Bayesian fit of rare B decays with EOS

Christoph Bobeth
TU Munich - IAS

New Physics at Belle II KIT Karlsruhe

Outline

Physics case: Rare B decays

- Flavour-changing decays in the standard model (SM)
- Experimental results
- Effective Theory (EFT) of $|\Delta B|=|\Delta S|=1$ decays
- From EFT towards observables

EOS: Rare B decays

- Fit strategy and general work flow
- Steering fits
- Implemented observables

EOS: Model-independent Fits

Physics case:

Rare B decays

Flavour changes in the Standard Model (SM)

$$
\begin{aligned}
& U_{i}=\{u, c, t\}: \\
& Q_{U}=+2 / 3 \\
& D_{j}=\{d, s, b\}: \mathcal{L}_{\mathrm{CC}}= \\
& \frac{g_{2}}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \gamma^{\mu} P_{L}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) W_{\mu}^{+}
\end{aligned}
$$

Flavour changes in the Standard Model (SM)

$$
\begin{aligned}
& U_{i}=\{u, c, t\}: \\
& Q_{U}=+2 / 3 \\
& D_{j}=\{d, s, b\}: \mathcal{L}_{\mathrm{CC}}= \\
& \frac{g_{2}}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \gamma^{\mu} P_{L}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) W_{\mu}^{+} \\
& \\
& \sim \text { Cabibbo-Kobayashi-Maskawa (CKM) matrix }
\end{aligned}
$$

Tree: only $U_{i} \rightarrow D_{j} \& D_{i} \rightarrow U_{j}$
\Rightarrow charged current: $Q_{i} \neq Q_{j}$

Flavour changes in the Standard Model (SM)

$$
\begin{aligned}
& U_{i}=\{u, c, t\}: \\
& Q_{U}=+2 / 3 \mathcal{L}_{\mathrm{CC}}= \\
& D_{j}=\{d, s, b\}: \frac{g_{2}}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \gamma^{\mu} P_{L}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) W_{\mu}^{+} \\
& Q_{D}=-1 / 3 \sim \text { Cabibbo-Kobayashi-Maskawa (CKM) matrix }
\end{aligned}
$$

Tree: only $U_{i} \rightarrow D_{j} \& D_{i} \rightarrow U_{j}$
\Rightarrow charged current: $Q_{i} \neq Q_{j}$

$M_{1} \rightarrow M_{2} M_{3}$
$M \rightarrow \ell \nu_{\ell}$
$M_{1} \rightarrow M_{2}+\ell \nu_{\ell}$

Loop: $D_{i} \rightarrow D_{j}\left(\& U_{i} \rightarrow U_{j}\right)$
\Rightarrow neutral current (FCNC): $Q_{i}=Q_{j}$

$$
\begin{gathered}
M_{1} \rightarrow M_{2}+\{\gamma, Z, g\} \\
\{\gamma, Z, g\} \rightarrow\left\{\gamma, \bar{\ell} \ell, H_{3}\right\}
\end{gathered}
$$

$$
M_{1} \rightarrow M_{2}+\{\bar{\ell} \ell, \bar{\nu} \nu\}
$$

Flavour changes in the Standard Model (SM)

$$
\begin{aligned}
& U_{i}=\{u, c, t\}: \\
& Q_{U}=+2 / 3 \mathcal{L}_{\mathrm{CC}}= \\
& D_{j}=\{d, s, b\}: \frac{g_{2}}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \gamma^{\mu} P_{L}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) W_{\mu}^{+} \\
& Q_{D}=-1 / 3 \sim \text { Cabibbo-Kobayashi-Maskawa (CKM) matrix }
\end{aligned}
$$

Tree: only $U_{i} \rightarrow D_{j} \& D_{i} \rightarrow U_{j}$
\Rightarrow charged current: $Q_{i} \neq Q_{j}$

Loop: $D_{i} \rightarrow D_{j}\left(\& U_{i} \rightarrow U_{j}\right)$
\Rightarrow neutral current (FCNC): $Q_{i}=Q_{j}$

$M_{1} \rightarrow M_{2}+\{\gamma, Z, g\}$
$\{\gamma, Z, g\} \rightarrow\left\{\gamma, \bar{\ell} \ell, H_{3}\right\}$
$M_{1} \rightarrow M_{2}+\{\bar{\ell} \ell, \bar{\nu} \nu\}$
$\sim G_{F} g \sum_{a} V_{a i} V_{a j}^{*} f\left(m_{a}\right)$
$\sim G_{F} g^{2} \sum_{a, b} V_{a i} V_{a j}^{*} f\left(m_{a, b}\right)$

Flavour changes in the Standard Model (SM)

$$
\begin{aligned}
& U_{i}=\{u, c, t\}: \\
& \begin{array}{cc}
Q_{U}=+2 / 3 \\
D_{j}=\{d, s, b\}: & \mathcal{L}_{\mathrm{CC}}=\frac{g_{2}}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \gamma^{\mu} P_{L}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) W_{\mu}^{+}+{ }^{+} .
\end{array} \\
& Q_{D}=-1 / 3 \\
& \text { ~ Cabibbo-Kobayashi-Maskawa (CKM) matrix }
\end{aligned}
$$

Tree: only $U_{i} \rightarrow D_{j} \& D_{i} \rightarrow U_{j}$
\Rightarrow charged current: $Q_{i} \neq Q_{j}$

Loop: $D_{i} \rightarrow D_{j}\left(\& U_{i} \rightarrow U_{j}\right)$
\Rightarrow neutral current (FCNC): $Q_{i}=Q_{j}$

$$
M_{1} \rightarrow M_{2}+\{\gamma, Z, g\}
$$

$$
M_{1} \rightarrow \bar{\ell} \ell
$$

$$
\{\gamma, Z, g\} \rightarrow\left\{\gamma, \bar{\ell} \ell, H_{3}\right\}
$$

$$
M_{1} \rightarrow M_{2}+\{\bar{\ell} \ell, \bar{\nu} \nu\}
$$

$$
\sim G_{F} C\left(V_{i j}, m_{a}\right)
$$

$$
\sim G_{F} C\left(V_{i j}, m_{a}, m_{b}\right)
$$

Flavour changes in the Standard Model (SM)

$$
\begin{aligned}
& U_{i}=\{u, c, t\}: \\
& Q_{U}=+2 / 3 \\
& D_{j}=\{d, s, b\}: \mathcal{L}_{\mathrm{CC}}= \\
& \frac{g_{2}}{\sqrt{2}}(\bar{u}, \bar{c}, \bar{t})\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \gamma^{\mu} P_{L}\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) W_{\mu}^{+} \\
& Q_{D}=-1 / 3 \sim \text { Cabibbo-Kobayashi-Maskawa (CKM) matrix }
\end{aligned}
$$

In SM FCNC-decays w.r.t. tree-decays are ...
quantum fluctuations = loop-suppressed

- no suppression of contributions beyond SM (BSM) wrt SM itself
- indirect search for BSM signals
\Rightarrow additional contribution to effective coupling C

BUT requires high precision, experimentally and theoretically !!!

$C\left(V_{i j}, m_{a}\right)+C\left(W_{i j}, m_{X}, m_{q}\right)$

Fit of CKM matrix: Tree-level $+\Delta B=2$ decays \Rightarrow fit of CKM-Parameters ...

4 Wolfenstein parameters
> $\lambda \sim 0.22, A, \rho, \eta$

$$
V_{i j} \approx\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

\Rightarrow nowadays sophisticated fit: "combine and overconstrain" [CKMfitter, arXiv:1106.4041]

CKM	Process	Observables		Theoretical inputs
$\left\|V_{u d}\right\|$	$0^{+} \rightarrow 0^{+}$transitions	$\left\|V_{u d}\right\|_{\text {nucl }}=0.97425 \pm 0.00022$	[6]	Nuclear matrix elements
$\left\|V_{u s}\right\|$	$\begin{aligned} & K \rightarrow \pi \ell \nu \\ & K \rightarrow e \nu_{e} \\ & K \rightarrow \mu \nu_{\mu} \\ & \tau \rightarrow K \nu_{\tau} \end{aligned}$	$\begin{array}{ccc} \left\|V_{u a}\right\|_{\text {semi }} f_{+}(0) & = & 0.2163 \pm 0.0005 \\ \mathcal{B}\left(K \rightarrow e \nu_{e}\right) & = & (1.584 \pm 0.0020) \cdot 10^{-5} \\ \mathcal{B}\left(K \rightarrow \mu \nu_{\mu}\right) & = & 0.6347 \pm 0.0018 \\ \mathcal{B}\left(\tau \rightarrow K \nu_{\tau}\right) & = & 0.00696 \pm 0.00023 \\ \hline \end{array}$	$\begin{aligned} & {[7]} \\ & {[8]} \\ & {[7]} \\ & {[8]} \\ & \hline \end{aligned}$	$\begin{array}{cl} \hline f_{+}(0) & =0.9632 \pm 0.0028 \pm 0.0051 \\ f_{K} & =156.3 \pm 0.3 \pm 1.9 \mathrm{MeV} \end{array}$
$\left\|V_{u s}\right\| /\left\|V_{u d}\right\|$	$\begin{aligned} & K \rightarrow \mu \nu / \pi \rightarrow \mu \nu \\ & \tau \rightarrow K \nu / \tau \rightarrow \pi \nu \end{aligned}$	$\begin{aligned} & \frac{\mathcal{B}\left(K \rightarrow \mu \nu_{\mu}\right)}{\mathcal{B}\left(\pi \rightarrow \mu \nu_{\mu}\right)}=(1.3344 \pm 0.0041) \cdot 10^{-2} \\ & \frac{\mathcal{B}\left(\tau \rightarrow K \nu_{\tau}\right)}{\mathcal{B}\left(\tau \rightarrow \pi \nu_{\tau}\right)}=(6.33 \pm 0.092) \cdot 10^{-2} \\ & \hline \end{aligned}$		$f_{K} / f_{\pi}=1.205 \pm 0.001 \pm 0.010$
$\left\|V_{c d}\right\|$	$D \rightarrow \mu \nu$	$\mathcal{B}(D \rightarrow \mu \nu)=(3.82 \pm 0.32 \pm 0.09) \cdot 10^{-4}$	[10]	$f_{D_{s}} / f_{D}=1.186 \pm 0.005 \pm 0.010$
$\left\|V_{c s}\right\|$	$\begin{aligned} & D_{s} \rightarrow \tau \nu \\ & D_{s} \rightarrow \mu \nu \end{aligned}$	$\begin{aligned} & \mathcal{B}\left(D_{s} \rightarrow \tau \nu\right)=(5.29 \pm 0.28) \cdot 10^{-2} \\ & \mathcal{B}\left(D_{s} \rightarrow \mu \nu_{\mu}\right)=(5.90 \pm 0.33) \cdot 10^{-3} \\ & \hline \end{aligned}$	$\begin{aligned} & {[11} \\ & {[11]} \\ & \hline \end{aligned}$	$f_{D_{s}} \quad=251.3 \pm 1.2 \pm 4.5 \mathrm{MeV}$
$\left\|V_{u b}\right\|$	semileptonic decays $B \rightarrow \tau \nu$	$\begin{aligned} \left\|V_{u b}\right\|_{\text {semi }} & =(3.92 \pm 0.09 \pm 0.45) \cdot 10^{-3} \\ \mathcal{B}(B \rightarrow \tau \nu) & =(1.68 \pm 0.31) \cdot 10^{-4} \end{aligned}$	$\begin{gathered} {[11]} \\ {[4]} \end{gathered}$	form factors, shape functions $\begin{aligned} & f_{B_{s}}=231 \pm 3 \pm 15 \mathrm{MeV} \\ & f_{B_{\Omega}} / f_{B}=1.209 \pm 0.007 \pm 0.023 \\ & \hline \end{aligned}$
$\begin{gathered} \left\|V_{c b}\right\| \\ \alpha \end{gathered}$	$\begin{gathered} \hline \text { semileptonic decays } \\ \quad B \rightarrow \pi \pi, \rho \pi, \rho \rho \\ \hline \end{gathered}$	$\begin{aligned} & \left\|V_{c b}\right\|_{\text {semi }}=(40.89 \pm 0.38 \pm 0.59) \cdot 10^{-3} \\ & \text { branching ratios, CP asymmetries } \end{aligned}$	$\begin{aligned} & \hline[11 \\ & {[11]} \\ & \hline \end{aligned}$	form factors, OPE matrix elts isospin symmetry
β	$B \rightarrow(c \bar{c}) K$	$\sin (2 \beta)_{[c c]}=0.678 \pm 0.020$	[11]	
γ	$B \rightarrow D^{(*)} K^{(*)}$	inputs for the 3 methods	[11]	GGSZ, GLW, ADS methods
$V_{t q}^{*} V_{t q^{\prime}}$	$\begin{aligned} & \Delta m_{d} \\ & \Delta m_{s} \end{aligned}$	$\begin{array}{ll} \Delta m_{d} & = \\ \Delta m_{s} & =0.507 \pm 0.005 \mathrm{ps}^{-1} \\ \Delta m^{2} \end{array}$	[11]	$\begin{array}{rll} \hat{B}_{B_{s}} / \hat{B}_{B_{d}} & =1.01 \pm 0.01 \pm 0.03 \\ \hat{B}_{B_{a}} & =1.28 \pm 0.02 \pm 0.03 \end{array}$
$V_{t q}^{*} V_{t q^{\prime}}, V_{c q}^{*} V_{c q^{\prime}}$	ϵ_{K}	$\left\|\epsilon_{K}\right\|=(2.229 \pm 0.010) \cdot 10^{-3}$	[8]	$\begin{aligned} \hat{B}_{K} & =0.730 \pm 0.004 \pm 0.036 \\ \kappa_{\epsilon} & =0.940 \pm 0.013 \pm 0.023 \end{aligned}$

