The Aligned two-Higgs-doublet model

Alejandro Celis

on the move to: Ludwig-Maximilians-Universität München

New Physics at Belle II Workshop, Karlsruhe Institute of Technology February 23, 2015

Contents

- The two-Higgs-doublet model (2HDM)
- The aligned two Higgs doublet model
- B decays into au leptons
- Lepton flavour violating au decays

In a generic scalar basis

$$\phi_1 = \begin{bmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (v_1 + \rho_1 + i\eta_1) \end{bmatrix} \qquad \phi_2 = \begin{bmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (v_2 + \rho_2 + i\eta_3) \end{bmatrix}$$

Defining $v \equiv \sqrt{v_1^2 + v_2^2} = (\sqrt{2}G_F)^{-1/2}$ and $\tan \beta \equiv v_2/v_1$

We can perform a basis transformation

$$\left(\begin{array}{c} \Phi_1\\ -\Phi_2 \end{array}\right) \ \equiv \ \left[\begin{array}{c} \cos\beta & \sin\beta\\ \sin\beta & -\cos\beta \end{array}\right] \ \left(\begin{array}{c} \phi_1\\ \phi_2 \end{array}\right) \ ,$$

In the so-called Higgs basis only one doublet acquires a vev

$$\Phi_1 = \begin{bmatrix} G^+ \\ \frac{1}{\sqrt{2}} (v + S_1 + iG^0) \end{bmatrix} \qquad \Phi_2 = \begin{bmatrix} H^+ \\ \frac{1}{\sqrt{2}} (S_2 + iS_3) \end{bmatrix}$$

The scalar potential

In the Higgs basis,

$$\mathcal{V} = \mu_i \Phi_i^{\dagger} \Phi_i + \left[\mu_3 \Phi_1^{\dagger} \Phi_2 + \mu_3^* \Phi_2^{\dagger} \Phi_1 \right] + \lambda_i \left(\Phi_i^{\dagger} \Phi_i \right)^2$$

+ $\lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right)$
+ $\left[\left(\lambda_5 \Phi_1^{\dagger} \Phi_2 + \lambda_6 \Phi_1^{\dagger} \Phi_1 + \lambda_7 \Phi_2^{\dagger} \Phi_2 \right) \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right]$

The fact that the minimum is a extremum impose the relations

$$\mu_1 = -\lambda_1 v^2, \qquad \qquad \mu_3 = -\frac{1}{2} \lambda_6 v^2.$$

The scalar spectrum

Expanding the scalar potential around the vev

$$\mathcal{V} \subset M_{H^{\pm}}^{2} H^{+} H^{-} + \frac{1}{2} (S_{1}, S_{2}, S_{3}) \mathcal{M} \begin{pmatrix} S_{1} \\ S_{2} \\ S_{3} \end{pmatrix} + \cdots$$
$$= M_{H^{\pm}}^{2} H^{+} H^{-} + \frac{1}{2} M_{h}^{2} h^{2} + \frac{1}{2} M_{H}^{2} H^{2} + \frac{1}{2} M_{A}^{2} A^{2}$$

by convention $M_H \ge M_h$

The scalar spectrum

 ${\cal M}$ is a real symmetric matrix

 \Rightarrow diagonalized by an orthogonal matrix ${\cal R}$

$$\left(\begin{array}{c}h\\H\\A\end{array}\right) = \mathcal{R} \left(\begin{array}{c}S_1\\S_2\\S_3\end{array}\right)$$

Assuming CP-conservation in the scalar sector $A = S_3$ and

$$\left(\begin{array}{c}h\\H\end{array}\right) = \left[\begin{array}{cc}\cos\tilde{\alpha} & \sin\tilde{\alpha}\\-\sin\tilde{\alpha} & \cos\tilde{\alpha}\end{array}\right] \left(\begin{array}{c}S_1\\S_2\end{array}\right)$$

with

$$\sin 2\tilde{\alpha} = \frac{-2\lambda_6 v^2}{M_H^2 - M_h^2}, \qquad \cos 2\tilde{\alpha} = \frac{M_A^2 + 2(\lambda_5 - \lambda_1)v^2}{M_H^2 - M_h^2}$$

