# $B \rightarrow K^{(*)} \nu \bar{\nu}$ decays in the Standard Model and beyond 

Christoph Niehoff

in collaboration with A. Buras, J. Girrbach-Noe and D. Straub
based on 1409.4557

Karlsruhe, February 23, 2015

Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

## Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
$\rightarrow$ In particular: new right-handed interactions absent in the SM


## Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
$\rightarrow$ In particular: new right-handed interactions absent in the SM
- Theoretically very clean
$\rightarrow$ No uncertainties from non-factorizable long-range photon exchange


## Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
$\rightarrow$ In particular: new right-handed interactions absent in the SM
- Theoretically very clean
$\rightarrow$ No uncertainties from non-factorizable long-range photon exchange
- Recent theory progress allows to get much better SM predictions
$\rightarrow$ Hadronic matrix elements via Lattice QCD
$\rightarrow$ 2-loop electroweak correction for the relevant Wilson coefficient


## Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
$\rightarrow$ In particular: new right-handed interactions absent in the SM
- Theoretically very clean
$\rightarrow$ No uncertainties from non-factorizable long-range photon exchange
- Recent theory progress allows to get much better SM predictions
$\rightarrow$ Hadronic matrix elements via Lattice QCD
$\rightarrow$ 2-loop electroweak correction for the relevant Wilson coefficient
- New measurements on $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$allow to put strong constraints


## Why should one look for $B \rightarrow K^{(*)} \nu \bar{\nu}$ transitions?

- Powerful tools to test NP scenarios
$\rightarrow$ In particular: new right-handed interactions absent in the SM
- Theoretically very clean
$\rightarrow$ No uncertainties from non-factorizable long-range photon exchange
- Recent theory progress allows to get much better SM predictions
$\rightarrow$ Hadronic matrix elements via Lattice QCD
$\rightarrow$ 2-loop electroweak correction for the relevant Wilson coefficient
- New measurements on $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$allow to put strong constraints
- Hopefully, these decays will be accessible within the next few years
(1) SM predictions
(2) Model independent constraints
- General remarks
- Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays
- Beyond lepton flavour universality
(3) Specific models
- $Z^{\prime}$ models
- Partial compositeness
- MSSM
- Leptoquarks

4) Conclusion

## (1) SM predictions

(2) Model independent constraints

- General remarks
- Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays
- Beyond lepton flavour universality
(3) Specific models
- Z' models
- Partial compositeness
- MSSM
- Leptoquarks

4) Conclusion



In the SM only one eff. operator contributes to $b \rightarrow s \nu \bar{\nu}$ transitions:


$$
\begin{aligned}
\mathcal{H}_{\text {eff }}^{S M} & \propto \\
& C_{L}^{S M} \mathcal{O}_{L}+\text { h.c. } \\
& \propto \\
& C_{L}^{S M}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right) \\
& + \text { h.c. }
\end{aligned}
$$

Since the $\nu$ 's are invisible there are only three observables:

$$
\begin{aligned}
\frac{d \mathrm{BR}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)_{\mathrm{SM}}}{d q^{2}} & =\tau_{B^{+}} 3|N|^{2}\left[C_{L}^{\mathrm{SM}}\right]^{2} \rho_{K}\left(q^{2}\right) \\
\frac{d \mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)_{\mathrm{SM}}}{d q^{2}} & =\tau_{B^{0} 3} 3|N|^{2}\left[C_{L}^{\mathrm{SM}}\right]^{2}\left[\rho_{A_{1}}\left(q^{2}\right)+\rho_{A_{12}}\left(q^{2}\right)+\rho_{V}\left(q^{2}\right)\right] \\
F_{L}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}} & =\frac{\rho_{\mathrm{A}_{12}}\left(q^{2}\right)}{\rho_{A_{1}}\left(q^{2}\right)+\rho_{\mathrm{A}_{12}}\left(q^{2}\right)+\rho_{V}\left(q^{2}\right)}
\end{aligned}
$$

Since the $\nu$ 's are invisible there are only three observables:

$$
\begin{aligned}
\frac{d \mathrm{BR}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)_{\mathrm{SM}}}{d q^{2}} & =\tau_{B^{+}} 3|N|^{2}\left[C_{L}^{\mathrm{SM}}\right]^{2} \rho_{K}\left(q^{2}\right) \\
\frac{d \mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)_{\mathrm{SM}}}{d q^{2}} & =\tau_{B^{0} 3} 3|N|^{2}\left[C_{L}^{\mathrm{SM}}\right]^{2}\left[\rho_{A_{1}}\left(q^{2}\right)+\rho_{A_{12}}\left(q^{2}\right)+\rho_{V}\left(q^{2}\right)\right] \\
F_{L}\left(B \rightarrow K^{*} \nu \bar{\nu}\right)_{\mathrm{SM}} & =\frac{\rho_{A_{12}}\left(q^{2}\right)}{\rho_{A_{1}}\left(q^{2}\right)+\rho_{A_{12}}\left(q^{2}\right)+\rho_{V}\left(q^{2}\right)}
\end{aligned}
$$

So, we have to control:

- Wilson coefficient $C_{L}^{S M}$
$\rightarrow$ two-loop electroweak contributions (1009.0947)
- hadronic form factors $\rho\left(q^{2}\right)$
$\rightarrow$ combined fit to LCSR and lattice results (Bharucha, Straub, Zwicky in prep.)