[^0]New Physics at Belle II
February 24, 2015
$5 / 31$

Fit of CKM matrix: Tree-level $+\Delta B=2$ decays
 \Rightarrow fit of CKM-Parameters ... $2003 \rightarrow 2014$

http://ckmfitter.in2p3.fr/: improved by B-factories, Tevatron, LHC

$$
\text { Unitarity: } V_{u b} V_{u d}^{*}+V_{c b} V_{c d}^{*}+V_{t b} V_{t d}^{*}=0
$$

See also UTfit collaboration http : //www.utfit.org/UTfit/

$$
\Rightarrow \text { fit of CKM-Parameters } \ldots 2003 \rightarrow 2014
$$

Pursue similar global fit for $\Delta B=1$ FCNC decays:

$$
b \rightarrow s \gamma \text { and } b \rightarrow s \bar{\ell} \ell
$$

in combination with: quark masses, B form factors ...

Rich phenomenology ...

$b \rightarrow s+\gamma$	$b \rightarrow s+\bar{\ell} \ell$
$B \rightarrow K^{*} \gamma \quad\left(B_{S} \rightarrow \phi \gamma\right)$ - Br t time-dependent CP asy's: S, C, H - iso-spin asymmetry Δ_{0}	$\begin{aligned} B_{S} & \rightarrow \bar{\ell} \ell \\ & \bullet B r \\ B & \rightarrow K+\bar{\ell} \ell \\ & \bullet d^{2} B r / d q^{2} d \cos \theta_{\ell} \rightarrow d B r / d q^{2}, A_{\mathrm{FB}}, F_{H} \end{aligned}$
$B \rightarrow X_{s} \gamma$ - $\mathrm{Br}, \mathrm{dBr} / d E_{\gamma}$ - A_{CP} in $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{s+d \gamma}$	$\left.\begin{array}{rl} B & \rightarrow K^{*}(\rightarrow K \pi)+\bar{\ell} \ell \quad\left(B_{S} \rightarrow \phi(\rightarrow \bar{K} K)+\bar{\ell} \ell\right) \\ & -d^{4} B r / d q^{2} d \cos \theta_{\ell} d \cos \theta_{K^{*}} d \phi \\ & 12 \text { angular observables } J_{1}^{(s, c)}, \ldots, 9 \end{array} q^{2}\right)+ \text { CP-conj. } \quad .$
	$\begin{aligned} & \rightarrow d B r / d q^{2}, A_{\mathrm{FB}}, F_{L}, A_{T}^{(2,3,4, \mathrm{re}, \mathrm{im})}, H_{T}^{(1,2,3,4,5)}, \ldots \\ B & \rightarrow X_{s}+\bar{\ell} \ell \\ & \left.\rightarrow d^{2} B r / d q^{2} d \cos \theta_{\ell}, A_{\mathrm{FB}}, H_{T} \text { (or } H_{L}\right) \end{aligned}$

\ldots in $b \rightarrow s+\{\gamma, \gamma \gamma, \bar{\ell} \ell\}$ FCNC's to test short-distance effective couplings:

$$
C_{i} \text { for } i=7,\left(7^{\prime}\right)
$$

$$
C_{i} \text { for } i=7,9,10,\left(7^{\prime}, 9^{\prime}, 10^{\prime}, \ldots\right)
$$

BUT need non-perturbative hadronic quantities: (complementarity of exclusive and inclusive)

> Decay constants and LCDA's for $B_{d, s}, K, K^{*}, \phi, \ldots$
> Form factors: $(B \rightarrow K) \rightarrow f_{+, T, 0}$ and $\left(B \rightarrow K^{*}, B_{S} \rightarrow \phi\right) \rightarrow V, A_{0,1,2}, T_{1,2,3}$

Experimental number of events: $\boldsymbol{b} \rightarrow \boldsymbol{s}(\boldsymbol{d}) \bar{\ell} \ell$

\# of evts	$\begin{gathered} \text { BaBar } \\ 2012 \\ 471 \mathrm{M} \bar{B} B \end{gathered}$	$\begin{gathered} \text { Belle } \\ 2009 \\ 605 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} \text { CDF } \\ 2011 \\ 9.6 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} \text { LHCb } \\ 2011(+2012) \\ 1(+2) \mathrm{fb}^{-1} \end{gathered}$	CMS 2011 (+2012) $5(+20) \mathrm{fb}^{-1}$	ATLAS 2011 $5 \mathrm{fb}^{-1}$
$B^{0} \rightarrow K^{* 0} \bar{\ell} \ell$	$137 \pm 44^{\dagger}$	$247 \pm 54^{\dagger}$	288 ± 20	2361 ± 56	415 ± 70	426 ± 94
$B^{+} \rightarrow K^{*+} \bar{\ell} \ell$			24 ± 6	162 ± 16		
$B^{+} \rightarrow K^{+} \bar{\ell} \ell$	$153 \pm 41^{\dagger}$	$162 \pm 38^{\dagger}$	319 ± 23	4746 ± 81	not yet	not yet
$B^{0} \rightarrow K_{S}^{0} \bar{\ell} \ell$			32 ± 8	176 ± 17		
$\begin{aligned} & B_{s} \rightarrow \phi \bar{\ell} \bar{\prime} \\ & B_{s} \rightarrow \bar{\mu} \mu \end{aligned}$			62 ± 9	174 ± 15 emerging	emerging	limit
$\Lambda_{b} \rightarrow \Lambda \bar{\ell} \ell$			51 ± 7	78 ± 12		
$\begin{aligned} & B^{+} \rightarrow \pi^{+} \bar{\ell} \ell \\ & B_{d} \rightarrow \bar{\mu} \mu \end{aligned}$		limit	limit	$\begin{gathered} 25 \pm 7 \\ \text { limit } \end{gathered}$	limit	limit

- CP-averaged results
- J / ψ and $\psi^{\prime} q^{2}$-regions vetoed
- \dagger unknown mixture of B^{0} and $B^{ \pm}$
- $\ell=\mu$ for CDF, LHCb, CMS, ATLAS

Babar arXiv:1204.3933 + 1205.2201
Belle arXiv:0904.0770
CDF arXiv:1107.3753 + 1108.0695 + Public Note 10894
LHCb arXiv: $1205.3422+1209.4284+1210.2645+1210.4492$
$+1304.6325+1305.2168+1306.2577+1307.5024$
$+1307.7595+1308.1340+1308.1707+1403.8044$
$+1403.8045+1406.6482$
CMS arXiv: $1307.5025+1308.3409$
ATLAS ATLAS-CONF-2013-038

Experimental number of events: $\boldsymbol{b} \rightarrow \boldsymbol{s}(\boldsymbol{d}) \bar{\ell} \ell$

\# of evts	$\begin{gathered} \text { BaBar } \\ 2012 \\ 471 \mathrm{M} \bar{B} B \end{gathered}$	$\begin{gathered} \text { Belle } \\ 2009 \\ 605 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} \text { CDF } \\ 2011 \\ 9.6 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} \text { LHCb } \\ 2011(+2012) \\ 1(+2) \mathrm{fb}^{-1} \end{gathered}$	CMS 2011 (+2012) $5(+20) \mathrm{fb}^{-1}$	ATLAS $\begin{gathered} 2011 \\ 5 \mathrm{fb}^{-1} \end{gathered}$
$\begin{aligned} & \hline B^{0} \rightarrow K^{* 0} \bar{\ell} \ell \\ & B^{+} \rightarrow K^{*+} \overline{\ell \ell} \\ & B^{+} \rightarrow K^{+} \bar{\ell} \ell \\ & B^{0} \rightarrow K_{S}^{0} \overline{\ell \ell} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 137 \pm 44^{\dagger} \\ & 153 \pm 41^{\dagger} \end{aligned}$	$\begin{aligned} & \hline 247 \pm 54^{\dagger} \\ & 162 \pm 38^{\dagger} \end{aligned}$	$\begin{aligned} 288 & \pm 20 \\ 24 & \pm 6 \\ 319 & \pm 23 \\ 32 & \pm 8 \end{aligned}$	$\begin{gathered} 2361 \pm 56 \\ 162 \pm 16 \\ 4746 \pm 81 \\ 176 \pm 17 \end{gathered}$	$\begin{gathered} 415 \pm 70 \\ \text { not yet } \end{gathered}$	$\begin{gathered} 426 \pm 94 \\ \text { not yet } \end{gathered}$
$\begin{aligned} & B_{s} \rightarrow \phi \overline{\ell \ell \ell} \\ & B_{s} \rightarrow \bar{\mu} \mu \end{aligned}$			62 ± 9	174 ± 15 emerging	emerging	limit
$\Lambda_{b} \rightarrow \Lambda \bar{\ell} \ell$			51 ± 7	78 ± 12		
$\begin{aligned} & B^{+} \rightarrow \pi^{+} \bar{\ell} \ell \\ & B_{d} \rightarrow \bar{\mu} \mu \end{aligned}$		limit	limit	$\begin{gathered} 25 \pm 7 \\ \text { limit } \end{gathered}$	limit	limit

Outlook / Prospects

Belle reprocessed all data $711 \mathrm{fb}^{-1} \rightarrow$ no final analysis yet!
LHCb $\sim 2 \mathrm{fb}^{-1}$ from 2012 to be analysed and $\gtrsim 8 \mathrm{fb}^{-1}$ by the end of 2018
ATLAS / CMS ~ $20 \mathrm{fb}^{-1}$ from 2012 to be analysed
Belle II expects about (10-15) K events $B \rightarrow K^{*} \bar{\ell} \ell(\gtrsim 2020)$

Effective Theory (EFT) of

$$
|\Delta B|=|\Delta S|=1 \text { decays }
$$

B-Hadron decays are a Multi-scale problem ...

with hierarchical interaction scales

electroweak IA	$>$	ext. mom'a in B restframe	$>$
$M_{W} \approx 80 \mathrm{GeV}$	QCD-bound state effects		
$M_{Z} \approx 91 \mathrm{GeV}$	$M_{B} \approx 5 \mathrm{GeV}$		
$\mathrm{QCD} \approx 0.5 \mathrm{GeV}$			

B-Hadron decays are a Multi-scale problem ...

with hierarchical interaction scales

$$
\begin{array}{lcc}
\text { electroweak IA } & \gg & \text { ext. mom'a in } B \text { restframe } \\
M_{W} \approx 80 \mathrm{GeV} & & M_{B} \approx 5 \mathrm{GeV} \\
M_{Z} \approx 91 \mathrm{GeV} &
\end{array}
$$

$$
\mathcal{L}_{\text {eff }} \sim G_{F} V_{\mathrm{CKM}} \times\left[\sum_{9,10} C_{i}^{\ell \bar{\ell}} \mathcal{O}_{i}^{\ell \bar{\ell}}+\sum_{7 \gamma, 8 g} C_{i} \mathcal{O}_{i}+\mathrm{CC}+(\text { QCD \& QED-peng })\right]
$$

