest � component can be

either top-quark or up-quark flavored. For easier comparison with the fermionic case we

choose the later option in the numerics. JFK: The lightest component can now be either

top or up flavored? Does this show up in pheno somewhere?

IV. DARK MATTER AND NEW PHYSICS PHENOMENOLOGY

We turn next to the phenomenology of the flavored DM models. We perform a scan over

the parameters of the models and show that the lowest DM states, both for the fermionic

DM, �, and the scalar DM, �, can be thermal relics. In order to make the scan numerically

tractable we make a number of approximations in calculating the relic density which we

explain in detail. We then move to the predictions for direct DM detection, the constraints

from FCNCs and from collider searches.

A. Results of the scan

In the scan we fix �u = 1 and vary �d 2 [1/(4⇡), 1]. The range is chosen with the

expectation that one will be able to accommodate both the SM top and bottom quark

11

DM mass splitting at 
tree level



Parameter scan
• We perform an extensive scan of parameter space of the model (~30k 

points)

• We fix                and  vary 

• In addition, we vary  

• To have control over the perturbative expansion we require all the FBG 
decay widths to be less then 1/2 FGB mass as well as radiative DM mass 
splittings to be less then 1/2 DM mass 

• In the plots, we show only the points that can accommodate for the 
observed DM relic density 

• Different colors denote consecutively applied constraints of perturbativity, 
direct DM searches, LHC searches, flavor and cosmology constraints
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Figure 3: The results of the scan for fermonic (left) and scalar (right) flavored DM. JFK: Labels,

Explain!JZ: color coding needs to be unified

Yukawas as well as satisfy electroweak precision constraints and direct T 0 and B0 searches [9].

In addition we vary �0

u,d 2 [1/(4⇡),
p
4⇡] , gQ,U,D 2 [1/(4⇡),

p
4⇡] , and Mu,d 2 [0.2, 20] TeV .

We have verified that further extending these parameter ranges does not extend the viable

DM model parameter space. For instance, the upper range of gQ,U,D already lies close to the

non-perturbative regime. To have control over perturbative expansion we require that all

the FGB decay widths satisfy �Am < 0.5mAm , and that the radiative mass splitting for the

fermionic DM is �mij < 0.5m�. This imposes upper bounds on gQ,U,D which can be close

to but always below
p
4⇡. Similar constraints on �0

u,d are expected to follow from analogous

considerations in the flavored Higgs sector, i.e., by requiring the total widths of the flavored

scalars Yu,d to be small compared to their masses.

The results of the scan are shown in Figs. 3, 4, 6. Fig. 3 (left) and Fig. 3 (right) show

the results of the scan for fermionic and scalar DM model, respectively. All the points

shown in Fig. 3 give the correct relic DM abundance. For fermionic DM the observed

relic abundance requires resonantly enhanced annihilation through s�channel exchange of

the lightest FGB, A24. This leads to the relation m�
i

' mA24/2 shown in Fig. 3 (left).

JZ: we need the Feynman diagram, maybe? The scalar DM, on the other hand,

predominantly annihilates through a Higgs portal. There is thus no relation between m�

and mA24 , as illustrated in Fig. 3 (right).

JZ: we need to unify the color coding on all the plots Di↵erent colors denote

consecutively applied constraints of perturbativity as discussed above (grey), direct DM
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Figure 3: The results of the scan for fermonic (left) and scalar (right) flavored DM. JFK: Labels,

Explain!JZ: color coding needs to be unified

Yukawas as well as satisfy electroweak precision constraints and direct T 0 and B0 searches [9].

In addition we vary �0

u,d 2 [1/(4⇡),
p
4⇡] , gQ,U,D 2 [1/(4⇡),

p
4⇡] , and Mu,d 2 [0.2, 20] TeV .

We have verified that further extending these parameter ranges does not extend the viable

DM model parameter space. For instance, the upper range of gQ,U,D already lies close to the

non-perturbative regime. To have control over perturbative expansion we require that all

the FGB decay widths satisfy �Am < 0.5mAm , and that the radiative mass splitting for the

fermionic DM is �mij < 0.5m�. This imposes upper bounds on gQ,U,D which can be close

to but always below
p
4⇡. Similar constraints on �0

u,d are expected to follow from analogous

considerations in the flavored Higgs sector, i.e., by requiring the total widths of the flavored

scalars Yu,d to be small compared to their masses.

The results of the scan are shown in Figs. 3, 4, 6. Fig. 3 (left) and Fig. 3 (right) show

the results of the scan for fermionic and scalar DM model, respectively. All the points

shown in Fig. 3 give the correct relic DM abundance. For fermionic DM the observed

relic abundance requires resonantly enhanced annihilation through s�channel exchange of

the lightest FGB, A24. This leads to the relation m�
i

' mA24/2 shown in Fig. 3 (left).