## updated SM predictions


$10^{6} \underset{d q^{2}}{d} \operatorname{BR}\left(B^{0} \rightarrow K^{*}{ }^{0} v \bar{v}\right)$

$\mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)_{\mathrm{SM}}=$
$(9.19 \pm 0.86 \pm 0.50) \times 10^{-6}$
$<5.5 \times 10^{-5}$ (Belle)

$$
\begin{aligned}
& F_{L}^{S M}= \\
& 0.47 \pm 0.03
\end{aligned}
$$

## updated SM predictions

$10^{6} \frac{d}{d q^{2}} \mathrm{BR}\left(B^{+} \rightarrow K^{+} v \bar{v}\right)$

$\mathrm{BR}\left(B^{+} \rightarrow K^{+} \nu \bar{\nu}\right)_{\mathrm{SM}}=$
$(3.98 \pm 0.43 \pm 0.19) \times 10^{-6}$
$<1.7 \times 10^{-5}$ (BaBar)
$10^{6} \frac{d}{d q^{2}} B R\left(B^{0} \rightarrow K^{*}{ }^{0} v \bar{v}\right)$

$\mathrm{BR}\left(B^{0} \rightarrow K^{* 0} \nu \bar{\nu}\right)_{\mathrm{SM}}=$
$(9.19 \pm 0.86 \pm 0.50) \times 10^{-6}$
$<5.5 \times 10^{-5}$ (Belle)

$$
\begin{aligned}
& F_{L}^{S M}= \\
& 0.47 \pm 0.03
\end{aligned}
$$

We still need a factor of $\sim 5$ in experimental precision!

## (1) SM predictions

(2) Model independent constraints

- General remarks
- Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays
- Beyond lepton flavour universality
(3) Specific models
- $Z^{\prime}$ models
- Partial compositeness
- MSSM
- Leptoquarks

4. Conclusion

## General remarks

Beyond the SM, a second eff. operator can contribute (right-handed currents!):

$$
\mathcal{O}_{L} \propto\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right)
$$

$$
\mathcal{H}_{\text {eff }} \propto C_{L} \mathcal{O}_{L}+C_{R} \mathcal{O}_{R}+\text { h.c. }, \quad \mathcal{O}_{R} \propto\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right)
$$

## General remarks

Beyond the SM, a second eff. operator can contribute (right-handed currents!):

$$
\mathcal{O}_{L} \propto\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right)
$$

$$
\mathcal{H}_{\text {eff }} \propto C_{L} \mathcal{O}_{L}+C_{R} \mathcal{O}_{R}+\text { h.c. },
$$

$$
\mathcal{O}_{R} \propto\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right)
$$

Reparametrize Wilson coefficients:

$$
\begin{array}{rlrl}
\epsilon=\frac{\sqrt{\left|C_{L}\right|^{2}+\left|C_{R}\right|^{2}}}{\left|C_{L}^{S M}\right|}, & \eta & =\frac{-\operatorname{Re}\left(C_{L} C_{R}^{*}\right)}{\left|C_{L}\right|^{2}+\left|C_{R}\right|^{2}} \\
>0 & & \in\left[-\frac{1}{2}, \frac{1}{2}\right] \\
& \neq 0 \text { only for } \\
\text { right-handed currents! }
\end{array}
$$

Totally model-independent:

$$
\begin{gathered}
\mathcal{R}_{K} \equiv \frac{\mathrm{BR}(\rightarrow K)}{\mathrm{BR}(\rightarrow K)^{\mathrm{SM}}}=(1-2 \eta) \epsilon^{2}, \quad \mathcal{R}_{K^{*}} \equiv \frac{\mathrm{BR}\left(\rightarrow K^{*}\right)}{\mathrm{BR}\left(\rightarrow K^{*}\right)^{\mathrm{SM}}}=(1+1.34 \eta) \epsilon^{2} \\
\mathcal{R}_{F_{L}} \equiv \frac{F_{L}}{F_{L}^{\mathrm{SM}}}=\frac{1+2 \eta}{1+1.34 \eta}
\end{gathered}
$$

Totally model-independent:

$$
\begin{gathered}
\mathcal{R}_{K} \equiv \frac{\mathrm{BR}(\rightarrow K)}{\mathrm{BR}(\rightarrow K)^{\mathrm{SM}}}=(1-2 \eta) \epsilon^{2}, \quad \mathcal{R}_{K^{*}} \equiv \frac{\mathrm{BR}\left(\rightarrow K^{*}\right)}{\mathrm{BR}\left(\rightarrow K^{*}\right)^{\mathrm{SM}}}=(1+1.34 \eta) \epsilon^{2} \\
\mathcal{R}_{F_{L}} \equiv \frac{F_{L}}{F_{L}^{\mathrm{SM}}}=\frac{1+2 \eta}{1+1.34 \eta}
\end{gathered}
$$

$$
\begin{aligned}
& \text { if } \mathcal{R}_{K} \neq \mathcal{R}_{K^{*}} \\
& \Rightarrow \quad \text { right-handed currents! }
\end{aligned}
$$