B-Hadron decays are a Multi-scale problem ...

with hierarchical interaction scales

$$
\begin{array}{lc}
\text { electroweak IA } \quad \gg \quad \text { ext. mom'a in } B \text { restframe } \\
M_{W} \approx 80 \mathrm{GeV} & \\
M_{Z} \approx 91 \mathrm{GeV} & M_{B} \approx 5 \mathrm{GeV}
\end{array}
$$

$$
\mathcal{L}_{\text {eff }} \sim G_{F} V_{\mathrm{CKM}} \times\left[\sum_{9,10} C_{i}^{\ell \bar{\ell}} \mathcal{O}_{i}^{\ell \bar{\ell}}+\sum_{\gamma \gamma, 8 g} C_{i} \mathcal{O}_{i}+\mathrm{CC}+(\text { QCD \& QED-peng })\right]
$$

semi-leptonic

$C_{i}=$ Wilson coefficients: contains short-dist. pmr's (heavy masses $M_{t}, \ldots-$ CKM factored out) and leading logarithmic QCD-corrections to all orders in α_{s}
\Rightarrow in SM known up to next-to-next-to-leading order
$\mathcal{O}_{i}=$ higher-dim. operators: flavour-changing coupling of light quarks

Most important operators in the SM for $\boldsymbol{b} \rightarrow \boldsymbol{s}+(\gamma, \bar{\ell} \ell)$

Most important operators in the SM for $\boldsymbol{b} \rightarrow \boldsymbol{s}+(\gamma, \bar{\ell} \ell)$

and other contributions from
CC op's
$b \rightarrow s+\bar{U} U(U=u, c)$
QCD peng op's $\quad b \rightarrow s+\bar{Q} Q(Q=u, d, s, c, b)$
chromo-mgn op $\quad b \rightarrow s+$ gluon
\Rightarrow induce backgrounds

$$
b \rightarrow s+(\bar{Q} Q) \rightarrow s+\bar{\ell} \ell
$$

vetoed in exp's for $Q=C: J / \psi$ and ψ^{\prime}

Beyond the SM $\boldsymbol{b} \rightarrow \boldsymbol{s}+(\gamma, \bar{\ell} \ell)$ operators \ldots

frequently considered in model-(in)dependent searches

```
SM' = \chi-flipped SM analogues ( }\mp@subsup{P}{L}{}\leftrightarrow\mp@subsup{P}{R}{}
```

$$
\mathcal{O}_{7^{\prime} \gamma} \propto m_{b}\left[\bar{s} \sigma_{\mu \nu} P_{L} b\right] F^{\mu \nu} \quad \mathcal{O}_{9^{\prime}\left(10^{\prime}\right)} \propto\left[\bar{s} \gamma^{\mu} P_{R} b\right]\left[\bar{\ell} \gamma_{\mu}\left(\gamma_{5}\right) \ell\right]
$$

S + P = scalar + pseudoscalar

$$
\mathcal{O}_{S\left(S^{\prime}\right)} \propto\left[\bar{s} P_{R(L)} b\right][\bar{\ell} \ell] \quad \mathcal{O}_{P\left(P^{\prime}\right)} \propto\left[\bar{s} P_{R(L)} b\right]\left[\bar{\ell} \bar{\gamma}_{5} \ell\right]
$$

T + T5 = tensor

$$
\mathcal{O}_{T} \propto\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma^{\mu \nu} \ell\right] \quad \mathcal{O}_{T 5} \propto \frac{i}{2} \varepsilon^{\mu \nu \alpha \beta}\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma_{\alpha \beta} \ell\right]
$$

new Dirac-structures beyond SM:
SM' = right-handed currents
$\mathbf{S + P}=$ scalar-exchange \& box-type diagrams
T + T5 = box-type diagrams, Fierzed scalar tree exchange

Extension of EFT beyond the SM ...

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}\left(\mu_{b}\right) & =\mathcal{L}_{\mathrm{QED} \times \mathrm{QCD}}(u, d, s, c, b, e, \mu, \tau, ? ? ?) \\
& +\frac{4 G_{F}}{\sqrt{2}} V_{\mathrm{CKM}} \sum_{\mathrm{SM}}\left(C_{i}+\Delta C_{i}\right) \mathcal{O}_{i}+\sum_{\mathrm{NP}} C_{j} \mathcal{O}_{j}(? ? ?)
\end{aligned}
$$

$\Delta C_{i}=\mathrm{NP}$ contributions to $\mathrm{SM} C_{i}$
$\sum_{\mathrm{NP}} C_{j} \mathcal{O}_{j}=\mathrm{NP}$ operators (e.g. $C_{7,9,10}^{\prime}, C_{S, P}^{\left({ }^{\prime}\right)}, \ldots$)
??? $\quad=\quad$ additional light degrees of freedom (\Leftarrow usually not pursued)

Extension of EFT beyond the SM ...

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}\left(\mu_{b}\right) & =\mathcal{L}_{\mathrm{QED} \times \mathrm{QCD}}(u, d, s, c, b, e, \mu, \tau, ? ? ?) \\
& +\frac{4 G_{F}}{\sqrt{2}} V_{\mathrm{CKM}} \sum_{\mathrm{SM}}\left(C_{i}+\Delta C_{i}\right) \mathcal{O}_{i}+\sum_{\mathrm{NP}} C_{j} \mathcal{O}_{j}(? ? ?)
\end{aligned}
$$

$\Delta C_{i} \quad=\quad \mathrm{NP}$ contributions to $\mathrm{SM} C_{i}$
$\sum_{\mathrm{NP}} C_{j} \mathcal{O}_{j}=\mathrm{NP}$ operators (e.g. $C_{7,9,10}^{\prime}, C_{S, P}^{\left({ }^{\prime}\right)}, \ldots$)
??? $\quad=\quad$ additional light degrees of freedom (\Leftarrow usually not pursued)
model-dep. 1) decoupling of new heavy particles @ NP scale: $\mu_{N P} \gtrsim M_{W}$
2) RG-running to lower scale $\mu_{b} \sim m_{b}$ (potentially tower of EFT's)
C_{i} are correlated \Rightarrow depend on fundamental parameters
extending SM EFT-Lagrangian

Extension of EFT beyond the SM ...

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}\left(\mu_{b}\right) & =\mathcal{L}_{\mathrm{QED} \times \mathrm{QCD}}(u, d, s, c, b, e, \mu, \tau, ? ? ?) \\
& +\frac{4 G_{F}}{\sqrt{2}} V_{\mathrm{CKM}} \sum_{\mathrm{SM}}\left(C_{i}+\Delta C_{i}\right) \mathcal{O}_{i}+\sum_{\mathrm{NP}} C_{j} \mathcal{O}_{j}(? ? ?)
\end{aligned}
$$

$\Delta C_{i} \quad=\quad \mathrm{NP}$ contributions to $\mathrm{SM} C_{i}$
$\sum_{\mathrm{NP}} C_{j} \mathcal{O}_{j}=\mathrm{NP}$ operators (e.g. $C_{7,9,10}^{\prime}, C_{S, P}^{\left({ }^{\prime}\right)}, \ldots$)
??? $\quad=\quad$ additional light degrees of freedom (\Leftarrow usually not pursued)
model-dep. 1) decoupling of new heavy particles @ NP scale: $\mu_{N P} \gtrsim M_{W}$
2) RG-running to lower scale $\mu_{b} \sim m_{b}$ (potentially tower of EFT's)
C_{i} are correlated \Rightarrow depend on fundamental parameters
model-indep. extending SM EFT-Lagrangian \rightarrow new C_{j}
C_{j} are UN-correlated free parameters

From EFT to observables

example exclusive $B \rightarrow K^{*}(\rightarrow K \pi) \bar{\ell} \ell$

Exclusive $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}(\rightarrow \boldsymbol{K} \pi) \bar{\ell} \ell \ldots$ using narrow width appr. \& intermediate K^{*} on-shell

$$
\begin{aligned}
& \text { Hadronic amplitude } B \rightarrow K^{*}(\rightarrow K \pi) \overline{\ell \ell} \quad \text { neglecting 4-quark operators } \\
& \mathcal{A}_{\lambda}=\left\langle K_{\lambda}^{*}\right| \quad C_{7} \times \xrightarrow{b}{\underset{\xi}{r}}_{s}^{s}+C_{9,10 \times} \xrightarrow{b}|B\rangle \\
& \mathcal{A}_{\lambda}=\text { transversity amplitudes of } K^{*}(\lambda=\perp, \|, 0)
\end{aligned}
$$

Exclusive $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}(\rightarrow \boldsymbol{K} \boldsymbol{\pi}) \bar{\ell} \ell \ldots$ using narrow width appr. \& intermediate K^{*} on-shell

Hadronic amplitude $B \rightarrow K^{*}(\rightarrow K \pi) \bar{\ell} \ell$
neglecting 4-quark operators

$$
\begin{aligned}
& \mathcal{A}_{\lambda}=\left\langle K_{\lambda}^{*}\right| \quad C_{7} \times \\
& \xrightarrow[\sum_{i}]{b} \\
& +C_{9,10 \times} \\
& |B\rangle
\end{aligned}
$$

- "Naive factorisation" of leptonic and quark currents: $\mathcal{A}_{\lambda} \sim C_{i}\left[\bar{\ell} \Gamma_{i}^{\prime} \ell\right] \otimes\left\langle K^{*}\right| \bar{s} \Gamma_{i} b|B\rangle$
- "just" requires $B \rightarrow K^{*}$ form factors (=FF): $V, A_{1,2}, T_{1,2,3} \quad\left(A_{0}\right.$ contribution $\left.\sim 2 m_{\ell} / \sqrt{q^{2}}\right)$

$$
\begin{aligned}
& A_{\perp}^{L, R} \simeq \sqrt{2 \lambda}\left[\left(C_{9} \mp C_{10}\right) \frac{V}{M_{B}+M_{K^{*}}}+\frac{2 m_{b}}{q^{2}} C_{7} T_{1}\right] \\
& A_{\|}^{L, R} \simeq-\sqrt{2}\left(M_{B}^{2}-M_{K^{*}}^{2}\right)\left[\left(C_{9} \mp C_{10}\right) \frac{A_{1}}{M_{B}-M_{K^{*}}}+\frac{2 m_{b}}{q^{2}} C_{7} T_{2}\right] \\
& A_{0}^{L, R} \simeq-\frac{1}{2 M_{K^{*}} \sqrt{q^{2}}}\left\{\left(C_{9} \mp C_{10}\right)\left[\ldots A_{1}+\ldots A_{2}\right]+2 m_{b} C_{7}\left[\ldots T_{2}+\ldots T_{3}\right]\right\}
\end{aligned}
$$

- FF's @ low q^{2} : light-cone sum rules
[Ball/Zwicky hep-ph/0412079, Khodjamirian et al. arXiv:1006.4945]
- FF's @ high q^{2} : lattice calculations [Horgan/Liu/Meinel/Wingate arXiv:1310.3722, 1310.3887]

Exclusive $\boldsymbol{B} \rightarrow \boldsymbol{K}^{*}(\rightarrow \boldsymbol{K} \pi) \bar{\ell} \ell \ldots$ using narrow width appr. \& intermediate K^{*} on-shell
Hadronic amplitude $B \rightarrow K^{*}(\rightarrow K \pi) \overline{\ell \ell} \quad$ including 4-quark operators

$+\sum_{i} C_{i} \times$

B \rangle
... but 4-Quark operators and $\mathcal{O}_{8 g}$ have to be included \Rightarrow no "naive factorisation" !!!

