CKIM fitter Overview 4 NPhys @ Belle II J. Orloff LPC Clermont

Plan

- Latest update results: SM-CKM
- Latest update results: New Physics example
- Structure of the code
- How to add NP

Latest global CKM fit

arXiv:1501.05013

- With new 2014 data and th. results, the global fit remains excellent
- Measurement of the dominant CKM paradigm definitely entered a high precision era

2014 observables and inputs

CKM	Process			Observables		Theoretical inputs
$ V_{ud} $	$0^+ \rightarrow 0^+$ transitions	$ V_{ud} _{ m nucl}$	=	$0.97425 \pm 0 \pm 0.00022$	[6]	Nuclear matrix elements
$ V_{us} $	$K \to \pi \ell \nu$	$ V_{us} _{\mathrm{SL}}f_+^{K\to\pi}(0)$	=	0.21664 ± 0.00048	[7]	$f_{+}^{K \to \pi}(0) = 0.9641 \pm 0.0015 \pm 0.045$
	$K \to e \nu_e$	$\mathcal{B}(K \to e\nu_e)$	=	$(1.581 \pm 0.008) \cdot 10^{-5}$	[7]	$f_K = 155.2 \pm 0.2 \pm 0.6 \text{ MeV}$
	$K o \mu \nu_{\mu}$	$\mathcal{B}(K o \mu u_{\mu})$	=	0.6355 ± 0.0011	[7]	
	$ au o K u_{ au}$	$\mathcal{B}(\tau \to K \nu_{\tau})$	=	$(0.6955 \pm 0.0096) \cdot 10^{-2}$	[7]	
$\frac{ V_{us} }{ V_{ud} }$	$K ightarrow \mu u / \pi ightarrow \mu u$	$\frac{\mathcal{B}(K \to \mu \nu_{\mu})}{\mathcal{B}(\pi \to \mu \nu_{\mu})}$	=	1.3365 ± 0.0032	[7]	$f_K/f_\pi = 1.1942 \pm 0.0009 \pm 0.0030$
	$\tau \to K \nu / \tau \to \pi \nu$	$\frac{\mathcal{B}(\tau \to K \nu_{\tau})}{\mathcal{B}(\tau \to \pi \nu_{\tau})}$	=	$(6.43 \pm 0.09) \cdot 10^{-2}$	[7]	
$ V_{cd} $	u N	$ V_{cd} _{ u N}$	=	0.230 ± 0.011	[7]	
	$D o \mu \nu$	$\mathcal{B}(D o \mu \nu)$	=	$(3.74 \pm 0.17) \cdot 10^{-4}$	[9]	$f_{D_s}/f_D = 1.201 \pm 0.004 \pm 0.010$
	$D \to \pi \ell \nu$	$ V_{cd} f_+^{D\to\pi}(0)$	=	0.148 ± 0.004	[8]	$f_{+}^{D \to \pi}(0) = 0.666 \pm 0.020 \pm 0.048$
$ V_{cs} $	$W \to c\bar{s}$	$ V_{cs} _{W \to c\bar{s}}$	=	$0.94^{+0.32}_{-0.26} \pm 0.13$	[7]	
	$D_s \to \tau \nu$	$\mathcal{B}(D_s \to \tau \nu)$	=	$(5.55 \pm 0.24) \cdot 10^{-2}$	[9]	$f_{D_s} = 245.3 \pm 0.5 \pm 4.5 \text{ MeV}$
	$D_s o \mu \nu$	$\mathcal{B}(D_s \to \mu \nu_\mu)$	=	$(5.57 \pm 0.24) \cdot 10^{-3}$	[9]	
	$D \to K \ell \nu$	$ V_{cs} f_+^{D\to K}(0)$	=	0.712 ± 0.007	[8, 10]	$f_{+}^{D \to K}(0) = 0.747 \pm 0.011 \pm 0.034$
$ V_{ub} $	semileptonic decays	$ V_{ub} _{\rm SL}$	=	$(3.70 \pm 0.12 \pm 0.26) \cdot 10^{-3}$	[9]	form factors, shape functions
	$B \to \tau \nu$	$\mathcal{B}(B \to \tau \nu)$	=	$(1.08 \pm 0.21) \cdot 10^{-4}$	[9, 11]	$f_{B_s}/f_B = 1.205 \pm 0.004 \pm 0.007$
$ V_{cb} $	semileptonic decays	$ V_{cb} _{\rm SL}$	=	$(41.00 \pm 0.33 \pm 0.74) \cdot 10^{-3}$	[9]	form factors, OPE matrix elements
α	$B \to \pi \pi, \rho \pi, \rho \rho$	branching ratios, <i>CP</i> asymmetries [9				isospin symmetry
β	$B \to (c\bar{c})K$	$\sin(2\beta)_{[car c]}$	=	0.682 ± 0.019	[9]	
γ	$B \to D^{(*)} K^{(*)}$	inputs for the 3 methods			[9]	GGSZ, GLW, ADS methods
ϕ_s	$B_s \to J/\psi(KK,\pi\pi)$	ϕ_s	=	-0.015 ± 0.035	[9]	
$V_{tq}^* V_{tq'}$	Δm_d	Δm_d	=	$0.510 \pm 0.003 \text{ ps}^{-1}$	[9]	$\hat{B}_{B_s}/\hat{B}_{B_d} = 1.023 \pm 0.013 \pm 0.014$
	Δm_s	Δm_s	=	$17.757 \pm 0.021 \text{ ps}^{-1}$	[9]	$\hat{B}_{B_s} = 1.320 \pm 0.017 \pm 0.030$
	$B_s \to \mu \mu$	$\mathcal{B}(B_s \to \mu\mu)$	=	$(2.8^{+0.7}_{-0.6}) \cdot 10^{-9}$	[12]	$f_{B_s} = 225.6 \pm 1.1 \pm 5.4 \text{ MeV}$
$V_{td}^* V_{ts}$	ϵ_K	$ \epsilon_K $	=	$(2.228 \pm 0.011) \cdot 10^{-3}$	[7]	$\hat{B}_K = 0.7615 \pm 0.0027 \pm 0.0137$
$V_{cd}^* V_{cs}$						$\kappa_{\epsilon} = 0.940 \pm 0.013 \pm 0.023$