Without loss of generality we restrict to $0 \le \tilde{\alpha} \le \pi/2$ ($\lambda_6 \le 0$)

Higgs couplings to massive gauge vector bosons

The scalar doublets couple to the gauge bosons through the covariant derivative

$$\sum_{a=1}^{2} (D_{\mu} \Phi_{a})^{\dagger} D^{\mu} \Phi_{a} = \mathcal{L}_{\phi V^{2}} + \cdots$$

$$\mathcal{L}_{\phi V^2} = \frac{2}{v} S_1 \left[\frac{1}{2} M_Z^2 Z_\mu Z^\mu + M_W^2 W_\mu^\dagger W^\mu \right]$$

 $(S_1 = \cos \tilde{\alpha} h - \sin \tilde{\alpha} H)$ Neutral Higgs couplings with a gauge boson pair scale with

$$\kappa_V^h = \cos \tilde{\alpha}, \qquad \kappa_V^H = -\sin \tilde{\alpha}, \qquad \kappa_V^A = 0$$

where $\kappa_V^{\varphi_i^0} \equiv g_{\varphi_i^0 VV} / g_{hVV}^{\rm SM}$ and V = W, Z.

Implications of a SM-like Higgs boson

Current LHC data implies that the $125~{\rm GeV}$ boson couples to $VV=\{W^+W^-,ZZ\}$ with SM-like strength.

- ► If we assume $M_h \simeq 125$ GeV then $\cos \tilde{\alpha} \simeq 1$ (I will focus in this scenario)
- If we assume $M_H \simeq 125$ GeV then $\sin \tilde{\alpha} \simeq 1$

How can we have a Higgs boson with a SM-like coupling to massive gauge vector bosons?

What are the implications of having a SM-like Higgs boson?

The most general Yukawa Lagrangian of the 2HDM is given by

$$\begin{aligned} \mathcal{L}_Y &= -\frac{\sqrt{2}}{v} \Big\{ \bar{L}'_L \left(M'_\ell \Phi_1 + \Pi'_\ell \Phi_2 \right) \, \ell'_R \\ &+ \bar{Q}'_L \left(M'_d \Phi_1 + \Pi'_d \Phi_2 \right) \, d'_R + \bar{Q}'_L \left(M'_u \tilde{\Phi}_1 + \Pi'_u \tilde{\Phi}_2 \right) \, u'_R \Big\} + \text{h.c.} \,, \end{aligned}$$

In the fermion mass basis,

$$\mathcal{L}_{Y} = -\sum_{\varphi_{k}, f=u, d, \ell} \varphi_{k} \bar{f} Y_{f}^{\varphi_{k}} P_{R} f$$
$$-\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[V \Pi_{d} P_{R} - \Pi_{u}^{\dagger} V P_{L} \right] d + \bar{\nu} \Pi_{\ell} P_{R} \ell \right\} + \text{ h.c.}$$

with $\varphi_k = \{h, H, A\}.$

The Yukawa couplings of neutral scalars

$$\mathcal{L}_Y \quad \subset \quad -\sum_{\varphi_k, f=u, d, \ell} \varphi_k \, \bar{f} \, Y_f^{\varphi_k} \, P_R \, f + \mathrm{h.c.}$$

with

$$\begin{split} Y_{ij}^{h} &= \frac{(M_{f})_{ij}}{v} \cos \tilde{\alpha} + \frac{(\Pi_{f})_{ij}}{v} \sin \tilde{\alpha} \,, \\ Y_{ij}^{H} &= -\frac{(M_{f})_{ij}}{v} \sin \tilde{\alpha} + \frac{(\Pi_{f})_{ij}}{v} \, \cos \tilde{\alpha} \,, \\ Y_{ij}^{A} &= \pm i \, \frac{(\Pi_{f})_{ij}}{v} \end{split}$$

The plus sign in the expression for Y^A_{ij} is for $f = d, \ell$ while the minus sign is for f = u.