- current-current $b \rightarrow s+(\bar{u} u, \bar{c} c)$
($b \rightarrow s \bar{u} u$ suppressed by $V_{u b} V_{u s}^{*}$)
- QCD-penguin operators $b \rightarrow s+\bar{q} q(q=u, d, s, c, b)$
(small Wilson coefficients)
\Rightarrow large peaking background around certain $q^{2}=\left(M_{J / \psi}\right)^{2},\left(M_{\psi^{\prime}}\right)^{2}$:
$B \rightarrow K^{(*)}(\bar{q} q) \rightarrow K^{(*)} \bar{\ell} \ell$

- very low- $q^{2}\left(\lesssim 1 \mathrm{GeV}^{2}\right)$ dominated by \mathcal{O}_{7}
- low- $q^{2}\left([1,6] \mathrm{GeV}^{2}\right)$ dominated by $\mathcal{O}_{9,10}$
- 1) QCD factorization or SCET

2) LCSR

3) non-local OPE of $\bar{c} c$-tails

Low Recoil (high- q^{2})

Large Recoil (low- q^{2})

- dominated by $\mathcal{O}_{9,10}$
- local OPE (+ HQET) \Rightarrow theory only for sufficiently large q^{2}-integrated obs's

EOS: Rare B decays

Global data analysis =

fit "New Physics" parameters combining various observables of rare B decays

AND

account simultaneously for theory uncertainties by inclusion of relevant (mostly nonperturbative) parameters
\Rightarrow "Nuisance" parameters

USING

> Bayesian inference to update knowledge on New Physics \& Nuisance parameters $$
\Rightarrow
$$ EOS = Global data analysis framework @ http: //project.het.physik.tu - dortmund.de/eos/

Global data analysis =

fit "New Physics" parameters combining
various observables of rare B decays

AND

```
account simultaneously for theory uncertainties by
inclusion of relevant (mostly nonperturbative) parameters
=> "Nuisance" parameters
```


USING

Bayesian inference to update knowledge on
 New Physics \& Nuisance parameters

EOS = Global data analysis framework
@ http://project.het.physik.tu-dortmund.de/eos/

EOS collaboration
Danny van Dyk (University Siegen)
Frederik Beaujean (Universe Cluster - LMU Munich)
Christoph Bobeth (TU Munich)
Stephan Jahn (TU Munich)
Formerly: Christian Wacker

Contributors

LHCb: A. Shires (TU Dortmund)
Ch. Langenbruch and Th. Blake (U. Warwick)
K. Petridis (U. Bristol)

CDF: Hideki Miyake (Tsukuba U.)

EOS: Workflow of global data analysis ...

Newly developed Sampler: Population Monte Carlo (PMC) initialized with Markov Chain samples
\Rightarrow highly parallelizable! [Beaujean/CB/van DykWacker arXiv:1205.1838, Beaujean/Caldwell arXiv:1304.7808]

EOS: Steering the fit

Fits are done with EOS-client program: eos - scan - mc
\Rightarrow configured via command-line options \rightarrow we use shell scripts

Example

fit Wilson coefficient C_{10} (real part, flat prior) from $\operatorname{Br}\left(B_{s} \rightarrow \bar{\mu} \mu\right)$ of LHCb +CMS 2014, with nuisance parameters from CKM and B_{s} decay constant (gaussian priors with support of 3σ)

```
> eos-scan-mc
    --global-option model WilsonScan \\
    --global-option scan-mode cartesian \\
    --constraint B^0_s->mu^+mu^-::BR@CMS-LHCb-2014
    --scan Re{c10} -1.0 7.0 --prior flat \\
    --nuisance CKM::lambda 3 --prior gaussian 0.2247 0.2253 0.2259 \\
    --nuisance CKM::... \\
    --nuisance decay-constant::B_s 3 --prior gaussian 0.2232 0.2277 ...
```


EOS: Steering the fit

Fits are done with EOS-client program: eos - scan - mc
\Rightarrow configured via command-line options \rightarrow we use shell scripts

Example

fit Wilson coefficient C_{10} (real part, flat prior) from $\operatorname{Br}\left(B_{s} \rightarrow \bar{\mu} \mu\right)$ of LHCb + CMS 2014, with nuisance parameters from CKM and B_{s} decay constant (gaussian priors with support of 3σ)

```
> eos-scan-mc
    --global-option model WilsonScan \\
    --global-option scan-mode cartesian \\
    --constraint B^0_s->mu^+mu^-::BR@CMS-LHCb-2014
    --scan Re{c10} -1.0 7.0 --prior flat \\
    --nuisance CKM::lambda 3 --prior gaussian 0.2247 0.2253 0.2259 \\
    --nuisance CKM::... \\
    --nuisance decay-constant::B_s 3 --prior gaussian 0.2232 0.2277 \ldots
```


Parallelization

- threading on single multi-core machine possible
- parallelization of MCMC trivial (\rightarrow hierarchical clustering merges chains later on)
- parallelization of PMC highly dependent on queuing system of available cluster
\Rightarrow achieved by multiple runs of eos - scan - mc
\Rightarrow python script used for steering of PMC for

1) sampling step, 2) update step of mixture density and 3) convergence check

EOS: Implemented observables $\boldsymbol{b} \rightarrow \boldsymbol{s}(\gamma, \bar{\ell} \ell)$

decay	observables	remarks
$B \rightarrow X_{s} \gamma$	$\begin{gathered} \operatorname{Br}\left(E_{\gamma}\right), \\ \langle E\rangle_{1,2} \end{gathered}$	@ NLO, E_{γ} photon energy cut 1st \& 2nd photon energy moments
$B \rightarrow K^{*} \gamma$	$\begin{gathered} B r,\langle B r\rangle_{\mathrm{CP}} \\ S, C, A_{l} \end{gathered}$	using QCDF, $\langle\cdot\rangle_{\mathrm{CP}}=\mathrm{CP}$-averaged CP-asym's and isospin asymmetry
$B_{S} \rightarrow \bar{\mu} \mu$	$\begin{gathered} \operatorname{Br}(t=0), \int d t \operatorname{Br}(t) \\ S, H, \tau_{\mathrm{eff}} \end{gathered}$	time-integ. Br @ NLO CP-asymmetries \& eff. lifetime
$B \rightarrow X_{s} \bar{\ell} \ell$	Br	@ NNLO, low- q^{2}, q^{2}-diff. \& integr.
$B \rightarrow K \bar{\ell} \ell$	$\begin{gathered} B r, A_{\mathrm{CP}}, A_{\mathrm{FB}}, F_{H} \\ R_{K}=\operatorname{Br}(\ell=\mu) / \operatorname{Br}(\ell=e) \end{gathered}$	@ low- q^{2} QCDF, @ high- q^{2} local OPE q^{2}-diff. \& integr., also $\langle\cdot\rangle_{\mathrm{CP}}$
$B \rightarrow K^{*} \bar{\ell} \ell$	$\begin{gathered} d^{4} \Gamma /\left(d q^{2} d \phi d \cos \theta_{\ell} d \cos \theta_{K}\right) \\ J_{1 s, 1 c, 2 s, 2 c, 3,4,5,6 s, 6 c, 7,8,9} \\ B r, F_{L}, F_{T}, A_{\mathrm{FB}} \\ A_{T}^{(2,3,4,5, \mathrm{Re}, \mathrm{Im})}, P_{4,5,6}^{\prime} \\ H_{T}^{(1,2,3,4,5)}, a_{\mathrm{CP}}^{(1,2,3, \text { mix })} \end{gathered}$	$K^{*} \rightarrow K \pi$ on resonance @ low- q^{2} QCDF, @ high- q^{2} local OPE q^{2}-diff. \& integr., also $\langle\cdot\rangle_{\mathrm{CP}}$ optimised observables @ low- and high- q^{2}

EOS:

Model-independent Fits

Recent "Global Fits" after EPS-HEP 2013 Conference

1) DGMV	$=$	Descotes-Genon/Matias/Virto	[arXiv:1307.5683 + 1311.3876]	χ^{2}-frequentist
2) $\mathrm{AS}-1(-2)$	$=$	Altmannshofer/Straub	[arXiv:1308.1501 (\& 1411.3161)]	χ^{2}-fit
3) BBvD	$=$	Beaujean/CB/van Dyk	[arXiv:1310.2478v3]	Bayesian
4) HLMW	$=$	Horgan/Liu/Meinel/Wingate	[arXiv:1310.3887v3]	χ^{2}-fit

Recent "Global Fits" after EPS-HEP 2013 Conference

1) DGMV	$=$
2) $\mathrm{AS}-1(-2)$	$=$
3) BBvD	$=$
4) HLMW	$=$
Theory predictions	

@ low $q^{2}: B \rightarrow K^{*} \bar{\ell} \ell, B \rightarrow K \bar{\ell} \ell, B \rightarrow K^{*} \gamma$
DGMV, AS, BBvD: based on QCDF [Beneke/Feldmann/Seidel hep-ph/0106067 + 0412400] (HLMW only uses high- q^{2} data)
$@$ high $q^{2}: B \rightarrow K^{*} \bar{\ell} \ell, B \rightarrow K \bar{\ell} \ell$
DGMV, AS, BBvD, HLMW: based on local OPE
[Grinstein/Pirjol hep-ph/0404250; Beylich/Buchalla/Feldmann arXiv:1101.5118]
DGMV, AS-1, BBvD: LCSR $B \rightarrow K^{*}$ FF-results extrapolated from low q^{2}
HLMW, AS-2, BBvD: use lattice $B \rightarrow K^{*}$ FF predictions
[HLMW arXiv:1310.3722]

Recent "Global Fits" after EPS-HEP 2013 Conference

1) DGMV	$=$
2) $\mathrm{AS}-1(-2)$	$=$
3) BBvD	$=$
4) HLMW	$=$
Theory predictions	

[arXiv:1307.5683 + 1311.3876]	χ^{2}-frequentist
[arXiv:1308.1501 (\& 1411.3161)]	χ^{2}-fit
[arXiv:1310.2478v3]	Bayesian
[arXiv:1310.3887v3]	χ^{2}-fit

@ low $q^{2}: B \rightarrow K^{*} \bar{\ell} \ell, B \rightarrow K \bar{\ell} \ell, B \rightarrow K^{*} \gamma$
DGMV, AS, BBvD: based on QCDF [Beneke/Feldmann/Seidel hep-ph/0106067 + 0412400]
(HLMW only uses high- q^{2} data)
@ high $q^{2}: B \rightarrow K^{*} \bar{\ell} \ell, B \rightarrow K \bar{\ell} \ell$
DGMV, AS, BBvD, HLMW: based on local OPE
[Grinstein/Pirjol hep-ph/0404250; Beylich/Buchalla/Feldmann arXiv:1101.5118]
DGMV, AS-1, BBvD: LCSR $B \rightarrow K^{*}$ FF-results extrapolated from low q^{2}
HLMW, AS-2, BBvD: use lattice $B \rightarrow K^{*}$ FF predictions
[HLMW arXiv:1310.3722]
Theory uncertainties
DGMV, AS, HLMW: combining theoretical and experimental uncertainties \Rightarrow included in likelihood
BBvD: most relevant parameters included in the fit as nuisance parameters

Which data is used?
${ }^{\dagger}$ if P_{2} is available then A_{FB} is not used: LHCb
q^{2} Binning

decay	obs	DGMV	AS-1 (-2)	BBvD	HLMW	[GeV	q^{2}-Bins	
$B \rightarrow X_{s} \gamma$	Br	\checkmark	\checkmark	\checkmark		10	[1, 6]	
	$A_{C P}$		\checkmark			Lo	[<2]	
$B \rightarrow K^{*} \gamma$	Br	$\checkmark$$\checkmark$	$\begin{gathered} \checkmark \\ (\checkmark) \end{gathered}$	\checkmark			[2, 4.3]	
	$S(C)$			$\checkmark(\checkmark)$		LO		
	A_{1}						[2, 4,3]	
$B_{S} \rightarrow \bar{\mu} \mu$	Br	\checkmark	\checkmark	\checkmark			[4.3, 8.7]	
$B \rightarrow \chi_{s} \bar{l} \ell$	Br	10	$10+\mathrm{HI}$	10		hi	> 1	
$B \rightarrow K \bar{\ell} \ell$	Br		lo+HI (LO'+hi)	$10+\mathrm{HI}$		HI	$[14.2,16$$[>16]$	
$B \rightarrow K^{*} \bar{\ell} \ell$	Br		lo+HI (Lo+hi)	$10+\mathrm{HI}$	HI \& hi			
	F_{L}		lo+HI (Lo+hi)	$10+\mathrm{HI}$	HI \& hi			
	$A_{\text {FB }}$	LO+HI	lo+HI (Lo+hi)	$10+\mathrm{HI}^{+}$	HI \& hi	DGMV: only LHCb data of $B \rightarrow K^{*} \bar{\ell} \ell$		
	$P_{1,2,4,5,6}^{\left.()^{\prime}\right)}$	LO+HI		$10+\mathrm{H}^{\dagger}$				
	P_{8}^{\prime}	LO+HI				AS-1, BBvD, HLMW: use all available data from Belle, Babar, CDF, LHCb, CMS, ATLAS		
	$S_{3,4,5}$		lo+HI (Lo+hi)		HI \& hi			
	A_{9}		lo+HI (Lo+hi)					
$B_{s} \rightarrow \phi \bar{\ell} \ell$	Br		(10+hi)		HI \& hi			
	F_{L}, S_{3}		(10+hi)		HI \& hi	AS-2: exclude Belle, Babar if $\ell=e, \mu$		

BBvD Current nuisance parameters ...