Totally model-independent:
$\mathcal{R}_{K} \equiv \frac{\mathrm{BR}(\rightarrow K)}{\mathrm{BR}(\rightarrow K)^{\mathrm{SM}}}=(1-2 \eta) \epsilon^{2}, \quad \mathcal{R}_{K^{*}} \equiv \frac{\mathrm{BR}\left(\rightarrow K^{*}\right)}{\mathrm{BR}\left(\rightarrow K^{*}\right)^{\mathrm{SM}}}=(1+1.34 \eta) \epsilon^{2}$,

$$
\mathcal{R}_{F_{L}} \equiv \frac{F_{L}}{F_{L}^{S M}}=\frac{1+2 \eta}{1+1.34 \eta}
$$

$$
\begin{aligned}
& \text { if } \mathcal{R}_{K} \neq \mathcal{R}_{K^{*}} \\
& \Rightarrow \quad \text { right-handed currents! }
\end{aligned}
$$

3 observables, but only 2 parameters:

$$
\mathcal{R}_{F_{L}}=\frac{-0.66 \mathcal{R}_{K}+4 \mathcal{R}_{K^{*}}}{3.34 \mathcal{R}_{K^{*}}}
$$

Totally model-independent:
$\mathcal{R}_{K} \equiv \frac{\mathrm{BR}(\rightarrow K)}{\mathrm{BR}(\rightarrow K)^{\mathrm{SM}}}=(1-2 \eta) \epsilon^{2}, \quad \mathcal{R}_{K^{*}} \equiv \frac{\mathrm{BR}\left(\rightarrow K^{*}\right)}{\mathrm{BR}\left(\rightarrow K^{*}\right)^{\mathrm{SM}}}=(1+1.34 \eta) \epsilon^{2}$,

$$
\mathcal{R}_{F_{L}} \equiv \frac{F_{L}}{F_{L}^{S M}}=\frac{1+2 \eta}{1+1.34 \eta}
$$

$$
\begin{aligned}
& \text { if } \mathcal{R}_{K} \neq \mathcal{R}_{K^{*}} \\
& \Rightarrow \quad \text { right-handed currents! }
\end{aligned}
$$

3 observables, but only 2 parameters:

$$
\mathcal{R}_{F_{L}}=\frac{-0.66 \mathcal{R}_{K}+4 \mathcal{R}_{K^{*}}}{3.34 \mathcal{R}_{K^{*}}}
$$

if not
$\Rightarrow$ new invisible particles in final state!

## Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

Idea: Use $\mathrm{SU}(2)_{\mathrm{L}}$ symmetry to connect $b \rightarrow s \nu \bar{\nu}$ decays to $b \rightarrow s \ell^{+} \ell^{-}$decays, on which a lot of exp. data exists.

## Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

Idea: Use $\mathrm{SU}(2)_{\mathrm{L}}$ symmetry to connect $b \rightarrow s \nu \bar{\nu}$ decays to $b \rightarrow s \ell^{+} \ell^{-}$decays, on which a lot of exp. data exists. Use most general $\mathcal{G}_{\text {SM }}$-invariant basis of dim6-operators. (1008.4884)

$$
\begin{array}{rlrl}
Q_{H q}^{(1)} & =\mathrm{i}\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right) H^{\dagger} D^{\mu} H, & Q_{q l}^{(1)} & =\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{l}_{L} \gamma^{\mu} l_{L}\right), \\
Q_{H q}^{(3)} & =i\left(\bar{q}_{L} \gamma_{\mu} \tau^{a} q_{L}\right) H^{\dagger} D^{\mu} \tau_{a} H, & Q_{q l}^{(3)} & =\left(\bar{q}_{L} \gamma_{\mu} \tau^{a} q_{L}\right)\left(\bar{T}_{L} \gamma^{\mu} \tau_{a} l_{L}\right), \\
Q_{H d} & =i\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right) H^{\dagger} D^{\mu} H, & Q_{d l}=\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right)\left(\bar{T}_{L} \gamma^{\mu} l_{L}\right), \\
Q_{d e} & =\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right), & Q_{q e}=\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)
\end{array}
$$

## Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays

Idea: Use $\mathrm{SU}(2)_{\mathrm{L}}$ symmetry to connect $b \rightarrow s \nu \bar{\nu}$ decays to $b \rightarrow s \ell^{+} \ell^{-}$decays, on which a lot of exp. data exists. Use most general $\mathcal{G}_{\text {SM }}$-invariant basis of dim6-operators. (1008.4884)

$$
\begin{array}{rlrl}
Q_{H q}^{(1)} & =\mathrm{i}\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right) H^{\dagger} D^{\mu} H, & Q_{q l}^{(1)} & =\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{T}_{L} \gamma^{\mu} l_{L}\right), \\
Q_{H q}^{(3)} & =\mathrm{i}\left(\bar{q}_{L} \gamma_{\mu} \tau^{a} q_{L}\right) H^{\dagger} D^{\mu} \tau_{a} H, & Q_{q l}^{(3)} & =\left(\bar{q}_{L} \gamma_{\mu} \tau^{a} q_{L}\right)\left(\bar{T}_{L} \gamma^{\mu} \tau_{a} l_{L}\right), \\
Q_{H d} & =i\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right) H^{\dagger} D^{\mu} H, & Q_{d l}=\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right)\left(\bar{T}_{L} \gamma^{\mu} l_{L}\right), \\
Q_{d e} & =\left(\bar{d}_{R} \gamma_{\mu} d_{R}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right), & Q_{q e}=\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right)\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)
\end{array}
$$

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{O}_{L}$ | $\propto$ | $\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right)$ | $\mathcal{O}_{9}$ | $\propto$ | $\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)$ |
| $\mathcal{O}_{R}$ | $\propto$ | $\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\nu} \gamma^{\mu} P_{L} \nu\right)$ | $\mathcal{O}_{9}^{\prime}$ | $\propto$ | $\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right)$ |
| $\mathcal{O}_{10}$ | $\propto$ | $\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)$ |  |  |  |
| $\mathcal{O}_{10}^{\prime}$ | $\propto$ | $\left(\bar{s} \gamma_{\mu} P_{R} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)$ |  |  |  |

Idea: Use $\operatorname{SU}(2) \mathrm{L}$ symmetry to connect $b \rightarrow s \nu \bar{\nu}$ decays to $b \rightarrow s \ell^{+} \ell^{-}$decays, on which a lot of exp. data exits.
Use most general $\mathcal{G}_{\text {SM- }}$-invariant basis of dim6-operators. (1008.4884)


So, one finds a dictionary:

$$
\begin{array}{rlrl}
C_{L} & =C_{L}^{S M}+\widetilde{c}_{q l}^{(1)}-\widetilde{c}_{q l}^{(3)}+\widetilde{c}_{Z}, & C_{R} & =\widetilde{c}_{d l}+\widetilde{c}_{Z}^{\prime}, \\
C_{9} & =C_{9}^{S M}+\widetilde{c}_{q e}+\widetilde{c}_{q l}^{(1)}+\widetilde{c}_{q l}^{(3)}-0.08 \widetilde{c}_{Z}, & C_{9}^{\prime}=\widetilde{c}_{d e}+\widetilde{c}_{d l}-0.08 \widetilde{c}_{Z}^{\prime}, \\
C_{10} & =C_{10}^{S M}+\widetilde{c}_{q e}-\widetilde{c}_{q l}^{(1)}-\widetilde{c}_{q l}^{(3)}+\widetilde{c}_{Z}, & C_{10}^{\prime}=\widetilde{c}_{d e}-\widetilde{c}_{d l}+\widetilde{c}_{Z}^{\prime},
\end{array}
$$

with $\widetilde{c}_{Z}=\frac{1}{2}\left(\widetilde{c}_{H q}^{(1)}+\widetilde{c}_{H q}^{(3)}\right), \widetilde{c}_{Z}^{\prime}=\frac{1}{2} \widetilde{c}_{H d}$.

So, one finds a dictionary:

$$
\begin{aligned}
C_{L} & =C_{L}^{S M}+\widetilde{c}_{q l}^{(1)}-\widetilde{c}_{q l}^{(3)}+\widetilde{c}_{Z}, & C_{R} & =\widetilde{c}_{d l}+\widetilde{c}_{Z}^{\prime}, \\
C_{9} & =C_{9}^{S M}+\widetilde{c}_{q e}+\widetilde{c}_{q l}^{(1)}+\widetilde{c}_{q l}^{(3)}-0.08 \widetilde{c}_{Z}, & C_{9}^{\prime} & =\widetilde{c}_{d e}+\widetilde{c}_{d l}-0.08 \widetilde{c}_{Z}^{\prime}, \\
C_{10} & =C_{10}^{S M}+\widetilde{c}_{q e}-\widetilde{c}_{q l}^{(1)}-\widetilde{c}_{q l}^{(3)}+\widetilde{c}_{Z}, & C_{10}^{\prime} & =\widetilde{c}_{d e}-\widetilde{c}_{d l}+\widetilde{c}_{Z}^{\prime},
\end{aligned}
$$

with $\widetilde{c}_{Z}=\frac{1}{2}\left(\widetilde{c}_{H q}^{(1)}+\widetilde{c}_{H q}^{(3)}\right), \widetilde{c}_{Z}^{\prime}=\frac{1}{2} \widetilde{c}_{H d}$.