The two-Higgs doublet model (2HDM) Decoupling

For $\mu_2 \gg v^2$, where μ_2 is the coefficient of the quadratic $\Phi_2^{\dagger} \Phi_2$ term, the second Higgs doublet Φ_2 decouples

$$M_h^2 \simeq 2\lambda_1 v^2 + \mathcal{O}\left(\frac{v^4}{M_{H^\pm}^2}\right), \qquad M_H^2 \simeq M_A^2 \simeq M_{H^\pm}^2 = \mu_2 + \mathcal{O}(v^2)$$

the couplings of \boldsymbol{h} approach the SM values

$$\cos \tilde{\alpha} \simeq 1 + \mathcal{O}\left(\frac{v^4}{M_{H^{\pm}}^4}\right), \qquad \qquad Y_f^h \simeq \frac{M_f}{v} + \mathcal{O}\left(\frac{v^2}{M_{H^{\pm}}^2}\right)$$

Dangerous contributions due to tree-level FCNCs are suppressed by the heavy mass scale $\mu_2 \gg v^2$.

Can we have a SM-like Higgs boson with the other scalars around the weak scale? Yes

When $\mu_3, \lambda_6 \to 0$ and $M_A^2 + 2(\lambda_5 - \lambda_1)v^2 > 0$ one obtains $\cos \tilde{\alpha} \simeq 1 + \mathcal{O}(\lambda_6^2)$

In this case we have a SM-like Higgs boson around $125~{\rm GeV},$ a heavier CP-even Higgs $M_H \geq M_h.$

The masses of the CP-odd Higgs A and the charged Higgs can be either above or below $125~{\rm GeV}.$

 ${\rm EWPD}$ + perturbativity and perturbative unitarity bounds on the quartic-Higgs couplings, imply that both H and A should have masses below the TeV if $M_{H^\pm} \lesssim 500~{\rm GeV}$

Natural flavour conservation [Glashow, Weinberg (77)], [Paschos (77)]

Impose a discrete \mathcal{Z}_2 symmetry in a generic scalar basis under which

$$\phi_1 \to \phi_1, \, \phi_2 \to -\phi_2$$

and the left-handed fermion doublets $Q_L o Q_L\,,\, L_L o L_L\,.$

Type I:
$$f_R \rightarrow -f_R$$
 $(f = u, d, l)$.
Type II: $u_R \rightarrow -u_R$, $d_R \rightarrow d_R$, $l_R \rightarrow l_R$.
Type X: $u_R \rightarrow -u_R$, $d_R \rightarrow -d_R$, $l_R \rightarrow l_R$.
Type Y: $u_R \rightarrow -u_R$, $d_R \rightarrow d_R$, $l_R \rightarrow -l_R$.

For the type II model, for example,

$$\mathcal{L}_{\mathbf{Y}} = -\bar{Q}'_L \, \Delta'_2 \, \tilde{\phi}_2 \, u'_R - \bar{Q}'_L \, \Gamma'_1 \, \phi_1 \, d'_R - \bar{L}'_L \, \Pi'_1 \, \phi_1 \, \ell'_R + \text{h.c.}$$

Terms with an odd number of ϕ_2 fields in the scalar potential are forbidden by the \mathcal{Z}_2 symmetry.

The two-Higgs doublet model (2HDM) The Aligned 2HDM (A2HDM) [Pich, Tuzon (2009)]

The Yukawa Lagrangian in the Higgs basis

$$\begin{aligned} \mathcal{L}_Y &= -\frac{\sqrt{2}}{v} \Big\{ \bar{L}'_L \left(M'_\ell \Phi_1 + \Pi'_\ell \Phi_2 \right) \, \ell'_R \\ &+ \bar{Q}'_L \left(M'_d \Phi_1 + \Pi'_d \Phi_2 \right) \, d'_R + \bar{Q}'_L \left(M'_u \tilde{\Phi}_1 + \Pi'_u \tilde{\Phi}_2 \right) \, u'_R \Big\} + \text{h.c.} \,, \end{aligned}$$

The Yukawa alignment condition

$$\Pi_{d,l} = \underline{\varsigma_{d,l}} M_{d,l} \,, \qquad \Pi_u = \underline{\varsigma_u^*} M_u$$

 ς_f : the alignment parameters are family universal complex quantities.