A) ... common parameters: CKM, quark masses, ...
B) \ldots describing q^{2}-dependence of form factors

- B \rightarrow K : $2 \times \rightarrow$ prior from LCSR + Lattice
- $B \rightarrow K^{*}: 6 \times \rightarrow$ prior from 1) LCSR (NO Lattice)

OR 2) LCSR + Lattice
C) \ldots of naive parametrisation of subleading corrections

- $B \rightarrow K: 2 \times @$ low and high q^{2}
- $B \rightarrow K^{*}: 6 \times @$ low q^{2} and $3 \times @$ high q^{2} priors: about $15 \% \sim \Lambda_{\mathrm{QCD}} / m_{b}$ of leading amplitude

BBvD Current nuisance parameters ...

A) ... common parameters: CKM, quark masses, ...
B) \ldots describing q^{2}-dependence of form factors

- B \rightarrow K : $2 \times \rightarrow$ prior from LCSR + Lattice
- $B \rightarrow K^{*}: 6 \times \rightarrow$ prior from 1) LCSR (NO Lattice)

OR 2) LCSR + Lattice
C) \ldots of naive parametrisation of subleading corrections

- $B \rightarrow K: 2 \times @$ low and high q^{2}
- $B \rightarrow K^{*}: 6 \times @$ low q^{2} and $3 \times @$ high q^{2} priors: about $15 \% \sim \Lambda_{\mathrm{QCD}} / m_{b}$ of leading amplitude

Model-independent New Physics scenarios

Fits in the SM

1) $\mathrm{SM}=$ only nuisance parameters
and model-independent scenarios
2) $\mathrm{SM}_{7,9,10}=C_{7,9,10}^{\mathrm{NP}} \neq 0$
3) $\mathrm{SM}+\mathrm{SM}^{\prime}=C_{7,9,10}^{\mathrm{NP}} \neq 0$ and $C_{7^{\prime}, 9^{\prime}, 10^{\prime}} \neq 0$
4) $\mathrm{SM}+\mathrm{SM}^{\prime}{ }_{9,9^{\prime}}=C_{9}^{\mathrm{NP}} \neq 0$ and $C_{9^{\prime}} \neq 0$

Fitting nuisance parameters

subleading corrections

\Rightarrow in SM some subleading $B \rightarrow K^{*}$ corrections
$\sim-(15-20) \%$ for $\chi=\perp, 0 @$ low q^{2}
$\sim+10 \%$ for $\chi=\|$
with gaussian priors of $1 \sigma \sim \Lambda_{\mathrm{QCD}} / m_{b} \sim 15 \%$

Fitting nuisance parameters

subleading corrections

\Rightarrow in SM some subleading $B \rightarrow K^{*}$ corrections
~ $-(15-20) \%$ for $\chi=1,0 @$ low q^{2} $\sim+10 \% \quad$ for $\chi=\|$
with gaussian priors of $1 \sigma \sim \Lambda_{\mathrm{QCD}} / m_{b} \sim 15 \%$
\Rightarrow relaxed in $\mathrm{SM}+\mathrm{SM}^{\prime}$, except $\zeta_{K^{*}}^{L_{\perp}}$

Fitting nuisance parameters

subleading corrections

\Rightarrow in SM some subleading $B \rightarrow K^{*}$ corrections
~ $-(15-20) \%$ for $\chi=1,0 @$ low q^{2}
$\sim+10 \% \quad$ for $\chi=\|$
with gaussian priors of $1 \sigma \sim \Lambda_{\mathrm{QCD}} / m_{b} \sim 15 \%$
\Rightarrow relaxed in $\mathrm{SM}+\mathrm{SM}^{\prime}$, except $\zeta_{K^{*}}^{L_{1}}$

$B \rightarrow K^{*}$ form factors

FF-parameterisation: $F(0), b_{1}^{F}$ based on z-parameterisation

- data yields similar posterior FF parameters in $\mathrm{SM}_{7,9,10}$ \& SM+SM'
- lattice prior uncertainty comparable to posterior uncertainty from data

$$
F\left(q^{2}\right)=\frac{F(0)}{1-q^{2} / m_{B_{S}\left(J^{P}\right)}^{2}}\left[1+b_{1}^{F} \times \ldots\right]
$$

	no $B \rightarrow K^{*}$ lattice		with $B \rightarrow K^{*}$ lattice	
	prior	SM	prior	SM
$V(0)$	$0.35_{-0.09}^{+0.14}$	$0.40_{-0.03}^{+0.03}$	$0.36_{-0.03}^{+0.03}$	$0.38_{-0.02}^{+0.03}$
$A_{1}(0)$	$0.28_{-0.07}^{+0.08}$	$0.24_{-0.02}^{+0.03}$	$0.28_{-0.03}^{+0.04}$	$0.26_{-0.02}^{+0.03}$
$A_{2}(0)$	$0.24_{-0.07}^{+0.13}$	$0.23_{-0.04}^{+0.04}$	$0.28_{-0.05}^{+0.05}$	$0.25_{-0.03}^{+0.04}$

LCSR $B \rightarrow K^{*}$ FF's [Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945] lattice $B \rightarrow K^{*}$ FF's [Horgan/Liu/Meinel/Wingate arXiv:1310.3722]

Fitting effective couplings

$\rightarrow 4$ solutions with posterior masses: $A^{\prime}=37 \%, B^{\prime}=14 \%, C^{\prime}=15 \%, D^{\prime}=34 \%$ with lattice $B \rightarrow K^{*}$ FF's: $A^{\prime}=35 \%, B^{\prime}=16 \%, C^{\prime}=17 \%, D^{\prime}=32 \%$

- largest deviation in 2D-plane $\left(C_{9}-C_{7^{\prime}}\right)$ at 1.6σ

All scenarios:
inclusion of lattice $B \rightarrow K^{*}$ yields only minor changes in $\mathcal{C}_{i}(\mu=4.2 \mathrm{GeV})$
\Rightarrow largest effect on \mathcal{C}_{9}

$$
\mathrm{SM}+\mathrm{SM}^{\prime}{ }_{9,9^{\prime}}
$$

SM at
1.4σ without
2.0σ with
red/blue $=$ without/with $B \rightarrow K^{*}$ lattice FF's, $\quad(*)=$ SM, $\quad(\times)=$ best fit point
C. Bobeth

New Physics at Belle II

February 24, $2015 \quad 26 / 31$

Goodness of fit

\Rightarrow In SM: 6 measurements (out of 92) with pull values $>2 \sigma$ @ best fit point:

Belle	$:$	$\langle B r\rangle_{[16,19]}$	$\rightarrow+2.6 \sigma$			
BaBar	$:$	$\left\langle F_{L}\right\rangle_{[1,6]}$	$\rightarrow-3.4 \sigma$			
LHCb	$:$	$\left\langle P_{4}^{\prime}\right\rangle_{[14,16]}$	$\rightarrow-2.4 \sigma$	$\left\langle P_{5}^{\prime}\right\rangle_{[1,6]}$	$\rightarrow+2.3 \sigma$	not yet published
ATLAS	$:$	$\left\langle A_{\mathrm{FB}}\right\rangle_{[16,19]}$	$\rightarrow+2.1 \sigma$	$\left\langle F_{L}\right\rangle_{[1,6]}$	$\rightarrow-2.5 \sigma$	

SM p values @ best fit point: $\quad 0.12$ (and 0.06 with lattice $B \rightarrow K^{*}$ FF's)
excluding $\left\langle F_{L}\right\rangle_{[1,6]}$ from BaBar and ATLAS:
0.63 (and 0.55 with lattice $B \rightarrow K^{*}$ FF's)

Goodness of fit

\Rightarrow In SM: 6 measurements (out of 92) with pull values $>2 \sigma$ @ best fit point:

| Belle | $:$ | $\langle B r\rangle_{[16,19]}$ | $\rightarrow+2.6 \sigma$ | | |
| :--- | :---: | :---: | :---: | :---: | :--- | :--- |
| BaBar | $:$ | $\left\langle F_{L}\right\rangle_{[1,6]}$ | $\rightarrow-3.4 \sigma$ | | |
| LHCb | $:$ | $\left\langle P_{4}^{\prime}\right\rangle_{[14,16]}$ | $\rightarrow-2.4 \sigma$ | $\left\langle P_{5}^{\prime}\right\rangle_{[1,6]}$ | $\rightarrow+2.3 \sigma$ |
| ATLAS | $:$ | $\left\langle A_{\mathrm{FB}}\right\rangle_{[16,19]}$ | $\rightarrow+2.1 \sigma$ | $\left\langle F_{L}\right\rangle_{[1,6]}$ | $\rightarrow-2.5 \sigma$ |

0.12 (and 0.06 with lattice $B \rightarrow K^{*}$ FF's)

SM p values @ best fit point:
0.63 (and 0.55 with lattice $B \rightarrow K^{*}$ FF's)

Model comparison of models M_{1} and M_{2} with priors $P\left(M_{i}\right)(\leftarrow$ unknown!)

$$
\frac{P\left(M_{1} \mid D\right)}{P\left(M_{2} \mid D\right)}=B\left(D \mid M_{1}, M_{2}\right) \frac{P\left(M_{1}\right)}{P\left(M_{2}\right)} \quad \text { Bayes factor: } B\left(D \mid M_{1}, M_{2}\right) \equiv \frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}
$$

!!! Models with more parameters are disfavored by larger prior volume, unless they improve the fit substantially

Goodness of fit

\Rightarrow In SM: 6 measurements (out of 92) with pull values $>2 \sigma$ @ best fit point:

| Belle | $:$ | $\langle B r\rangle_{[16,19]}$ | $\rightarrow+2.6 \sigma$ | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| BaBar | $:$ | $\left\langle F_{L}\right\rangle_{[1,6]}$ | $\rightarrow-3.4 \sigma$ | | |
| LHCb | $:$ | $\left\langle P_{4}^{\prime}\right\rangle_{[14,16]}$ | $\rightarrow-2.4 \sigma$ | $\left\langle P_{5}^{\prime}\right\rangle_{[1,6]}$ | $\rightarrow+2.3 \sigma$ |
| ATLAS | $:$ | $\left\langle A_{\mathrm{FB}}\right\rangle_{[16,19]}$ | $\rightarrow+2.1 \sigma$ | $\left\langle F_{L}\right\rangle_{[1,6]}$ | $\rightarrow-2.5 \sigma$ |

SM p values @ best fit point:
0.12 (and 0.06 with lattice $B \rightarrow K^{*}$ FF's)
excluding $\left\langle F_{L}\right\rangle_{[1,6]}$ from BaBar and ATLAS:
0.63 (and 0.55 with lattice $B \rightarrow K^{*}$ FF's)

Model comparison of models M_{1} and M_{2} with priors $P\left(M_{i}\right)(\leftarrow$ unknown!)

$$
\frac{P\left(M_{1} \mid D\right)}{P\left(M_{2} \mid D\right)}=B\left(D \mid M_{1}, M_{2}\right) \frac{P\left(M_{1}\right)}{P\left(M_{2}\right)} \quad \text { Bayes factor: } B\left(D \mid M_{1}, M_{2}\right) \equiv \frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}
$$