- Now, use $b \rightarrow s \ell^{+} \ell^{-}$data to constraint the Wilson coefficients and see how large effects in $b \rightarrow s \nu \bar{\nu}$ can still get. (1411.3161)

So, one finds a dictionary:

$$
\begin{aligned}
C_{L} & =C_{L}^{S M}+\widetilde{c}_{q l}^{(1)}-\widetilde{c}_{q l}^{(3)}+\widetilde{c}_{Z}, & C_{R} & =\widetilde{c}_{d l}+\widetilde{c}_{Z}^{\prime} \\
C_{9} & =C_{9}^{S M}+\widetilde{c}_{q e}+\widetilde{c}_{q l}^{(1)}+\widetilde{c}_{q l}^{(3)}-0.08 \widetilde{c}_{Z}, & C_{9}^{\prime} & =\widetilde{c}_{d e}+\widetilde{c}_{d l}-0.08 \widetilde{c}_{Z}^{\prime} \\
C_{10} & =C_{10}^{S M}+\widetilde{c}_{q e}-\widetilde{c}_{q l}^{(1)}-\widetilde{c}_{q l}^{(3)}+\widetilde{c}_{Z}, & C_{10}^{\prime} & =\widetilde{c}_{d e}-\widetilde{c}_{d l}+\widetilde{c}_{Z}^{\prime}
\end{aligned}
$$

with $\widetilde{c}_{Z}=\frac{1}{2}\left(\widetilde{c}_{H q}^{(1)}+\widetilde{c}_{H q}^{(3)}\right), \widetilde{c}_{Z}^{\prime}=\frac{1}{2} \widetilde{c}_{H d}$.

- Now, use $b \rightarrow s \ell^{+} \ell^{-}$data to constraint the Wilson coefficients and see how large effects in $b \rightarrow s \nu \bar{\nu}$ can still get. (1411.3161)
- Consider only certain scenarios of NP where only a subset of operators is active.


## Individual Wilson Coefficients


$2 \sigma$-constraints on individual operators

Current $b \rightarrow s \ell^{+} \ell^{-}$data favour:

- If NP in $c_{q l}^{(1)}$ : Enhancement up to $\sim 30 \%$
- IF NP in $c_{Z}$ (left-handed $Z$-penguins) or $c_{q l}^{(3)}$ : suppression up to $\sim 40 \%$
- If NP in right-handed currents ( $c_{Z}^{\prime}$ ): modification up to $\pm 10 \%$

Non-agreement with SM due to tensions in $b \rightarrow s \mu^{+} \mu^{-}$angular observables.

## Two different scenarios

## Two different scenarios

NP dominated by:

- Modified (flavour changing) Z-couplings [e.g. MSSM, partial compositeness]

$$
\begin{aligned}
& c_{L}=C_{L}^{S M}+\frac{\partial(X}{C L}-\frac{\partial(3)}{C M}+\tilde{c}_{Z}, \\
& c_{R}=\not \not Z W+\tilde{c}_{Z}^{\prime} \text {, }
\end{aligned}
$$



## Two different scenarios

NP dominated by:

- Modified (flavour changing) Z-couplings [e.g. MSSM, partial compositeness]

$$
\begin{aligned}
& C_{L}=C_{L}^{S M}+\frac{1(2)}{C(3)}+\tilde{c}_{Z}, \quad C_{R}=\not \subset L+\tilde{c}_{Z}^{\prime},
\end{aligned}
$$



- 4-Fermion-Operators [e.g. exchange of heavy $Z^{\prime}$ boson]

$$
\begin{aligned}
& c_{L}=C_{L}^{S M}+\tilde{c}_{q l}^{(1)}-\tilde{c}_{q l}^{(3)}+\not \subset / L, \\
& c_{R}=\tilde{c}_{d l}+\not / X, \\
& c_{9}=C_{9}^{S M}+\tilde{c}_{q e}+\tilde{c}_{q l}^{(1)}+\tilde{c}_{q l}^{(3)} \text {, } \\
& c_{9}^{\prime}=\tilde{c}_{d e}+\tilde{c}_{d l}- \\
& c_{10}=c_{10}^{\mathrm{SM}}+\tilde{c}_{q e}-\tilde{c}_{q 1}^{(1)}-\tilde{c}_{q 1}^{(2 /)}+\not Z<\text {, } \\
& c_{10}^{\prime}=\tilde{c}_{d e}-\tilde{c}_{d l}+\not Z /
\end{aligned}
$$



blue: modified $Z$ couplings
red: 4-Fermion operators

Current $b \rightarrow s \ell^{+} \ell^{-}$data favour:

- Suppression of $\mathcal{R}_{K^{(*)}}$ if NP mainly in modified Z couplings
- Enhancement of $\mathcal{R}_{K^{(*)}}$ if NP mainly in 4-Fermion operators
solid: real
dashed: complex

blue: modified $Z$ couplings red: 4-Fermion operators

Current $b \rightarrow s \ell^{+} \ell^{-}$data favour:

- Suppression of $\mathcal{R}_{K^{(*)}}$ if NP mainly in modified Z couplings
- Enhancement of $\mathcal{R}_{K^{(*)}}$ if NP mainly in 4-Fermion operators

Correlations between $\mathcal{R}_{K}$ and $\mathcal{R}_{K^{*}}$ allow to disentangle both scenarios, if tension in $b \rightarrow s \ell^{+} \ell^{-}$stays.
solid: real
dashed: complex