The Yukawa matrices are aligned in flavour space \Rightarrow No FCNCs at tree-level

The fermionic couplings of the scalar fields are described in the A2HDM by

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}}{v} H^{+} \left\{ \bar{u} \left[\varsigma_{d} V M_{d} P_{R} - \varsigma_{u} M_{u}^{\dagger} V P_{L} \right] d + \varsigma_{l} \bar{\nu} M_{l} P_{R} l \right\} - \frac{1}{v} \sum_{\varphi_{i}^{0}, f} y_{f}^{\varphi_{i}^{0}} \varphi_{i}^{0} \left[\bar{f} M_{f} P_{R} f \right] + \text{h.c.}$$

with

$$\begin{split} y_f^h &= \cos \tilde{\alpha} + \varsigma_f \sin \tilde{\alpha} \,, \qquad \qquad y_{d,l}^A = i \,\varsigma_{d,l} \,, \\ y_f^H &= -\sin \tilde{\alpha} + \varsigma_f \cos \tilde{\alpha} \,, \qquad \qquad y_u^A \,= \, -i \,\varsigma_u \end{split}$$

The A2HDM contains all models with NFC as particular cases

Model	ς_d	ς_u	SI
Type I	$\cot \beta$	$\cot eta$	$\cot eta$
Type II	$-\tan\beta$	$\cot eta$	$-\tan\beta$
Type X (lepton specific)	$\cot eta$	$\cot eta$	$-\tan\beta$
Type Y (flipped)	$-\tan\beta$	\coteta	$\cot eta$

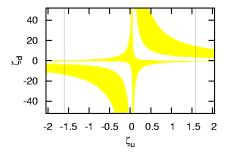
(*) To take the limit (A2HDM \rightarrow NFC 2HDM) one has to take into account also correlations among the scalar potential parameters derived from the Z_2 symmetry.

constraints from loop induced processes Jung, Pich, Tuzon [1006.0470]

 $|\varsigma_d|$ and $|\varsigma_l|$ not strongly constrained from flavour observables.

 $|\varsigma_u|\lesssim 2$ for $M_{H^\pm}<500~{\rm GeV}$ from $Z\to \bar bb,~B^0-\bar B^0$ and $K^0-\bar K^0$ mixing

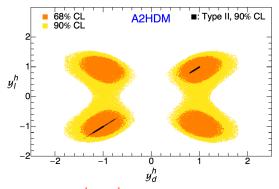
Constraints $\varsigma_u - \varsigma_d$ plane from $\bar{B} \to X_s \gamma$



95% CL constraints from $\bar{B} \to X_s \gamma$. $M_{H^{\pm}} \in [80, 500]$ GeV

constraints from $125~\mbox{GeV}$ Higgs data [Celis,Ilisie,Pich (13)]

LHC and Tevatron data for the 125 GeV Higgs do not fix the sign of $y_{d\,l}^h$. Flipped sign solutions are allowed.

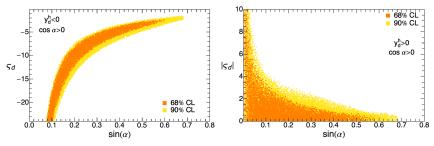


Constraints on the $y^h_d-y^h_l$ plane from $125~{\rm GeV}$ Higgs data

constraints from $125\ {\rm GeV}\ {\rm Higgs}\ {\rm data}$

 $125~{\rm GeV}$ Higgs data puts strong constraints on the alignment parameters when $\cos\tilde{\alpha}<1$

$$y_d^h = \cos \tilde{\alpha} + \varsigma_d \sin \tilde{\alpha}$$



Constraints on the $\sin \tilde{\alpha} - \varsigma_d$ plane from 125 GeV Higgs data