JZ: we need the Feynman diagram, maybe? The scalar DM, on the other hand,

predominantly annihilates through a Higgs portal. There is thus no relation between m�

and mA24 , as illustrated in Fig. 3 (right).

JZ: we need to unify the color coding on all the plots Di↵erent colors denote

consecutively applied constraints of perturbativity as discussed above (grey), direct DM
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and the DM mass term m2
0�

†� is shifted by the Higgs condensate to give the DM mass of

m2
� = m2

0 + v2/2 . (22)

The scalar fields that higgs the FGBs, Yu and Yd, split the DM multiplet at tree level

through interactions of the form

L � (�†�a�)Tr(Y †

u�aYu) . (23)

The spectrum is also split by radiative corrections due to FGBs. These are quadratically

divergent and proportional to the FGB mass-squared or, equivalently, to hY †

uYui. Explicitly,
in MS and Feynman gauge we get for the FGB contribution

�m2
� =

g2
U

16⇡2

3

4
�b
h
M2

A

⇣2
✏̂
� log

⇣M2
A

µ2

⌘
+

1

3

⌘i

ba
�a. (24)

In principle it is possible to fine tune the tree-level and loop contributions to give almost

degenerate DM flavor multiplet. Given the hierarchical FGB masses, it is, however, more

likely, that the DM multiplet is split completely, and only the lightest state is relevant for

DM phenomenology. Depending on the sign of  in (23) the lightest � component can be

either top-quark or up-quark flavored. For easier comparison with the fermionic case we

choose the later option in the numerics. JFK: The lightest component can now be either

top or up flavored? Does this show up in pheno somewhere?

IV. DARK MATTER AND NEW PHYSICS PHENOMENOLOGY

We turn next to the phenomenology of the flavored DM models. We perform a scan over

the parameters of the models and show that the lowest DM states, both for the fermionic

DM, �, and the scalar DM, �, can be thermal relics. In order to make the scan numerically

tractable we make a number of approximations in calculating the relic density which we

explain in detail. We then move to the predictions for direct DM detection, the constraints

from FCNCs and from collider searches.

A. Results of the scan

In the scan we fix �u = 1 and vary �d 2 [1/(4⇡), 1]. The range is chosen with the

expectation that one will be able to accommodate both the SM top and bottom quark
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1) Fermionic DM

2

are commonly assumed to be O(1), so that the the ob-
served hierarchies of the Yukawas are solely accounted
for by the flavour symmetry breaking. This can be done
by a suitable choice of the flavour charges or representa-
tions of the SM fermions (one can assume that the Higgs
field is neutral under GF ), provided that ✏ ⌘ h�i/M is a
small expansion parameter, typically of the order of the
Cabibbo angle or smaller.

A. GF as a global symmetry

If the flavour symmetry is global, there are no extra
gauge bosons associated to it, so that for a DM particle
which carries flavour charge, the only interactions with
the visible sector are through flavon fields �. In particu-
lar, we are going to consider two chiral fermions �L and
�R, which are SM singlets but transform non-trivially un-
der GF . In perfect analogy with the SM fermions, the DM
particle acquires a Dirac mass term though the flavour
symmetry breaking:

m� = b�

✓ h�i
M

◆n�

h�i , (2)

where again b� is an O(1) coe�cient and n� depends
on the flavour representations/charges of �L and �R.
Note that in this setup the stability of the DM particles
is automatically guarantied (at least for what concerns
the quark sector) by an accidental symmetry related to
their singlet nature. From Eqs. (1, 2) we can obtain the
couplings of both DM and SM fermions to a dynami-
cal flavon, without further specifying the details of the
model:

L � nf mf

h�ifLfR� + (n� + 1)
m�

h�i�L�R�

⌘ �ffLfR� + ���L�R� . (3)

Here, we suppressed flavour indices but one has to keep in
mind that the couplings to fermions are in general flavour
changing. In fact, �f is not diagonal in the same basis
as the fermion mass matrix mf , as a consequence of the
flavour dependence of the exponents nf . The above ex-
pressions can be easily generalised to the case of multiple
flavons.
For what concerns the flavon mass, we assume that

it also arises from the flavour symmetry breaking, such
that:

m� = kh�i . (4)

Since we are not going to specify the details of the scalar
potential and the symmetry breaking, we take k as a free
parameter.
From the above Lagrangian, we can see that our setup

shares some similarities to the Higgs-portal scenario [6–
10], in particular the fact that the mediator prefers to

�

�

f

f

�

⇠ m�

h�i ⇠ mf

h�i

(a) (b)

⇠ m�

h�i

⇠ m�

h�i

� �

� �

�

�

f

f

Z �

⇠ gF ⇠ gF

(c)

FIG. 1: Feynman diagrams contributing to DM annihilation
in presence of light flavons (a) and (b) and light flavour gauge
bosons (c).

couple to heavier fermions, but also the possible correla-
tions between the DM annihilation and scattering with
nuclei.