1-Dimensional Pulls

- Comparing χ²min without and with a given quantity gives a measure the « tension » it brings in the fit
- Nothing really sticks out
- ✤ Beware correlations...

B _s →μμ	1.02						
φ _s	0.62						
γ	0.89						
α	1.03						
sin 2β	1.74						
^ε κ	0.00						
Δm_s	1.36						
Δm_d	1.44						
Β(Β →τν)	1.46						
IV I ub semilep	0.00						
IV I cb semilep	0.00						
Β(D →μν)	0.56						
Β(D_s→μν)	1.06						
B(D _s →τ ν)	1.51						
B(D→KI _V)	0.00						
B(D → πhν)	0.00						
IV I cs not lattice	0.00						
IV I cd not lattice	0.42						
Β(τ _{K2})	2.31						
Β(K _{µ2})	0.29						
B(K _{e2})	1.43						
B(K _{e3})	0.00						
	0.00						
		U U.5 I I.5 2 2.5 3 3.5					
Pull (σ)							

Latest global fit (Vub excl.)

- Previous fit uses a particular average of exclusive and inclusive decays
- Using only exclusive semi-leptonic B decays to fix V_{ub} (and V_{ub}) changes the ε_K contour,
- But not the best fit point

Latest global fit (Vub incl.)

- Same when moving to inclusive SL decays, more in agreement with B→TV
- Notice the ∆m_s ring stops closing

Correlations: $Br(B \rightarrow \tau v)$

- ★ There are ~1.5σ pulls in sin2β and Br(B→τν)
- These are in fact very much correlated: the fit determines very precisely a combination of both (much better than the good exp. precision on β)
- Lesson: global fit of both is essential to reveal a possible discrepancy

Correlations: $Br(B_x \rightarrow \mu \mu)$

- * Same is true for $B_x \rightarrow \mu \mu$
- Experimental progresses
 (Belle II) will be welcome!