Belle II

SuperKEKB TDR Physics Motivation (Preliminary) June 18, 2014

Violations of lepton universality

	Observables	Belle (2014)	$\begin{array}{c} {\rm Belle \ II} \\ {\rm 5 \ ab^{-1} \ 50 \ ab^{-1}} \end{array}$
Missing E decays	$ \begin{split} \mathcal{B}(B \to \tau \nu) \left[10^{-6} \right] \\ \mathcal{B}(B \to \mu \nu) \left[10^{-6} \right] \\ R(B \to D \tau \nu) \\ R(B \to D^* \tau \nu)^{\dagger} \end{split} $	$\begin{array}{c c} 96(1\pm27\%) & [26] \\ <1.7 & [67] \\ 0.440(1\pm16.5\%) & [29]^{\dagger} \\ 0.332(1\pm9.0\%) & [29]^{\dagger} \end{array}$	$\begin{array}{ccc} 10\% & 5\% \\ 20\% & 7\% \\ 5.6\% & 3.4\% \\ 3.2\% & 2.1\% \end{array}$

Lepton flavour violation

	Observables	Belle	Belle II
		(2014)	$5~{ m ab^{-1}}~~50~{ m ab^{-1}}$
Tau	$\tau \to \mu \gamma \; [10^{-9}]$	< 45 [71]	< 14.7 < 4.7
	$ au ightarrow e \gamma \ [10^{-9}]$	< 120 [71]	$< 39 \qquad < 12$
	$ au ightarrow \mu \mu \mu \ [10^{-9}]$	< 21.0 [72]	< 3.0 < 0.3

Brief summary of exp. status

- ▶ BaBar excess in semileptonic modes R(D) and $R(D^*)$ [1205.5442]
- ► BaBar publishes differential distributions for $d Br(B \rightarrow D^{(*)} \tau \nu)/dq^2$ [1303.0571]
- ► Latest measurements for $B \rightarrow \tau \nu$ are in agreement with SM prediction.
- ► Need of updated Belle results for R(D^(*)). Differential distributions would be useful as well.

$$R(D) \equiv \frac{\operatorname{Br}(\bar{B} \to D\tau^- \bar{\nu}_{\tau})}{\operatorname{Br}(\bar{B} \to D\ell^- \bar{\nu}_{\ell})} \stackrel{\operatorname{BaBar}}{=} 0.440 \pm 0.058 \pm 0.042$$
$$R(D^*) \equiv \frac{\operatorname{Br}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\operatorname{Br}(\bar{B} \to D^* \ell^- \bar{\nu}_{\ell})} \stackrel{\operatorname{BaBar}}{=} 0.332 \pm 0.024 \pm 0.018$$

excess of $2.0\sigma~(R(D))$ and $2.7\sigma~(R(D^*))$ with respect to the SM

BaBar analysis $_{[1205.5442]}$: R(D) and $R(D^*)$ exclude the type II 2HDM at 98.8% CL as long as $M_{H^\pm}>10$ GeV, the range $M_{H^\pm}<10$ GeV is excluded by $\bar{B}\to X_s\gamma.$

- $\bar{B} \rightarrow X_s \gamma$ bound depends considerably on the assumed Yukawa structure.
- $\bar{B} \rightarrow X_s \gamma$ is a loop-induced process.

Alternative:

Z-width measurement at LEP puts the constraint $M_{H^\pm}>39.6~{\rm GeV}$ at $95\%{\rm CL}~_{[1301.6065]}$. The bound is valid in the general 2HDM since the ZH^+H^- vertex is fixed by the gauge symmetry.