## Beyond lepton flavour universality

Implicit assumption up to now: universal couplings to all lepton flavours

## Beyond lepton flavour universality

Implicit assumption up to now: universal couplings to all lepton flavours

- Couplings only to $\mu, \nu_{\mu}$ :

For 4 -fermi operators: all bounds shrink by a factor 3
For $c_{Z}^{\left({ }^{\prime}\right)}$ : are always LFU $\rightarrow$ bounds still apply

## Beyond lepton flavour universality

Implicit assumption up to now: universal couplings to all lepton flavours

- Couplings only to $\mu, \nu_{\mu}$ :

For 4 -fermi operators: all bounds shrink by a factor 3
For $c_{Z}^{(\prime)}$ : are always LFU $\rightarrow$ bounds still apply

- Couplings only to $e, \nu_{e}$ :

Only constraints: $B \rightarrow X_{s} e^{+} e^{-}$(BaBar) and $B^{+} \rightarrow K^{+} e^{+} e^{-}(\mathrm{LHCb})$


- Effects can be larger for RH interactions than in the $\mu$ case
- No clear separation between 4-fermi operators and $c_{Z}^{\left({ }^{\prime}\right)}$ as there are no large tensions


## Beyond lepton flavour universality

Implicit assumption up to now: universal couplings to all lepton flavours

- Couplings only to $\mu, \nu_{\mu}$ :

For 4 -fermi operators: all bounds shrink by a factor 3
For $c_{Z}^{(\prime)}$ : are always LFU $\rightarrow$ bounds still apply

- Couplings only to $e, \nu_{e}$ :

Only constraints: $B \rightarrow X_{s} e^{+} e^{-}$(BaBar) and $B^{+} \rightarrow K^{+} e^{+} e^{-}(\mathrm{LHCb})$


- Effects can be larger for RH interactions than in the $\mu$ case
- No clear separation between 4-fermi operators and $c_{Z}^{\left({ }^{\prime}\right)}$ as there are no large tensions
- Couplings only to $\tau, \nu_{\tau}$ :

No reasonable bounds exist

## (1) SM predictions

2) Model independent constraints

- General remarks
- Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays
- Beyond lepton flavour universality
(3) Specific models
- $Z^{\prime}$ models
- Partial compositeness
- MSSM
- Leptoquarks

4 Conclusion

## General $Z^{\prime}$ models

## General $Z^{\prime}$ models

Add $\mathrm{SU}(2) \mathrm{L}$ singlet vector boson to SM

$$
\mathcal{L} \supset \bar{f}_{i} \gamma^{\mu}\left[\Delta_{\mathrm{L}}^{f_{i} f_{j}} P_{\mathrm{L}}+\Delta_{\mathrm{R}}^{f_{i} f_{j}} P_{\mathrm{R}}\right] f_{j} Z_{\mu}^{\prime}
$$

## General $Z^{\prime}$ models

Add $\operatorname{SU}(2)$ L singlet vector boson to SM

$$
\mathcal{L} \supset \bar{f}_{i} \gamma^{\mu}\left[\Delta_{\mathrm{L}}^{f_{i} f_{j}} P_{\mathrm{L}}+\Delta_{\mathrm{R}}^{f_{i} f_{j}} P_{\mathrm{R}}\right] f_{j} Z_{\mu}^{\prime}
$$

This generates 4-Fermion operators


## General $Z^{\prime}$ models

Add $\mathrm{SU}(2) \mathrm{L}$ singlet vector boson to SM

$$
\mathcal{L} \supset \bar{f}_{i} \gamma^{\mu}\left[\Delta_{\mathrm{L}}^{f_{i} f_{j}} P_{\mathrm{L}}+\Delta_{\mathrm{R}}^{f_{i} f_{j}} P_{\mathrm{R}}\right] f_{j} Z_{\mu}^{\prime}
$$

This generates 4-Fermion operators


Couplings constraint by

- LEP2 searches for contact interaction
- $\Delta \mathrm{F}=2$ observables ( $B_{s}-\bar{B}_{s}$ mixing)
- $b \rightarrow s \ell^{+} \ell^{-}$(gray shaded)


## General $Z^{\prime}$ models

Add $\mathrm{SU}(2)_{\mathrm{L}}$ singlet vector boson to SM

$$
\mathcal{L} \supset \bar{f}_{i} \gamma^{\mu}\left[\Delta_{\mathrm{L}}^{f_{i} f_{j}} P_{\mathrm{L}}+\Delta_{\mathrm{R}}^{f_{i} f_{j}} P_{\mathrm{R}}\right] f_{j} Z_{\mu}^{\prime}
$$

This generates 4-Fermion operators


Couplings constraint by

- LEP2 searches for contact interaction
- $\Delta \mathrm{F}=2$ observables ( $B_{s}-\bar{B}_{s}$ mixing)
- $b \rightarrow s \ell^{+} \ell^{-}$(gray shaded)




## 331 model

## 331 model

- Explicit example for a $Z^{\prime}$ model based on gauge group $\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{x}}$