In Fig. 1 we show the Feynman diagrams (a) and
(b) contributing to DM annihilation in presence of light
flavons. Notice that the contribution (b) requires m� >
m�. From the figure, we can immediately infer the para-
metric dependence of the annihilation processes we are
interested in. Concerning the s-channel processes (a), we
see that the thermally-averaged annihilation cross section
mediated by flavons scales as:

h�S
�vi ⇠ �2

��2
fm�

(4m2
� � m2

�)
2 + �2

�m2
�

T , (5)

where the flavon decay width �� depends on �2
f and �2

�.
From Eq. (3), we see that the flavon-mediated process
preferably involves the heaviest fermions that are kine-
matically accessible and it can be doubly suppressed in
the case of heavy flavons: both by the propagator and
by the couplings (that scale as 1/m�). This is the rea-
son why, as we will see in the explicit example of the
next sections, the correct relic abundance might require
a resonant enhancement of the annihilation cross section,
i.e. m� ' m�/2. Note also that the annihilation cross
section in Eq. (5) depends linearly of the temperature,
which is a consequence of the velocity-suppression of the
process. The contribution of the diagram (b) of Fig. 1
scales like

h�t
�vi ⇠ �4

�

m3
�

T (6)

in the limit m� � m�, and features a p-wave suppression
as well.

Elastic DM-nuclei scattering can only be mediated by
�, hence being controlled by the same couplings depicted
in the diagram (a) of Fig. 1. Therefore, the parametric

• Correct DM relic abundance 
requires resonant exchange 
of the lightest FGB!

detection (brown), T 0 direct searches (red) and dijet resonances (orange), flavor bounds

(magenta), and cosmological considerations (blue). The green points are allowed by all

constraints. In the remainder of the section we discuss how the above constraints were

derived. Similarly in Figs. 4, 6, the light and dark gray points are excluded by pertubativity

and direct (dark matter, T 0 or FGBs) or indirect (flavor) constraints, respectively. On the

other hand, blue points cannot accommodate the correct DM relic abundance, while red

points instead fail to satisfy other cosmological bounds. JZ: need a transition sentence

to the next subsection

B. Thermal relic

In the calculation of the DM relic density we follow [25, 26] and work in the non-relativistic

limit and use the freeze-out approximation. Furthermore, in order to speed-up the numerical

scan we work in the narrow width approximation for fermionic DM. This allows us to obtain

a closed analytical expression for the DM thermal relic density. The details of the calculation

are given in App. B. For benchmark points that satisfy all the other experimental constraints

we verify the DM relic abundance calculation using the MadDM [27] package. This solves

numerically the full set of coupled Boltzmann equations with the required model Feynman

rules computed using the Feynrules [28] package. JZ: we need to make sure that this

was really done.

1. Fermionic dark matter

For fermionic DM model the DM annihilation to quarks is dominated by s-channel ex-

change of the lightest FGB, A24. The �i�̄i ! ūjuj annihilation cross section is given by

�(�i�̄i ! ūjuj) '
(ĝ24

� )2ii
4⇡

s1/2
�
s + 2m2

�
i

�
p

s � 4m2
�
i

�Ĝu
V

�2
jj,24

+
�Ĝu

A

�2
jj,24

(s � m2
A24)2 + m2

A24�2
A24

, (25)

where

Ĝu
V,A =

�Ĝu
L ± Ĝu

R

�
/2, (26)

while
p

s is the center of mass energy and �A24 , mA24 are the decay width and mass of the

lightest FGB. In (25) we have neglected quark masses, while the full expression is given in
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Eq. (B8)). The �i�̄i ! d̄jdj annihilation cross section follows from (25) replacing u ! d.

The full decay width of the lightest FGB is obtained by summing over the partial decays

for kinematically allowed channels,

�(A24 ! ūjuj) ' m24
A

4⇡

⇣�Ĝu
V

�2
jj,24

+
�Ĝu

A

�2
jj,24

⌘
. (27)

In the above expression we have neglected the quark masses for simplicity, while the full

expression is given in (B9). The rates for A24 ! �i�̄i, d̄jdj are obtained after trivial replace-

ments for couplings and the color multiplicity factors.