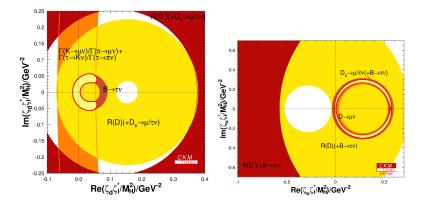
Analysis of flavour transitions mediated at tree-level by the charged Higgs within the A2HDM $_{\rm AC,\ Jung,\ Li,\ Pich\ [1210.8443]}$. We take into account

- R(D) and $R(D^*)$
- $\operatorname{Br}(B \to \tau \nu_{\tau})$
- $\operatorname{Br}(D_{(s)} \to \mu \nu)$ and $\operatorname{Br}(D_s \to \tau \nu_{\tau})$
- $\Gamma(K \to \mu \nu) / \Gamma(\pi \to \mu \nu)$
- $\Gamma(\tau \to K \nu_{\tau}) / \Gamma(\tau \to \pi \nu_{\tau})$

Note: does not include latest $B^+ \to \tau^+ \nu_\tau$ measurement by Belle $_{\rm [1409.5269]}$

The A2HDM cannot accommodate the excess in $R(D^*)$

 \Rightarrow none of the 2HDMs with NFC can accommodate the excess either



Additional observables

differential distributions, angular asymmetries, polarization fractions, ..., what can we learn from the inclusive mode $B \rightarrow X_c \tau \nu$?

Observables not sensitive to the charged Higgs

$$\frac{\text{Br}(B \to \tau\nu)}{\text{Br}(B \to \mu\nu)} = \frac{m_{\tau}^2}{m_{\mu}^2} \left(\frac{1 - m_{\tau}^2/m_B^2}{1 - m_{\mu}^2/m_B^2}\right)^2$$
$$X_1(q^2) \equiv R_{D^*}(q^2) - R_L^*(q^2)$$

with

$$R_{D^{(*)}}(q^2) = \frac{d\Gamma(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})/dq^2}{d\Gamma(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_{\ell})/dq^2}, \qquad R_L^*(q^2) = \frac{d\Gamma_{\tau}^L/dq^2}{d\Gamma_{\ell}^L/dq^2}$$

a charged Higgs does not contribute to the transverse helicity amplitudes.

Additional observables

Using the $\tau\text{-spin}$ asymmetry defined in the center-of-mass frame of the leptonic system

$$A_{\lambda}^{D^{(*)}}(q^2) = \frac{d\Gamma^{D^{(*)}}[\lambda_{\tau} = -1/2]/dq^2 - d\Gamma^{D^{(*)}}[\lambda_{\tau} = +1/2]/dq^2}{d\Gamma^{D^{(*)}}[\lambda_{\tau} = -1/2]/dq^2 + d\Gamma^{D^{(*)}}[\lambda_{\tau} = +1/2]/dq^2}$$

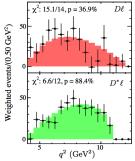
one can define another observable of this kind

$$X_2^{D^{(*)}}(q^2) \equiv R_{D^{(*)}}(q^2) \left(A_{\lambda}^{D^{(*)}}(q^2) + 1 \right)$$

Future studies should go a step beyond by looking for observables more closely related to experiments (D^* and τ decays). For example Nierste, Trine, Westhoff [arXiv:0801.4938] studies $B \to D\bar{\nu}_{\tau}\tau^{-}[\to \pi^{-}\nu_{\tau}]$

Studies of expected sensitivity at Belle II for additional observables in $B \rightarrow D^{(*)} \tau \nu$ transitions would also be very helpful.

BaBar results for differential distribution $dBr(B \rightarrow D^{(*)}\tau\nu)/dq^2$ [1303.0571]



fitting the diff. distribution in NP models $_{Sakaki, Tanaka, Tayduganov [1412.3761]}$ The normalization of the data is a free parameter of the fit. This assumes that the total efficiency is constant for all q^2 .