## 331 model

- Explicit example for a $Z^{\prime}$ model based on gauge group $\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{x}}$
- only left-handed couplings to $Z^{\prime}: \mathcal{R}_{K}=\mathcal{R}_{K^{*}}$


## 331 model

- Explicit example for a $Z^{\prime}$ model based on gauge group $\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{x}}$
- only left-handed couplings to $Z^{\prime}: \mathcal{R}_{K}=\mathcal{R}_{K^{*}}$
- through $Z^{\prime}$ exchange and $Z-Z^{\prime}$ mixing only $c_{q l}^{(1)}, c_{q e}$ and $c_{Z}$ are generated


## 331 model

- Explicit example for a $Z^{\prime}$ model based on gauge group $\mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{x}}$
- only left-handed couplings to $Z^{\prime}: \mathcal{R}_{K}=\mathcal{R}_{K^{*}}$
- through $Z^{\prime}$ exchange and $Z-Z^{\prime}$ mixing only $c_{q l}^{(1)}, c_{q e}$ and $c_{Z}$ are generated



## Partial compositeness

## Partial compositeness

- Generic feature of Composite Higgs

Models and models with extra dimensions

## Partial compositeness

- Generic feature of Composite Higgs

Models and models with extra dimensions

- main contribution by tree-level flavour-changing $Z$-couplings ( $c_{Z}, c_{Z}^{\prime}$ )

- 4-fermi operators suppressed by $s_{\ell}^{2}\left(\frac{v}{f}\right)^{2}$


## Partial compositeness

- Generic feature of Composite Higgs

Models and models with extra
dimensions

- main contribution by tree-level flavour-changing $Z$-couplings ( $c_{Z}, c_{Z}^{\prime}$ )

- 4-fermi operators suppressed by $s_{\ell}^{2}\left(\frac{v}{f}\right)^{2}$
- main constraint from $b \rightarrow s \ell^{+} \ell^{-}$


## Partial compositeness

- Generic feature of Composite Higgs Models and models with extra dimensions
- main contribution by tree-level flavour-changing $Z$-couplings ( $c_{Z}, c_{Z}^{\prime}$ )

- 4-fermi operators suppressed by $s_{\ell}^{2}\left(\frac{v}{f}\right)^{2}$
- main constraint from $b \rightarrow s \ell^{+} \ell^{-}$

blue: Quarks in bidoublet repr orange: Quarks in triplet repr


## MSSM

## MSSM

- dominant effect by $Z$-penguins ( $c_{Z}, c_{Z}^{\prime}$ )


## MSSM

- dominant effect by $Z$-penguins ( $c_{Z}, c_{Z}^{\prime}$ )
- flavour observables $\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$: effects in $c_{Z}^{\prime}$ very small

$$
\Rightarrow \mathcal{R}_{K} \approx \mathcal{R}_{K^{*}}(0902.0160)
$$

- sizable effects in $c_{z}$ only beyond MFV (0902.0160)


## MSSM

- dominant effect by $Z$-penguins ( $c_{Z}, c_{Z}^{\prime}$ )
- flavour observables $\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$: effects in $c_{Z}^{\prime}$ very small

$$
\Rightarrow \mathcal{R}_{K} \approx \mathcal{R}_{K^{*}(0902.0160)}
$$

- sizable effects in $c_{Z}$ only beyond MFV (0902.0160)
- performed numerical scan of pMSSM including $\Delta F=1$, $\Delta F=2$ and direct sparticle mass constraints


## MSSM

- dominant effect by $Z$-penguins $\left(c_{Z}, c_{Z}^{\prime}\right)$
- flavour observables $\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)$: effects in $c_{Z}^{\prime}$ very small

$$
\Rightarrow \mathcal{R}_{K} \approx \mathcal{R}_{K^{*}}(0902.0160)
$$

- sizable effects in $c_{z}$ only beyond MFV (0902.0160)
- performed numerical scan of pMSSM including $\Delta F=1$, $\Delta F=2$ and direct sparticle mass constraints

black points: correct Higgs mass


## Leptoquarks

## Leptoquarks

- common in GUT's and SUSY with $R$-parity violation, only a few possibilities are compatible with SM gauge group


## Leptoquarks

- common in GUT's and SUSY with $R$-parity violation, only a few possibilities are compatible with SM gauge group
- exchange of LQ's generates 4-fermi operators



## Leptoquarks

- common in GUT's and SUSY with $R$-parity violation, only a few possibilities are compatible with SM gauge group
- exchange of LQ's generates 4-fermi operators

- $\mathrm{SU}(2) \mathrm{L}$ singlet or triplet:
$\mathcal{R}_{K}=\mathcal{R}_{K^{*}}$ and $\mathcal{R}_{F_{L}}=1$


## Leptoquarks

- common in GUT's and SUSY with $R$-parity violation, only a few possibilities are compatible with SM gauge group
- exchange of LQ's generates 4-fermi operators

$\mathrm{SU}(2) \mathrm{L}$ singlet or triplet:
$\mathcal{R}_{K}=\mathcal{R}_{K^{*}}$ and $\mathcal{R}_{F_{L}}=1$
special case: if $\mathrm{LQ} \sim(\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}}$ : No constraint from $b \rightarrow s \ell^{+} \ell^{-}$!