The correct relic abundance requires resonant annihilation, m� ' mA24/2, see Fig. 3.

This implies an upper bound on DM mass through the following argument. The thermally

averaged DM annihilation cross section, in the narrow width approximation, scales as

h�vi / 1

hY i2A24

+O(�A24/mA24) , (28)

where we used the approximate scaling for the FGB masses and decay widths, mA24 ⇠
hY iA24gA24 , �A24 ⇠ (gA24)2mA24 . Here hY iA24 and gA24 correspond to the projections of

the Yu,d vevs and gQ,U,D couplings, respectively, onto the lightest FGB, A24. The DM

relic abundance is ⌦DM / 1/h�vi / hY i2A24 and therefore predominantly depends only

on the vevs of flavored Higgses. Not exceeding the relic abundance puts an upper bound

hY iA24 . O(few 100 GeV), mostly irrespective of the DM mass. Since mA24 ⇠ hY iA24gA24 ,

and gA24 .
p
4⇡ for the theory to be perturbative, this also puts un upper bound on the

lightest FGB mass. This in turn implies an upper bound on the DM mass through the

relation m� ' mA24/2. Using the scan we find an upper bound m�1 . 10 TeV.

Fig. 6 (left) shows the ratio of masses mA23/mA24 as a function of DM mass m�1 . Here

A23 is the next-to-lightest FGB. In most of the parameter space satisfying ⌦DM constraint

A23 is much heavier than A24 so that the e↵ects of higher resonances are indeed negligible,

as assumed in the above discussion. In Sec. V we will also study an exception to this generic

expectation where the benchmark point II will have mA23/mA24 ⇠ 1.2.

Fig. 4 (right) shows the relative radiative mass splitting �m12/m�1 and �m13/m�1 as a

function of DM mass, m�1 . In most of the cases the mass splitting is below O(20%) so that

the co-annihilation is important. For m�2,3/m�1&1.2 both the e�cient coannihilation assump-

tion as well as the other approximations used in our fast numerical code for calculation of

the relic density may not necessarily hold (for details on the approximations see Appendix

14

Thermal relic calculation used in the 
numerical scan considers only lightest FGB 
exchange and adopts non-relativistic and 
freeze-out approximations. The results are 
cross-checked with MadDM code for some 

benchmarks. 
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the co-annihilation is important. For m�2,3/m�1&1.2 both the e�cient coannihilation assump-

tion as well as the other approximations used in our fast numerical code for calculation of

the relic density may not necessarily hold (for details on the approximations see Appendix

14

Eq. (B8)). The �i�̄i ! d̄jdj annihilation cross section follows from (25) replacing u ! d.

The full decay width of the lightest FGB is obtained by summing over the partial decays

for kinematically allowed channels,

�(A24 ! ūjuj) ' m24
A

4⇡

⇣�Ĝu
V

�2
jj,24

+
�Ĝu

A

�2
jj,24

⌘
. (27)

In the above expression we have neglected the quark masses for simplicity, while the full

expression is given in (B9). The rates for A24 ! �i�̄i, d̄jdj are obtained after trivial replace-

ments for couplings and the color multiplicity factors.

The correct relic abundance requires resonant annihilation, m� ' mA24/2, see Fig. 3.

This implies an upper bound on DM mass through the following argument. The thermally

averaged DM annihilation cross section, in the narrow width approximation, scales as

h�vi / 1

hY i2A24

+O(�A24/mA24) , (28)

where we used the approximate scaling for the FGB masses and decay widths, mA24 ⇠
hY iA24gA24 , �A24 ⇠ (gA24)2mA24 . Here hY iA24 and gA24 correspond to the projections of

the Yu,d vevs and gQ,U,D couplings, respectively, onto the lightest FGB, A24. The DM

relic abundance is ⌦DM / 1/h�vi / hY i2A24 and therefore predominantly depends only

on the vevs of flavored Higgses. Not exceeding the relic abundance puts an upper bound

hY iA24 . O(few 100 GeV), mostly irrespective of the DM mass. Since mA24 ⇠ hY iA24gA24 ,

and gA24 .
p
4⇡ for the theory to be perturbative, this also puts un upper bound on the

lightest FGB mass. This in turn implies an upper bound on the DM mass through the

relation m� ' mA24/2. Using the scan we find an upper bound m�1 . 10 TeV.