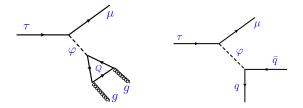
exp. data for $R_{D^{(*)}}(q^2)$ instead would be useful. Cancel dependence on V_{cb} and reduce theoretical uncertainties

LFV $\tau \rightarrow \mu$ decays

$ au^-$ decay mode	Upper bound on ${ m BR}$ (90 $\%$ CL)	Comment
$\mu \gamma$	4.4×10^{-8}	BaBar
$\mu^- \mu^+ \mu^-$	2.1×10^{-8}	Belle
$\mu \pi^0$	1.1×10^{-7}	BaBar
$\mu \eta$	6.5×10^{-8}	Belle
$\mu \eta'$	1.3×10^{-7}	Belle
$\mu \pi^+ \pi^-$	2.1×10^{-8}	Belle
μho	1.2×10^{-8}	Belle
μf_0	3.4×10^{-8}	Belle

LFV τ decays

Different hadronic final states in LFV semileptonic decays offer a great discriminatory tool [AC,Cirigliano,Passemar (13), (14)]

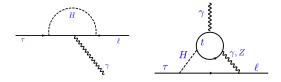


• $\tau \to \ell \pi^0, \ell \eta^{(\prime)}$ mediated by CP-odd Higgs with LFV couplings • $\tau \to \ell \pi^+ \pi^-$ mediated by CP-even Higgs with LFV couplings This is not the case for $\tau \to \ell \gamma$ which are dominated by loop-diagrams and interference effects are very important

$\tau \to \ell \gamma ~{\rm decays}$

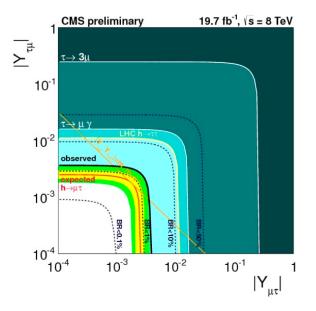
One-loop contribution is accidentally suppressed \Rightarrow two-loop diagrams of the Barr-Zee type can dominate over one-loop contributions.

[Bjorken, Weinberg (77)], [Barr, Zee (90)], [Chang,Hou, Keung (93)]



 $au
ightarrow \ell \gamma$ decays and $h
ightarrow au \mu$

Probing LFV Higgs couplings: Higgs decays vs τ decays



Conclusions

- The A2HDM provides a general 2HDM setting without FCNC at tree-level
- 2HDMs with NFC are obtained in particular limits of the A2HDM
- Current excess in $B \rightarrow D^* \tau \nu$ decays cannot be accommodated in the A2HDM.
- ► Additional observables in B → D^(*)τν transitions (differential distributions, angular asymmetries,...) can be exploited in Belle II. For theorist: work with observables more closely related to exp. (consider τ and D* decays). For exp., what are the expected sensitivities for these observables?, which are interesting?
- Belle II sensitivity improvements for LFV τ decays. Relevant for probing LFV effects associated with the Higgs sector.
 Keep into account LFV semileptonic τ decays.

Loop corrections introduce misalignment between the Yukawa matrices at the quantum level, giving rise to FCNCs with the following structure Jung, Pich, Tuzon [1006.0470]

$$\mathcal{L}_{\mathsf{FCNC}} = \frac{\mathcal{C}}{4\pi^2 v^3} (1 + \varsigma_u^* \varsigma_d)$$

$$\sum_j \varphi_j^0 \Big\{ (\mathcal{R}_{j2} + i\mathcal{R}_{j3})(\varsigma_d - \varsigma_u) \left[\bar{d}_L V^{\dagger} M_u M_u^{\dagger} V M_d \, d_R \right]$$

$$- (\mathcal{R}_{j2} - i\mathcal{R}_{j3})(\varsigma_d^* - \varsigma_u^*) \left[\bar{u}_L V M_d M_d^{\dagger} V^{\dagger} M_u u_R \right] \Big\} + \text{h.c.}$$

where $C(\mu) = C(\mu_0) - \log (\mu/\mu_0)$. Assuming Yukawa alignment to be exact at a given energy scale Λ_A , so that $C_R(\Lambda_A) = 0$, implies that $C_R(\mu) = \ln(\Lambda_A/\mu)$.

Counter-term contribution to flavour transitions negligible due to strong GIM-like suppresion Braeuninger, Ibarra, Simonetto [1005.5706].