## Leptoquarks

- common in GUT's and SUSY with $R$-parity violation, only a few possibilities are compatible with SM gauge group
- exchange of LQ's generates 4-fermi operators

- $\mathrm{SU}(2) \mathrm{L}$ singlet or triplet:
$\mathcal{R}_{K}=\mathcal{R}_{K^{*}}$ and $\mathcal{R}_{F_{L}}=1$
special case: if $\mathrm{LQ} \sim(\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}}$ : No constraint from $b \rightarrow s \ell^{+} \ell^{-}$!
- $\mathrm{SU}(2) \mathrm{L}$ doublet:
$\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}$ (right-handed currents)
- If LQ's couple to more than one lepton flavour $\Rightarrow$ LFV
- If LQ's couple to more than one lepton flavour $\Rightarrow$ LFV
couplings only to $\mu$ 's:

constraint by $b \rightarrow s \mu^{+} \mu^{-}$
couplings only to e's:

blue:
orange:
green:
constraint by $b \rightarrow s e^{+} e^{-}$
- There are no constraints for couplings to $\tau$ 's.
- If LQ's couple to more than one lepton flavour $\Rightarrow$ LFV
couplings only to $\mu$ 's:

constraint by $b \rightarrow s \mu^{+} \mu^{-}$
couplings only to e's:

blue:
orange:
green:
constraint by $b \rightarrow s e^{+} e^{-}$
- There are no constraints for couplings to $\tau$ 's.
- There are no large effects in LFV-processes (1st and 2nd generation) to be expected as these can be related to the above constraints.


## (1) SM predictions

(2) Model independent constraints

- General remarks
- Correlations with $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$decays
- Beyond lepton flavour universality
(3) Specific models
- $Z^{\prime}$ models
- Partial compositeness
- MSSM
- Leptoquarks


## 4 Conclusion

## Summary



*) if tensions in $b \rightarrow s \ell^{+} \ell^{-}$persist

- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}$ problematic for
- MFV
- LH Z' couplings
- certain PC scenarios
- MSSM
- SU(2)L singlet or triplet LQ

*) if tensions in $b \rightarrow s \ell^{+} \ell^{-}$persist
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}$ problematic for
- MFV
- LH Z' couplings
- certain PC scenarios
- MSSM
- SU(2)L singlet or triplet LQ
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ enhancement: hints to $Z^{\prime}$ dominated $N P$ *)
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}$ problematic for
- MFV
- LH Z' couplings
- certain PC scenarios
- MSSM
- SU(2) L singlet or triplet LQ
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ enhancement:
hints to $Z^{\prime}$ dominated NP *)
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ suppression: hints to NP in $Z$ couplings *)
*) if tensions in $b \rightarrow s \ell^{+} \ell^{-}$persist

- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}$ problematic for
- MFV

*) if tensions in $b \rightarrow s \ell^{+} \ell^{-}$persist
- LH $Z^{\prime}$ couplings
- certain PC scenarios
- MSSM
- SU(2) L singlet or triplet LQ
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ enhancement: hints to $Z^{\prime}$ dominated NP *)
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ suppression: hints to NP in $Z$ couplings *)
- large effects only for
- $c_{q l}^{(1)}=-c_{q l}^{(3)}$ (e.g. certain LQ)
- only couplings to $\tau$ and $\nu_{\tau}$
- only LFV operators
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}$ problematic for
- MFV

*) if tensions in $b \rightarrow s \ell^{+} \ell^{-}$persist
- LH Z' couplings
- certain PC scenarios
- MSSM
- SU(2) L singlet or triplet LQ
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ enhancement: hints to $Z^{\prime}$ dominated NP *)
- $\mathcal{R}_{K} \neq \mathcal{R}_{K^{*}}+$ suppression: hints to NP in $Z$ couplings *)
- large effects only for
- $c_{q l}^{(1)}=-c_{q l}^{(3)}$ (e.g. certain LQ)
- only couplings to $\tau$ and $\nu_{\tau}$
- only LFV operators
- otherwise effects max. $\left\{\begin{array}{l} \pm 60 \% \mathrm{LFU} \\ \pm 20 \% \text { only } \mu\end{array}\right.$


## Things to take home

## Things to take home

- Updated values for SM predictions for these decays


## Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of $\sim 5$ in experimental precision


## Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of $\sim 5$ in experimental precision
- Substantial NP effects are still possible!


## Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of $\sim 5$ in experimental precision
- Substantial NP effects are still possible!
- For some special cases even very large effects are still viable


## Things to take home

- Updated values for SM predictions for these decays
- We still need a factor of $\sim 5$ in experimental precision
- Substantial NP effects are still possible!
- For some special cases even very large effects are still viable
- Correlations between $B \rightarrow K \nu \bar{\nu}$ and $B \rightarrow K^{*} \nu \bar{\nu}$ (and also $B \rightarrow K^{(*)} \ell \ell$ and $B_{s} \rightarrow \ell \ell$ ) can help to identify possible NP scenarios