Fig. 6 (left) shows the ratio of masses mA23/mA24 as a function of DM mass m�1 . Here

A23 is the next-to-lightest FGB. In most of the parameter space satisfying ⌦DM constraint

A23 is much heavier than A24 so that the e↵ects of higher resonances are indeed negligible,

as assumed in the above discussion. In Sec. V we will also study an exception to this generic

expectation where the benchmark point II will have mA23/mA24 ⇠ 1.2.

Fig. 4 (right) shows the relative radiative mass splitting �m12/m�1 and �m13/m�1 as a

function of DM mass, m�1 . In most of the cases the mass splitting is below O(20%) so that

the co-annihilation is important. For m�2,3/m�1&1.2 both the e�cient coannihilation assump-

tion as well as the other approximations used in our fast numerical code for calculation of

the relic density may not necessarily hold (for details on the approximations see Appendix

14

Approx.
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1) Fermionic DM

• Correct DM relic abundance requires resonant 
exchange of the lightest FGB!
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Figure 3: The results of the scan for fermonic (left) and scalar (right) flavored DM. JFK: Labels,

Explain!JZ: color coding needs to be unified

Yukawas as well as satisfy electroweak precision constraints and direct T 0 and B0 searches [9].

In addition we vary �0

u,d 2 [1/(4⇡),
p
4⇡] , gQ,U,D 2 [1/(4⇡),

p
4⇡] , and Mu,d 2 [0.2, 20] TeV .

We have verified that further extending these parameter ranges does not extend the viable

DM model parameter space. For instance, the upper range of gQ,U,D already lies close to the

non-perturbative regime. To have control over perturbative expansion we require that all

the FGB decay widths satisfy �Am < 0.5mAm , and that the radiative mass splitting for the

fermionic DM is �mij < 0.5m�. This imposes upper bounds on gQ,U,D which can be close

to but always below
p
4⇡. Similar constraints on �0

u,d are expected to follow from analogous

considerations in the flavored Higgs sector, i.e., by requiring the total widths of the flavored

scalars Yu,d to be small compared to their masses.

The results of the scan are shown in Figs. 3, 4, 6. Fig. 3 (left) and Fig. 3 (right) show

the results of the scan for fermionic and scalar DM model, respectively. All the points

shown in Fig. 3 give the correct relic DM abundance. For fermionic DM the observed

relic abundance requires resonantly enhanced annihilation through s�channel exchange of

the lightest FGB, A24. This leads to the relation m�
i

' mA24/2 shown in Fig. 3 (left).

JZ: we need the Feynman diagram, maybe? The scalar DM, on the other hand,

predominantly annihilates through a Higgs portal. There is thus no relation between m�

and mA24 , as illustrated in Fig. 3 (right).

JZ: we need to unify the color coding on all the plots Di↵erent colors denote

consecutively applied constraints of perturbativity as discussed above (grey), direct DM

12
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2) Scalar DM
LUX

Ωh2=0.12

Higgs portal

50 100 500 1000 5000
10-4

0.001

0.010

0.100

1

mφDM,1 (GeV)

λ H
Figure 5: Higgs portal for scalar DM. JFK: Label, font, notation, decoupled vs. degenerate

regime.

The thermally averaged cross sections and relic abundance are computed following the pre-

scription described in Appendix B. The results of the scan are given in Fig. 3 (right). In

Fig. 7 we also plot the coupling �H needed to obtain correct DM relic density as a function

of the DM mass, m�1 , assuming no coannihilations. As we already commented in Sec. III B

the lightest DM state �1 is split from the heavier ones already at the tree level, so that this

assumption is well justified. Requiring perturbative Higgs portal coupling, �H <
p
4⇡, leads

to a limit on the DM mass m�1 . 8 TeV.

Note that role of the Higgs portal could be also taken by other light scalars. In [20]

this was taken to be the flavon field of the Abelian horizontal symmetry. If the flavons are

light, they could also modify the phenomenology of the fermionic flavored DM, allowing

DM annihilation into flavons. In this case the phenomenology of the fermionic flavored DM

would be closer to our scalar DM model.

C. Cosmology

The heavier flavored DM states, both for the fermionic DM, �2,3, and scalar DM, �2,3,

are unstable. They decay through �i ! �j q̄q
0 for mass splitting above the pion mass, and

16

• Both, flavor and 
Higgs portal present.

Figure 4: The results of the scan for fermionic flavored DM. JFK: Labels, Explain!

B). Two examples of such cases, the benchmark points I and IV, are studied in more detail

in Sec. V.