!!! Models with more parameters are disfavored by larger prior volume, unless they improve the fit substantially

$B\left(D \mid M_{1}, M_{2}\right)^{\dagger}$	$\mathrm{SM}_{7,9,10}: \mathrm{SM}$	$\mathrm{SM}+\mathrm{SM}^{\prime}: \mathrm{SM}$	$\mathrm{SM}_{+} \mathrm{SM}_{9,9^{\prime}}: \mathrm{SM}$	$\delta C_{7\left(^{\prime}\right)} \in[-0.2,0.2]$
no lattice FF's	$1: 48$	$1: 401$	$1: 3$	$\delta C_{9\left({ }^{\prime}\right), 1\left(^{\prime}\right)} \in[-2,2]$

C. Bobeth

New Physics at Belle II
February 24, 2015

Goodness of fit

\Rightarrow In SM: 6 measurements (out of 92) with pull values $>2 \sigma$ @ best fit point:

Belle	$:$	$\langle\mathrm{Br}\rangle_{[16,19]}$	$\rightarrow+2.6 \sigma$			
BaBar	$:$	$\left\langle F_{L}\right\rangle_{[1,6]}$	\rightarrow	-3.4σ		
LHCb	$:$	$\left\langle P_{4}^{\prime}\right\rangle_{[14,16]}$	$\rightarrow-2.4 \sigma$	$\left\langle P_{5}^{\prime}\right\rangle_{[1,6]}$	$\rightarrow+2.3 \sigma$	not yet published
ATLAS	$:$	$\left\langle A_{\mathrm{FB}}\right\rangle_{[16,19]}$	$\rightarrow+2.1 \sigma$	$\left\langle F_{L}\right\rangle_{[1,6]}$	$\rightarrow-2.5 \sigma$	

SM p values @ best fit point: $\quad 0.12$ (and 0.06 with lattice $B \rightarrow K^{*}$ FF's)
excluding $\left\langle F_{L}\right\rangle_{[1,6]}$ from BaBar and ATLAS: $\quad 0.63$ (and 0.55 with lattice $B \rightarrow K^{*}$ FF's)

Model comparison of models M_{1} and M_{2} with priors $P\left(M_{i}\right)$ (\leftarrow unknown!)

$$
\frac{P\left(M_{1} \mid D\right)}{P\left(M_{2} \mid D\right)}=B\left(D \mid M_{1}, M_{2}\right) \frac{P\left(M_{1}\right)}{P\left(M_{2}\right)} \quad \text { Bayes factor: } B\left(D \mid M_{1}, M_{2}\right) \equiv \frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}
$$

!!! Models with more parameters are disfavored by larger prior volume, unless they improve the fit substantially

> SM wins, SM+SM',9, still competitive
\Rightarrow better prior (= theoretical control) over subleading corrections needed
\Rightarrow waiting eagerly for LHCb update with $3 \mathrm{fb}^{-1}$, hopefully Moriond 2015
\Rightarrow updated analysis from BaBar, ATLAS, Belle would be also welcome

Summary \& Outlook

Summary: EOS \& rare B decays

> EOS = HEP Flavour tool maintained by EOS collaboration
> @ http : //project.het.physik.tu - dortmund.de/eos/

- Bayesian inference analysis tool
- highly parallelizable sampling algorithm (MCMC + HC + PMC) for multi-modal target functions in high-dimensional parameter space
- theory uncertainties included via marginalisation of according nuisance parameters
- provides implementation of
- $|\Delta B|=1$ SM Wilson coefficients at NNLO
- several parameterisations of $B_{q} \rightarrow(P, V)$ form factors and lattice priors
- model-independent scenario of complete set of $|\Delta B|=|\Delta S|=1$ Wilson coefficients
- observables of exclusive decays: $B_{s} \rightarrow \bar{\mu} \mu, B \rightarrow K \bar{\ell} \ell, B \rightarrow K^{*} \bar{\ell} \ell$
- observables of inclusive decays: $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \bar{\ell} \ell$
- observables of exclusive decays: $B \rightarrow \pi \ell \bar{\nu}$
- large data pool of recent experimental results
\Rightarrow successful global model-independent fit of rare B decays and model comparison
[Beaujean/CB/van Dyk arXiv:1310.2478v3]

EOS: Outlook

Package organisaton:

- split off sampling (statistics) from implementation of physics (observables)
\Rightarrow keep physics in C++ and provide interface to statistics package

Sampling:

- provide new algorithm using Variational Bayes (to replace hierarchical clustering)
\Rightarrow already available as pypmc (python)
[Beaujean/Jahn https : //github.com/fredRos/pypmc]
\Rightarrow interface to EOS under development
[Beaujean/CB/Jahn]

User:

- User manual
- Simple plotting tool (python)
- GUI for steering simple fits (python)

Physics:

- optimise performance of existing implementations, add further corrections
- extend inclusive $|\Delta B|=1:$ A) NNLO $b \rightarrow s \gamma$ and B) semi-inclusive $b \rightarrow s \bar{\ell} \ell$ \Rightarrow combination of inclusive $b \rightarrow s(\gamma, \bar{\ell} \ell)$ with $b \rightarrow c \ell \bar{\nu}$ for inclusion of m_{b} and $V_{c b}$
- exclusive and inclusive $b \rightarrow s \bar{\nu} \nu$
- $|\Delta B|=2$ (mixing) and $|\Delta B|=|\Delta D|=1$ observables
- charmless hadronic $B \rightarrow M_{1} M_{2}$ decays (in QCDF)
- Kaon physics: rare $|\Delta S|=|\Delta D|=1$ observables
- new physics models for model-dependent fits (2HDM, MSSM, . . .)
- event generator for rare decays

Rare $\boldsymbol{b} \rightarrow \boldsymbol{s}+(\gamma, \bar{\ell} \ell)$ decays and Belle II

Inclusive decays $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{S} \overline{\ell \ell} \ell$ are very important cross check

- because theoretical predictions involve completely different hadronic quantities than exclusive decays (heavy quark expansion, shape functions, etc.)
- $\operatorname{Br}\left(B \rightarrow X_{s} \gamma\right) \propto\left|C_{7}\left(\mu_{b}\right)\right|^{2}$ provides most stringent bound
- $B \rightarrow X_{c} \ell \bar{\nu}$ provides control on correlation of $m_{b}\left(m_{b}\right)$ and $V_{c b}$, which enter $B \rightarrow X_{s} \gamma$

Exclusive decays

Don't be discouraged just because LHCb measures $B^{0} \rightarrow K^{* 0} \bar{\mu} \mu$ and $B^{+} \rightarrow K^{+} \bar{\mu} \mu$ with "infinite" precision!

Is there a serious study of experimental reach, efficiencies etc. at Belle II?

- should try to check LHCb, and measure iso-spin partner modes
- what about $B \rightarrow K^{(*)} \bar{e} e$?
- provide bounds on 1) $B \rightarrow K^{(*)} \bar{\tau} \tau$ and 2) LFV $B_{d, s} \rightarrow \bar{\ell}_{a} \ell_{b}$ and $B \rightarrow K^{(*)} \bar{\ell}_{a} \ell_{b}$ for $a \neq b$
- try to measure $B \rightarrow K^{(*)} \bar{\nu} \nu$

LHCb might be well systematics-limited, because can not measure absolute rates
\Rightarrow normalisation modes - like $B \rightarrow J / \psi+K^{(*)}$ - come from B-factories
\Rightarrow Belle II has to improve them to make the most out of LHCb data!

Backup Slides

EOS: Sampling algorithm in 3 steps: MCMC + HC + PMC

1) Markov Chain pre-run (MCMC)

Multiple MC's run (in parallel) using Metropolis-Hastings to explore parameter space

- chains are started at random or drawn from prior positions in parameter space
- number of chains must be optimised by user
- parallelization is limited to parallel run of chains
\Rightarrow a chain itself can not be parallelized due to serial nature of Metropolis-Hastings

Advantage: allows very efficient localisation and exploration of local modes
Problem: in multi-modal target density MC's usually trapped in local modes
\Rightarrow MC's are not sufficiently mixed to be combined to single MC
\Rightarrow criteria for mixing: Gelman-Rubin R-value
Disadvantage: no straightforward calculation of "evidence" for model comparison

EOS: Sampling algorithm in 3 steps: MCMC + HC + PMC

2) Hierarchical clustering (HC)

Transform MC's into mixture density of multi-variate gaussian functions as initialisation of importance sampling PMC

- group MC chains using R-value (should correspond to local modes)
- split chains into sub-chains (patch) and generate components from their samples (component = multi-variate gaussian)
- use hierarchical clustering [Goldberger/Roweis Adv.Neur.Info.Proc.Syst. 17 (2004) 505] to combine components that are "redundant" based on Kullback-Leibler divergence

Advantage: allows to eliminate redundant components and reduce their number
Disadvantage: user needs to determine the final number of components (our rule of thumb: should be at least as large as dimension of parameter space)
\Rightarrow "Variational Bayes" automatically determines number of relevant components

EOS: Sampling algorithm in 3 steps: MCMC + HC + PMC

3) Importance sampling via Population Monte Carlo (PMC)

- initialised with mixture density determined in MCMC + HC
\Rightarrow all components have equal weight
(balance effect of unequal number of chains in local modes)
\Rightarrow can replace (all) gaussian components by student-t
(with optional choice of fixed degrees of freedom \rightarrow heavier tails)
- PMC algorithm proceeds iteratively

1) draw samples from current mixture density
(number of samples user choice, min. number of samples per component required)
2) calculate new weights of components based on PMC algorithm
[Cappé/Douc/Guillin/Martin/Robert arXiv: 0710.4242]
[Wraith/Kilbinger/Benabed/Cappé/Cardoso/Fort/Prunet/Robert arXiv: 0903.0837]
3) check convergence of "perplexity" and "effective sample size"

- draw larger set of samples in final step

Theory uncertainties in Global Fits

Parameters of interest
$\vec{\theta}=C_{i}$ (Wilson coeff's)

Theory uncertainties in Global Fits

Parameters of interest

$\vec{\theta}=C_{i}$ (Wilson coeff's)

Nuisance parameters

1) process-specific
form factors \& decay const's, LCDA pmr's, sub-leading Λ / m_{b}, renormalization scales: $\mu_{b, 0}$
2) general
quark masses, CKM, . . .

Theory uncertainties in Global Fits

Parameters of interest
$\vec{\theta}=C_{i}$ (Wilson coeff's)

Nuisance parameters

1) process-specific
form factors \& decay const's, LCDA pmr's,
$\vec{\nu}$ sub-leading Λ / m_{b}, renormalization scales: $\mu_{b, 0}$
2) general
quark masses, CKM, \ldots

Observables

1) observables

$$
O(\vec{\theta}, \vec{\nu})
$$

depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$
2) experimental data for each observable

$$
\operatorname{pdf}(O=0)
$$

\Rightarrow probability distribution of values 0

Theory uncertainties in Global Fits

Parameters of interest
$\vec{\theta}=C_{i}$ (Wilson coeff's)

Nuisance parameters

1) process-specific form factors \& decay const's, LCDA pmr's, sub-leading Λ / m_{b}, renormalization scales: $\mu_{b, 0}$
2) general quark masses, CKM, . . .

Observables

1) observables

$$
O(\vec{\theta}, \vec{\nu})
$$

depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$
2) experimental data for each observable

$$
\operatorname{pdf}(O=0)
$$

\Rightarrow probability distribution of values 0

Fit strategies: 1) Put theory uncertainties in likelihood:

- sample $\vec{\theta}$-space (grid, Markov Chain, importance sampling...) $\quad \chi^{2}=\sum \frac{\left(O_{\mathrm{ex}}-O_{\mathrm{th}}\right)^{2}}{\sigma_{\mathrm{ex}}^{2}+\sigma_{\mathrm{th}}^{2}}$
- theory uncertainties of O_{i} at each $(\vec{\theta})_{i}$: vary $\vec{\nu}$ within some ranges $\Rightarrow \sigma_{\mathrm{th}}\left(O\left[(\vec{\theta})_{i}\right]\right)$
- use Frequentist or Bayesian method $\Rightarrow 68 \& 95 \%$ (CL or CR) regions of $\vec{\theta}$

Theory uncertainties in Global Fits

Parameters of interest
$\vec{\theta}=C_{i}$ (Wilson coeff's)

Nuisance parameters

1) process-specific
form factors \& decay const's, LCDA pmr's, sub-leading Λ / m_{b}, renormalization scales: $\mu_{b, 0}$
2) general quark masses, CKM, . . .