New Physics Example: $\Delta F=2$

 Assume generic and independent contributions to Bs and B_d mixing (as well as K⁰: left alone)

$$M_{12}^q = (M_{12}^q)_{SM} \times \Delta^q$$
$$\Delta^q = |\Delta^q| e^{i\phi_q^{\Delta}} = (1 + h_q e^{2i\sigma_q})$$

Observables are

• $\Delta m_q \leftrightarrow |\Delta^q|$

$$\bullet \ a^q_{SL} \leftrightarrow \Delta^q$$

•
$$\Delta \Gamma_q \leftrightarrow \phi_q^{\Delta}$$

NP in B_d mixing

- Global NP fit view in B_d
 parameter space
- SM (∆=0) is not excluded, and nearly as good as best fit
- NP contributions up to 40% are not excluded either!

NP in B_d mixing (w/o A_{SL})

- A_{SL} (combination of a^d_{SL} and a^s_{SL}) measurement at Tevatron is in tension with others
- Discarding it doesn't change the conclusions

NP in B_s mixing

- Global NP fit view in B_s
 parameter space
- SM (Δ=0) is not excluded either, although outside of the A_{SL} contour
- NP contributions up to30% are also allowed

NP in B_s mixing (w/o A_{SL})

Dropping A_{SL} releases
 the tension

NP in B_x mixing : current

Deviations up to 30-40% (at 2 σ) are currently possible

NP in B_x mixing : future 1

Stage 1 projection: LHCb 7fb⁻¹ + Belle II 7ab⁻¹ (~2018?) Excluding 20% deviations

NP in B_x mixing : future 2

Stage 2 projection: LHCb 50 fb⁻¹ + Belle II 50ab⁻¹ (~2023?) Excluding 8% deviations

NP in B_x mixing : future 2

Stage 2 projection: LHCb 50 fb⁻¹ + Belle II 50ab⁻¹ (~2023?) Measuring a 15% deviation to SM

Uncertainties

- CKMfitter code is designed to allow for a frequentist approach where theoretical parameters have initially NO probability distribution
- Restrictions only come from experimental input (with statistical distributions)
- **RFit :** Theoretical uncertainties are treated as nuisance parameters bounded (but undistributed) in a range

Structure of the code

- Core libraries: (~5000 Mathematica lines)
 - Perform minimisation, and scans of p-values
 - * Taking symbolic partial derivatives $\partial O_i / \partial p_j$ is a major speedup (x100?)
 - Automatically generate and compile fortran code for speed
- * « Theories » packages: (~15000 Mathematica lines)
 - ◆ each define analytically a set of observables O_i as functions of input parameters:
 O_i(p_j); e.g. Br(B_s→µµ) is in « DiLeptonicDecays.m »
 - Can coexist in different versions (eg. NLO or NNLO), and with different inputs (e.g. SM, NP, MFV for BBbarKKbarmixing.m)
- Analysis Datacards: define
 - free fit parameters (with initial search range)
 - experimental results (incl. statistical and systematic uncertainties)
 - theoretical uncertainties

How to add a NP model?

- Provide a Mathematica theory package (or alternative version) defining affected observables
- Code is not public, but the group is flexible (not every member signs every paper) and open to project-oriented partnerships (e.g. NP in mixing)
- Models benefitting most of the refined statistical analysis are over-constrained, with correlations between observables:
 - ✤ 2HDM type II
 - limited Wilson coefficients sets (C7, C9, C10, ...)
 - ✤ CMFV

CKMfitter group & page:

Jérôme Charles **Olivier Deschamps** Sébastien Descotes-Genon Heiko Lacker Evan Machefer Andreas Menzel **Stéphane Monteil** Valentin Niess José Ocariz Jean Orloff **Alejandro Perez** Wenbin Qian **Vincent Tisserand** Karim Trabelsi Philip Urquijo Luiz Vale Silva

http://ckmfitter.in2p3.fr/

Coming soon: web interface CKMlive