2. Scalar dark matter

For scalar DM the interactions with the visible sector are mainly due to the Higgs portal

operator, �H�†�H†H, (20). The interactions due to the exchanges of FGBs are subleading

except for the resonant annihilation regions m�1 ' mA24/2. Adjusting the value of �H one

can then obtain the correct relic abundance for any mass of m�1 irrespective of the lightest

FGB mass, mA24 , see Fig. 3 (right). In the calculation of the thermal relic abundance we

include the following annihilation channels: �†

DM�DM ! b̄b, c̄c, ⌧+⌧�, W+W�, ZZ, hh and

t̄t. The annihilation cross sections are

�(�†� ! f̄f) =
�2
Hm2

fNc

⇣
1� 4m2

f

s

⌘3/2

8⇡

q
1� 4m2

�

s
((m2

h � s)2 + m2
h�

2
h)

, (29)

�(�†� ! V V ) =
cV �2

H

q
1� 4m2

V

s
(12m4

V � 4m2
V s + s2)

16⇡s

q
1� 4m2

�

s
((m2

h � s)2 + m2
h�

2
h)

, (30)

where cW = 1, cZ = 1/2, and

�(�†� ! hh) =
�2
H

q
1� 4m2

h

s
((2m2

h + s)2 + m2
h�

2
h)

32⇡s

q
1� 4m2

�

s
((m2

h � s)2 + m2
h�

2
h)

. (31)
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Figure 3: The results of the scan for fermonic (left) and scalar (right) flavored DM. JFK: Labels,

Explain!JZ: color coding needs to be unified

Yukawas as well as satisfy electroweak precision constraints and direct T 0 and B0 searches [9].

In addition we vary �0

u,d 2 [1/(4⇡),
p
4⇡] , gQ,U,D 2 [1/(4⇡),

p
4⇡] , and Mu,d 2 [0.2, 20] TeV .

We have verified that further extending these parameter ranges does not extend the viable

DM model parameter space. For instance, the upper range of gQ,U,D already lies close to the

non-perturbative regime. To have control over perturbative expansion we require that all

the FGB decay widths satisfy �Am < 0.5mAm , and that the radiative mass splitting for the

fermionic DM is �mij < 0.5m�. This imposes upper bounds on gQ,U,D which can be close

to but always below
p
4⇡. Similar constraints on �0

u,d are expected to follow from analogous

considerations in the flavored Higgs sector, i.e., by requiring the total widths of the flavored

scalars Yu,d to be small compared to their masses.

The results of the scan are shown in Figs. 3, 4, 6. Fig. 3 (left) and Fig. 3 (right) show

the results of the scan for fermionic and scalar DM model, respectively. All the points

shown in Fig. 3 give the correct relic DM abundance. For fermionic DM the observed

relic abundance requires resonantly enhanced annihilation through s�channel exchange of

the lightest FGB, A24. This leads to the relation m�
i

' mA24/2 shown in Fig. 3 (left).

JZ: we need the Feynman diagram, maybe? The scalar DM, on the other hand,

predominantly annihilates through a Higgs portal. There is thus no relation between m�

and mA24 , as illustrated in Fig. 3 (right).

JZ: we need to unify the color coding on all the plots Di↵erent colors denote

consecutively applied constraints of perturbativity as discussed above (grey), direct DM

12

• No correlation between 
mDM and mLFGB

Figure 4: The results of the scan for fermionic flavored DM. JFK: Labels, Explain!

B). Two examples of such cases, the benchmark points I and IV, are studied in more detail

in Sec. V.

2. Scalar dark matter

For scalar DM the interactions with the visible sector are mainly due to the Higgs portal

operator, �H�†�H†H, (20). The interactions due to the exchanges of FGBs are subleading

except for the resonant annihilation regions m�1 ' mA24/2. Adjusting the value of �H one

can then obtain the correct relic abundance for any mass of m�1 irrespective of the lightest

FGB mass, mA24 , see Fig. 3 (right). In the calculation of the thermal relic abundance we

include the following annihilation channels: �†

DM�DM ! b̄b, c̄c, ⌧+⌧�, W+W�, ZZ, hh and

t̄t. The annihilation cross sections are

�(�†� ! f̄f) =
�2
Hm2

fNc

⇣
1� 4m2

f

s

⌘3/2

8⇡

q
1� 4m2

�

s
((m2

h � s)2 + m2
h�

2
h)

, (29)

�(�†� ! V V ) =
cV �2

H

q
1� 4m2

V

s
(12m4

V � 4m2
V s + s2)

16⇡s

q
1� 4m2

�

s
((m2

h � s)2 + m2
h�

2
h)

, (30)

where cW = 1, cZ = 1/2, and

�(�†� ! hh) =
�2
H

q
1� 4m2

h

s
((2m2

h + s)2 + m2
h�

2
h)

32⇡s

q
1� 4m2

�

s
((m2

h � s)2 + m2
h�

2
h)

. (31)
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2) Scalar DM1) Fermionic DM
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Figure 5: Higgs portal for scalar DM. JFK: Label, font, notation, decoupled vs. degenerate

regime.