Observables

1) observables

$$
O(\vec{\theta}, \vec{\nu})
$$

depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$
2) experimental data for each observable

$$
\operatorname{pdf}(O=0)
$$

\Rightarrow probability distribution of values 0

Fit strategies: 2) Fit also nuisance parameters:

- sample $(\vec{\theta} \times \vec{\nu})$-space (grid, Markov Chain, importance sampling...)
- accounts for theory uncertainties by fitting also $(\vec{\nu})_{i}$
- use Frequentist or Bayesian method $\Rightarrow 68 \& 95 \%$ (CL or CR) regions of $\vec{\theta}$ and $\vec{\nu}$

Angular analysis of $\bar{B} \rightarrow \bar{K}^{*}[\rightarrow \bar{K} \pi]+\bar{\ell} \ell$

4-body decay with on-shell \bar{K}^{*} (vector)

1) $q^{2}=m_{\bar{\ell} \ell}^{2}=\left(p_{\ell}+p_{\bar{\ell}}\right)^{2}=\left(p_{\bar{B}}-p_{\bar{K}^{*}}\right)^{2}$
2) $\cos \theta_{\ell}$ with $\theta_{\ell}<\left(\vec{p}_{\bar{B}}, \vec{p}_{\ell}\right)$ in $(\bar{\ell} \ell)-$ c.m. system
3) $\cos \theta_{K}$ with $\theta_{K} \angle\left(\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}}\right)$ in $(\bar{K} \pi)-$ c.m. system
4) $\phi \angle\left(\vec{p}_{\bar{K}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell}\right)$ in $B-\mathrm{RF}$

Angular analysis of $\bar{B} \rightarrow \bar{K}^{*}[\rightarrow \bar{K} \pi]+\bar{\ell} \ell$

4-body decay with on-shell \bar{K}^{*} (vector)

1) $q^{2}=m_{\bar{\ell} \ell}^{2}=\left(p_{\ell}+p_{\bar{\ell}}\right)^{2}=\left(p_{\bar{B}}-p_{\bar{K}^{*}}\right)^{2}$
2) $\cos \theta_{\ell}$ with $\theta_{\ell}<\left(\vec{p}_{\bar{B}}, \vec{p}_{\ell}\right)$ in $(\bar{\ell} \ell)-$ c.m. system
3) $\cos \theta_{K}$ with $\theta_{K} \angle\left(\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}}\right)$ in $(\bar{K} \pi)-$ c.m. system
4) $\phi \angle\left(\vec{p}_{\bar{K}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell}\right)$ in $B-\mathrm{RF}$

$J_{i}\left(q^{2}\right)=$ "Angular Observables"

$$
\begin{array}{r}
\frac{32 \pi}{9} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=J_{1 s} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K}+\left(J_{2 s} \sin ^{2} \theta_{K}+J_{2 c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{\ell} \\
+J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+J_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
+\left(J_{6 s} \sin ^{2} \theta_{K}+J_{6 c} \cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+J_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+J_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi
\end{array}
$$

Angular analysis of $\bar{B} \rightarrow \bar{K}^{*}[\rightarrow \bar{K} \pi]+\bar{\ell} \ell$

4-body decay with on-shell \bar{K}^{*} (vector)

1) $q^{2}=m_{\bar{\ell} \ell}^{2}=\left(p_{\ell}+p_{\bar{\ell}}\right)^{2}=\left(p_{\bar{B}}-p_{\bar{K}^{*}}\right)^{2}$
2) $\cos \theta_{\ell}$ with $\theta_{\ell}<\left(\vec{p}_{\bar{B}}, \vec{p}_{\ell}\right)$ in $(\bar{\ell} \ell)-$ c.m. system
3) $\cos \theta_{K}$ with $\theta_{K} \angle\left(\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}}\right)$ in $(\bar{K} \pi)-$ c.m. system
4) $\phi \angle\left(\vec{p}_{\bar{K}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell}\right)$ in $B-\mathrm{RF}$

$J_{i}\left(q^{2}\right)=$ "Angular Observables"

$$
\begin{array}{r}
\frac{32 \pi}{9} \frac{\mathrm{~d}^{4} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=J_{1 s} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K}+\left(J_{2 s} \sin ^{2} \theta_{K}+J_{2 c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{\ell} \\
+J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+J_{5} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi \\
+\left(J_{6 s} \sin ^{2} \theta_{K}+J_{6 c} \cos ^{2} \theta_{K}\right) \cos \theta_{\ell}+J_{7} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi \\
+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+J_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi
\end{array}
$$

\Rightarrow " $2 \times(12+12)=48$ " if measured separately: A) decay + CP-conj and B) for $\ell=e, \mu$

Angular analysis of $\bar{B} \rightarrow \bar{K}^{*}[\rightarrow \bar{K} \pi]+\bar{\ell} \ell$

4-body decay with on-shell \bar{K}^{*} (vector)

1) $q^{2}=m_{\bar{\ell} \ell}^{2}=\left(p_{\ell}+p_{\bar{\ell}}\right)^{2}=\left(p_{\bar{B}}-p_{\bar{K}^{*}}\right)^{2}$
2) $\cos \theta_{\ell}$ with $\theta_{\ell}<\left(\vec{p}_{\bar{B}}, \vec{p}_{\ell}\right)$ in $(\bar{\ell} \ell)-$ c.m. system
3) $\cos \theta_{K}$ with $\theta_{K} \angle\left(\vec{p}_{\bar{B}}, \vec{p}_{\bar{K}}\right)$ in $(\bar{K} \pi)-$ c.m. system
4) $\phi \angle\left(\vec{p}_{\bar{K}} \times \vec{p}_{\pi}, \vec{p}_{\bar{\ell}} \times \vec{p}_{\ell}\right)$ in $B-\mathrm{RF}$

\Rightarrow CP-averaged and CP-asymmetric angular observables

$$
S_{i}=\frac{J_{i}+\bar{J}_{i}}{\Gamma+\bar{\Gamma}}, \quad A_{i}=\frac{J_{i}-\bar{J}_{i}}{\Gamma+\bar{\Gamma}},
$$

[Krüger/Sehgal/Sinha/Sinha hep-ph/9907386]
[Altmannshofer et al. arXiv:0811.1214]
CP-conj. decay $B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{+} \pi^{-}\right) \ell^{+} \ell^{-}: d^{4} \bar{\Gamma}$ from $d^{4} \Gamma$ by replacing

$$
\begin{array}{rcccc}
\text { CP-even } & : & J_{1,2,3,4,7} & \longrightarrow & +\bar{J}_{1,2,3,4,7}\left[\delta_{W} \rightarrow-\delta_{W}\right] \\
\text { CP-odd } & : & J_{5,6,8,9} & \longrightarrow & -\bar{J}_{5,6,8,9}\left[\delta_{W} \rightarrow-\delta_{W}\right]
\end{array}
$$

with weak phases δ_{W} conjugated

Angular observables \& form factor (=FF) relations

$$
\begin{aligned}
J_{i}\left(q^{2}\right) & \sim\{\operatorname{Re}, \operatorname{Im}\}\left[A_{m}^{L, R}\left(A_{n}^{L, R}\right)^{*}\right] \\
& \sim \sum_{a}\left(C_{a} F_{a}\right) \sum_{b}\left(C_{b} F_{b}\right)^{*}
\end{aligned}
$$

$A_{m}^{L, R} \ldots K^{*}$-transversity amplitudes $m=\perp, \|, 0$
$C_{a} \ldots$ short-distance coefficients $F_{a} \ldots$. FF's

Angular observables \& form factor (=FF) relations

$$
\begin{aligned}
J_{i}\left(q^{2}\right) & \sim\{\operatorname{Re}, \operatorname{Im}\}\left[A_{m}^{L, R}\left(A_{n}^{L, R}\right)^{*}\right] \\
& \sim \sum_{a}\left(C_{a} F_{a}\right) \sum_{b}\left(C_{b} F_{b}\right)^{*}
\end{aligned}
$$

$A_{m}^{L, R} \ldots K^{*}$-transversity amplitudes $m=\perp, \|, 0$
$C_{a} \ldots$ short-distance coefficients $F_{a} \ldots$ FF's
simplify when using FF relations:
low K^{*} recoil limit: $E_{K^{*}} \sim M_{K^{*}} \sim \Lambda_{\mathrm{QCD}}$
[Isgur/Wise PLB232 (1989) 113, PLB237 (1990) 527]

$$
T_{1} \approx V, \quad T_{2} \approx A_{1}
$$

$$
T_{3} \approx A_{2} \frac{M_{B}^{2}}{q^{2}}
$$

large K^{*} recoil limit: $E_{K^{*}} \sim M_{B}$

$$
\begin{aligned}
& \xi_{\perp} \equiv \frac{M_{B}}{M_{B}+M_{K^{*}}} V \approx \frac{M_{B}+M_{K^{*}}}{2 E_{K^{*}}} A_{1} \approx T_{1} \approx \frac{M_{B}}{2 E_{K^{*}}} T_{2} \\
& \xi_{\|} \equiv \frac{M_{B}+M_{K^{*}}}{2 E_{K^{*}}} A_{1}-\frac{M_{B}-M_{K^{*}}}{M_{K^{*}}} A_{2} \approx \frac{M_{B}}{2 E_{K^{*}}} T_{2}-T_{3}
\end{aligned}
$$

"Optimized observables" in $B \rightarrow K^{*} \bar{\ell} \ell$

Idea: reduce form factor (=FF) sensitivity by combination (usually ratios) of angular obs's J_{i}
\Rightarrow guided by large energy limit @ low- q^{2} and Isgur-Wise @ high- q^{2} FF-relations

"Optimized observables" in $B \rightarrow K^{*} \bar{\ell} \ell$

Idea: reduce form factor (=FF) sensitivity by combination (usually ratios) of angular obs's J_{i}
\Rightarrow guided by large energy limit @ low- q^{2} and Isgur-Wise @ high- q^{2} FF-relations
@ low $q^{2}=$ large recoil

$$
\begin{gathered}
A_{T}^{(2)}=P_{1}=\frac{J_{3}}{2 J_{2 s}}, \quad A_{T}^{(\mathrm{re})}=2 P_{2}=\frac{J_{6 s}}{4 J_{2 s}}, \quad A_{T}^{(\mathrm{im})}=-2 P_{3}=\frac{J_{9}}{2 J_{2 s}}, \\
P_{4}^{\prime}=\frac{J_{4}}{\sqrt{-J_{2 c} J_{2 s}}}, \quad P_{5}^{\prime}=\frac{J_{5} / 2}{\sqrt{-J_{2 c} J_{2 s}}}, \quad P_{6}^{\prime}=\frac{-J_{7} / 2}{\sqrt{-J_{2 c} J_{2 s}}}, \quad P_{8}^{\prime}=\frac{-J_{8}}{\sqrt{-J_{2 c} J_{2 s}}}, \\
A_{T}^{(3)}=\sqrt{\frac{\left(2 J_{4}\right)^{2}+J_{7}^{2}}{-2 J_{2 c}\left(2 J_{25}+J_{3}\right)}}, \quad A_{T}^{(4)}=\sqrt{\frac{J_{5}^{2}+\left(2 J_{8}\right)^{2}}{\left(2 J_{4}\right)^{2}+J_{7}^{2}}}
\end{gathered}
$$

[Krüger/Matias hep-ph/0502060, Egede/Hurth/Matias/Ramon/Reece arXiv:0807.2589 + 1005.0571]
[Becirevic/Schneider arXiv:1106.3283]
[Matias/Mescia/Ramon/Virto arXiv:1202.4266]
[Descotes-Genon/Matias/Ramon/Virto arXiv:1207.2753]