The thermally averaged cross sections and relic abundance are computed following the pre-

scription described in Appendix B. The results of the scan are given in Fig. 3 (right). In

Fig. 7 we also plot the coupling �H needed to obtain correct DM relic density as a function

of the DM mass, m�1 , assuming no coannihilations. As we already commented in Sec. III B

the lightest DM state �1 is split from the heavier ones already at the tree level, so that this

assumption is well justified. Requiring perturbative Higgs portal coupling, �H <
p
4⇡, leads

to a limit on the DM mass m�1 . 8 TeV.

Note that role of the Higgs portal could be also taken by other light scalars. In [20]

this was taken to be the flavon field of the Abelian horizontal symmetry. If the flavons are

light, they could also modify the phenomenology of the fermionic flavored DM, allowing

DM annihilation into flavons. In this case the phenomenology of the fermionic flavored DM

would be closer to our scalar DM model.

C. Cosmology

The heavier flavored DM states, both for the fermionic DM, �2,3, and scalar DM, �2,3,

are unstable. They decay through �i ! �j q̄q
0 for mass splitting above the pion mass, and
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• t-channel FBGs exchange

law scaling is expected to break down at energies below O(10) GeV due to the presence

of hadronic thresholds [39]. We thus extrapolate the fit results for 4He and D only down

�m2,3 = 10 GeV. We assume that the photodissociation e↵ects retain approximate power

law behavior for Evis large compared to the binding energies of the light nuclei, which is of

the order of few tens of MeV. In our model for ⌧�2,3 < 102(12) s, the mass splitting, �m2,3,

is always above 10(0.1) GeV, respectively. Our approximations are thus always valid for

ranges of lifetimes for which the 3He constraints are the most stringent. For the deuterium

bound, on the other hand, the power-law scaling is expected to fail for part of the parameter

space where the bound is the most stringent, since �m2,3 can be as low as a few GeV. We

have checked that, using the power-law derived bound, these regions are excluded by several

orders of magnitude. This gives us confidence to conclude that they remain to excluded

even with a more faithful treatment of hadro-dissociation e↵ects.

In Fig. 6 we show the distribution of �2,3 lifetimes in the viable parameter space of the

fermionic DM model. The cosmological constraints rule out all points with ⌧2,3 & 100 s,

which is the range of lifetimes where the deuterium bound becomes e↵ective. The points with

lifetimes ⌧2,3 . 100 s, on the other hand, are never excluded by cosmological constraints.

This is the range of lifetimes where the 4He abundance gives the most stringent bounds,

which, however, are not enough to exclude any of our fermionic DM model points.

D. Direct and indirect DM searches

Both fermionic and scalar flavored DM can give direct detection signal from DM scat-

tering on nuclei. For fermionic DM the scattering is due to t� channel exchanges of FGBs.

For scalar DM the scattering is dominated by the Higgs exchange in t�channel, while the

contribution of FGBs is negligible.

The spin-independent fermion DM interactions with the nucleons are given by the fol-

lowing e↵ective Lagrangian [40, 41]

Ldir. = fp�̄�µ�p̄�µp + fn�̄�µ�n̄�µn, (32)

where the two Wilson coe�cients, giving couplings to protons and neutrons, respectively,

are

fp =
X

m

(ĝm
� )11

2
�Ĝu

V

�
11,m

+
�Ĝd

V

�
11,m

m2
Am

and fn =
X

m

(ĝm
� )11

�Ĝu
V

�
11,m

+ 2
�Ĝd

V

�
11,m

m2
Am

. (33)
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The Ĝu,d
V and Ĝu,d

A are the vector and axial-vector couplings of FGBs to quarks, defined in

(26). JZ: need to explain how dominant is the lightest FGB exchange. How large

is isospin breaking.

Spin-independent DM-nucleon cross section as measured by the LUX experiment [42] is

�SI
�N =


1 +

Z

A

✓
fp
fn

� 1

◆�2 µ2
�nf

2
n

⇡
, (34)

where µ�n is the reduced mass of the (�, n) system. Z and A are the corresponding Xenon

atomic and mass numbers. In particular, Z = 54 and A varies between 128 and 134. We

use the above relations to calculate the DM-nucleon cross section and compare it with the

current best limits reported by the LUX experiment in [42], in Fig... JZ: shall we give

numbers for the size of prefactor in (34).

JFK: Maybe show a scan plot of SI nucleon scattering x-section compared to LUX, to

see how far below our points can go?

For scalar DM the dominant scattering is through t-channel Higgs boson exchange, which

gives for the spin independent scattering on nucleon N = n, p, [43, 44]

�SI
�N =

�2
Hf 2

N,h

4⇡

✓
m�1mN

m�1 + mN

◆2
m2

N

m4
hm

2
�1

. (35)

The Higgs-nucleon coupling is

fN,h =
2

9
+

7

9

⇣X

q

f (N)
q

⌘
, (36)

where the sum runs over the light quarks, q = u, d, s. The matrix elements of the light

quark scalar currents, hN |mq q̄q|Ni = mNf
(N)
q . For s quark we use the lattice determination

f
(N)
s = 0.043 ± 0.011 [45]. The matrix elements for u and d quarks depend on the �⇡N

term. A Baryon Chiral Perturbation Theory (B�PT) analysis of the ⇡N scattering data

gives �⇡N = 59(7) MeV [46]. This is in agreement with B�PT fit to world lattice Nf = 2+1

QCD data, which gives �⇡N = 52(3)(8) MeV [47]. Including both �(1232) and finite spacing

parametrization in the fit shifts the central value to �⇡N = 44MeV. To be conservative we

use �⇡N = (50 ± 15)MeV, which gives f
(p)
u = (1.8 ± 0.5) · 10�2, f

(p)
d = (3.4 ± 1.1) · 10�2,

f
(n)
u = (1.6 ± 0.5) · 10�2, f

(n)
d = (3.8 ± 1.1) · 10�2 using expressions in [48]. This gives

fN,h = (29.7 ± 1.3) · 10�2 where we averaged over Higgs couplings to proton and neutron

(the di↵erence is an order of magnitude smaller than the quoted error). JZ the plot needs
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• t-channel Higgs exchange
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Cosmology constraints
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• Heavier DM states are unstable 
• Induce creation of energetic SM particles in the early universe 
• This may affect the primordial generation of light nuclear elements 

• Relevant parameter - decay lifetimes and mass splittings 
• Fermionic multiplets more degenerate (radiative mass splittings), thus 

potentially long lived

Figure 6: The results of the scan for fermionic flavored DM. JFK: Explain!

for a relic that produces mostly hadronic showers. This is because the electromagnetically

interacting particles such as photons and electrons thermalize very quickly by interacting

with the tail of the CMB distribution until the universe is 106 s old. JZ: need to check

that this still true In our case the decays �2,3 ! �1qq̄
0 are always kinematically allowed

for ⌧�2,3 < 1012 s. The �2,3 decays thus predominantly produce a small number of hadronic

jets with a combined released hadronic energy Ehad ' Evis.

There are three distinct ranges of lifetimes [39]. For 0.1 s . ⌧�2,3 . 100 s the dominant

e↵ect is the inter-conversion between protons and neutrons, which overproduces the 4He

abundance. For longer lifetimes, 100 s . ⌧�2,3 . 107 s, hadro-dissociation is the most

e�cient process and the bounds come from the non-thermal production of Li and D. At late

times, 107 s . ⌧�2,3 . 1012 s, photo-dissociation caused by direct electromagnetic showers or

by electromagnetic showers from daughter hadrons can lead to overproduction of 3He.

We impose the 4He, D and 3He constraints1 using the results in Ref. [39]. We account

for the fact that the �2,3 relic abundances are below the DM one, and are given by Eq. (B2)

with x = xf ⇡ 26. The visible energy release in the decays is Evis ⇠ �m2,3. For 100 GeV <

�m2,3 < 10 TeV the constraints derived from the three relic mass benchmarks in [39] are well

approximated by a power-law scaling with E�⌘
i

vis . The exponents for the three constraints are

⌘4He ⇡ 1/3, ⌘D ⇡ 1/2 and ⌘3He ⇡ 1. For inter-conversion and hadro-dissociation the power-

1 The measured 4He abundance has shifted upwards significantly since the publicaton of [39]. This should

weaken the constraints for ⌧2,3 . 100 s. Since we find that the 4He constraint from [39] is already never

important in excluding the viable parameter space in our models, the upward shift has no consequences

for our conclusions.
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Conclusions
• Maximally gauged flavor model exhibits flavor protection 

and therefore allows for new physics at TeV scale 

• On the other hand, it provides a viable framework for 
thermal relic dark matter around TeV scale 

• We discuss general conditions for flavored DM stability 

• We present the phenomenological analysis of viable 
SU(3)3 model 

• Future LHC searches, flavor measurement and DM direct 
detection will probe the parameter space further
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