"Optimized observables" in $B \rightarrow K^{*} \bar{\ell} \ell$

Idea: reduce form factor (=FF) sensitivity by combination (usually ratios) of angular obs's J_{i}
\Rightarrow guided by large energy limit @ low- q^{2} and Isgur-Wise @ high- q^{2} FF-relations
@ high $q^{2}=$ low recoil

$$
H_{T}^{(1)}=P_{4}=\frac{\sqrt{2} J_{4}}{\sqrt{-J_{2 c}\left(2 J_{2 s}-J_{3}\right)}},
$$

$$
\begin{array}{ll}
H_{T}^{(2)}=P_{5}=\frac{J_{5} / \sqrt{2}}{\sqrt{-J_{2 c}\left(2 J_{2 s}+J_{3}\right)}}, & H_{T}^{(3)}=\frac{J_{6 s} / 2}{\sqrt{\left(2 J_{2 s}\right)^{2}-\left(J_{3}\right)^{2}}}, \\
H_{T}^{(4)}=Q=\frac{\sqrt{2} J_{8}}{\sqrt{-J_{2 c}\left(2 J_{2 s}+J_{3}\right)}}, & H_{T}^{(5)}=\frac{-J_{9}}{\sqrt{\left(2 J_{2 s}\right)^{2}-\left(J_{3}\right)^{2}}},
\end{array}
$$

[CB/Hiller/van Dyk arXiv:1006.5013]

$$
\frac{A_{9}}{A_{\mathrm{FB}}}=\frac{J_{9}}{J_{6 s}}, \quad \text { and } \quad \frac{J_{8}}{J_{5}}
$$

Low- $q^{2}=$ Large Recoil: $E_{K^{*}} \sim m_{b}$

\Rightarrow energetic "light" K^{*}, allows to calculate hard spectator scattering (HS) and weak annihilation (WA) in expansion in $\Lambda_{\mathrm{QCD}} / E_{K^{*}}$ and perturbatively in α_{s}

QCD Factorisation (QCDF)

[Beneke/Feldmann/Seidel hep-ph/0106067, hep-ph/0412400]
$=$ (large recoil + heavy quark) limit (also Soft-Collinear Effective Theory = SCET)
$\left\langle\bar{\ell} \ell K_{a}^{*}\right| H_{\text {eff }}^{(i)}|B\rangle \sim$

$$
C_{a}^{(i)} \times \xi_{a}+\phi_{B} \otimes T_{a}^{(i)} \otimes \phi_{a, K^{*}}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)
$$

$C_{a}^{(i)}, T_{a}^{(i)}:$ perturbative kernels in $\alpha_{S}(a=\perp, \|, \quad i=u, t)$ $\phi_{B}, \phi_{a, K^{*}}: B$ - and K_{a}^{*}-distribution amplitudes

- $C_{a}^{(i)}$ corrections \sim universal form factors ξa
- $T_{a}^{(i)} \mathrm{HS}$ and WA contributions - numerically small in most observables
- breaks down at subleading order in $1 / m_{b} \rightarrow$ endpoint divergences
[Feldmann/Matias hep-ph/0212158]
\Rightarrow may be large for some observables, especially optimised observables

Low- $q^{2}=$ Large Recoil: $E_{K^{*}} \sim m_{b}$

\Rightarrow energetic "light" K^{*}, allows to calculate hard spectator scattering (HS) and weak annihilation (WA) in expansion in $\Lambda_{\mathrm{QCD}} / E_{K^{*}}$ and perturbatively in α_{s}

QCD Factorisation (QCDF)

[Beneke/Feldmann/Seidel hep-ph/0106067, hep-ph/0412400]
= (large recoil + heavy quark) limit (also Soft-Collinear Effective Theory = SCET)
$\left\langle\bar{\ell} \ell K_{a}^{*}\right| H_{\text {eff }}^{(i)}|B\rangle \sim$

$$
C_{a}^{(i)} \times \xi_{a}+\phi_{B} \otimes T_{a}^{(i)} \otimes \phi_{a, K^{*}}+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)
$$

$C_{a}^{(i)}, T_{a}^{(i)}:$ perturbative kernels in $\alpha_{S}(a=\perp, \|, \quad i=u, t)$ $\phi_{B}, \phi_{a, K^{*}}: B$ - and K_{a}^{*}-distribution amplitudes

- $C_{a}^{(i)}$ corrections \sim universal form factors ξa
- $T_{a}^{(i)} \mathrm{HS}$ and WA contributions - numerically small in most observables
- breaks down at subleading order in $1 / m_{b} \rightarrow$ endpoint divergences
[Feldmann/Matias hep-ph/0212158]
\Rightarrow may be large for some observables, especially optimised observables
\Rightarrow sub-leading soft gluon effects beyond QCDF from LCSR's
[Ball/Jones/Zwicky hep-ph/0612081, Dimou/Lyon/Zwicky arXiv:1212.2242, Lyon/Zwicky arXiv:1305.4797]

$\bar{c} c$-Resonances

@ low $q^{2} \Rightarrow$ in general non-perturbative, $B \rightarrow K^{*} J / \psi\left(\rightarrow K^{*} \bar{\ell} \ell\right)$ colour-suppressed
[Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

- $-4 m_{c}^{2} \leq q^{2} \leq 2 \mathrm{GeV}^{2} \ll 4 m_{c}^{2}$: non-local OPE near light-cone including soft-gluon emission \Rightarrow matrix elmnt. via LCSR with B-meson DA's and light-meson interpolating current
[Khodjamirian/Mannel/Offen hep-ph/0504091 \& 0611193]
- $B \rightarrow K^{(*)}$ form factors also via same LCSR
- $q^{2} \gtrsim 4 \mathrm{GeV}^{2}$: hadronic dispersion relation using measured $B \rightarrow K^{(*)}+\left(J / \psi, \psi^{\prime}\right)$
\rightarrow some modelling of spectral density

- matching both regions: destructive interference between J / ψ and ψ^{\prime} contributions
- affects rate up to (15-20) \% for $1 \lesssim q^{2} \lesssim 6 \mathrm{GeV}^{2}$

$\bar{c} c$-Resonances

@ low $q^{2} \Rightarrow$ in general non-perturbative, $B \rightarrow K^{*} J / \psi\left(\rightarrow K^{*} \bar{\ell} \ell\right)$ colour-suppressed
[Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

- $-4 m_{c}^{2} \leq q^{2} \leq 2 \mathrm{GeV}^{2} \ll 4 m_{c}^{2}$: non-local OPE near light-cone including soft-gluon emission \Rightarrow matrix elmnt. via LCSR with B-meson DA's and light-meson interpolating current
[Khodjamirian/Mannel/Offen hep-ph/0504091 \& 0611193]
- $B \rightarrow K^{(*)}$ form factors also via same LCSR
- $q^{2} \gtrsim 4 \mathrm{GeV}^{2}$: hadronic dispersion relation using measured $B \rightarrow K^{(*)}+\left(J / \psi, \psi^{\prime}\right)$
\rightarrow some modelling of spectral density
- matching both regions: destructive interference between J / ψ and ψ^{\prime} contributions
- affects rate up to (15-20) \% for $1 \lesssim q^{2} \lesssim 6 \mathrm{GeV}^{2}$

Extended to include light resonances $q=u, d, s$ for $B \rightarrow K \bar{\ell} \ell$
[Khodjamirian/Mannel/Wang arXiv:1211.0234]

- non-local OPE done completely below hadronic threshold $q^{2}<0$

$$
4-2-2-2-2
$$

$\bar{c} c$-Resonances

@high q^{2} [Buchalla/Isidori hep-ph/9801456, Grinstein/Pirjol hep-ph/0404250, Beylich/Buchalla/Feldmann arXiv:1101.5118] Hard momentum transfer $\left(q^{2} \sim M_{B}^{2}\right)$ through $(\bar{q} q) \rightarrow \bar{\ell} \ell$ allows local OPE

OPE

$$
\begin{aligned}
\mathcal{A}\left[B \rightarrow K^{*} \bar{\ell} \ell\right] & \sim \frac{8 \pi^{2}}{q^{2}} i \int d^{4} x e^{i q \cdot x}\left\langle K^{*}\right| T\left\{\mathcal{L}^{\mathrm{eff}}(0), j_{\mu}^{\mathrm{em}}(x)\right\}|B\rangle\left[\bar{\ell} \gamma^{\mu} \ell\right] \\
& =\left(\sum_{a} \mathcal{C}_{3 a} \mathcal{Q}_{3 a}^{\mu}+\frac{m_{s}}{m_{b}} \times \operatorname{dim}-4+\sum_{b} \mathcal{C}_{5 b} \mathcal{Q}_{5 b}^{\mu}+\mathcal{O}(\operatorname{dim}>5)\right)\left[\bar{\ell} \gamma_{\mu} \ell\right]
\end{aligned}
$$

$\operatorname{dim}=3$ usual $B \rightarrow K^{*}$ form factors $V, A_{0,1,2}, T_{1,2,3}$, also α_{s} matching corrections known $\operatorname{dim}=5$ suppressed by $\left(\Lambda_{\mathrm{QCD}} / m_{b}\right)^{2} \sim 2 \%$, explicite estimate $@ q^{2}=15 \mathrm{GeV}^{2}:<1 \%$ beyond OPE duality violating effects [Beylich/Buchalla/Feldmann arXiv:1101.5118]

- based on Shifman model for c-quark correlator + fit to recent BES data
- $\pm 2 \%$ for integrated rate $q^{2}>15 \mathrm{GeV}^{2}$
factorization assumption for $B \rightarrow K+\Psi(n S)(\rightarrow \bar{\ell} \ell)$:
$\langle\Psi(n S) K|(\bar{c} \Gamma c)\left(\bar{s} \Gamma^{\prime} b\right)|B\rangle \approx\langle\Psi(n S)| \bar{C} \Gamma c|0\rangle \otimes\langle K| \bar{S} \Gamma^{\prime} b|B\rangle+\ldots$ nonfactorisable
+ dispersion relations with BES II $\bar{e} e \rightarrow \bar{q} q$ data
+ comparison with LHCb 3 fb ${ }^{-1}$ of $B^{+} \rightarrow K^{+} \bar{\mu} \mu @$ high- q^{2}
- factorization "badly fails" differentially in q^{2}
\Rightarrow not unexpected, well-known from $B \rightarrow K \Psi(n S)$
\Rightarrow "fudge factor" $\neq 1$
- does it invalidate the OPE ??? this requires q^{2}-integration !!!
- investigate other $B \rightarrow M \overline{\ell \ell}$
$M=K^{*}$ at LHCb
$M=X_{s}$ (inclusive) at Belle II

+ including J / ψ and ψ^{\prime}
factorization assumption for $B \rightarrow K+\Psi(n S)(\rightarrow \bar{\ell} \ell)$:
$\langle\Psi(n S) K|(\bar{c} \Gamma c)\left(\bar{s} \Gamma^{\prime} b\right)|B\rangle \approx\langle\Psi(n S)| \bar{C} \Gamma c|0\rangle \otimes\langle K| \bar{S} \Gamma^{\prime} b|B\rangle+\ldots$ nonfactorisable
+ dispersion relations with BES II $\bar{e} e \rightarrow \bar{q} q$ data

$$
\text { + comparison with LHCb } 3 \mathrm{fb}^{-1} \text { of } B^{+} \rightarrow K^{+} \bar{\mu} \mu @ \text { high- } q^{2}
$$

- a) no "fudge factor":

$$
p=0 \%
$$ various "generalisations of factorisable contributions"

b) fit "fudge factor" = -2.6: $\quad p=1.5 \%$
c), d) fit rel. factors of $\Psi(n S)$:

$$
p=12 \% \text { and } p=20 \%
$$

\Rightarrow improve the combined fit of BES II and LHCb considerably (BES II data alone: $p=44 \%$)

- BUT can these parametrisations capture all features of non fact. contr.: Wilson coeffs. \& q^{2} ???

- can't be explained with NP in C_{9}
\Rightarrow can ease tension in P_{5}^{\prime}
$\Rightarrow \mathrm{NP}$ in $b \rightarrow s \bar{c} c$?!

Subleading corrections to TransAmp's

Low hadronic recoil

$$
A_{i}^{L, R} \sim C^{L, R} \times f_{i}
$$

$$
C^{L, R}=\left(C_{9} \mp C_{10}\right)+\kappa \frac{2 m_{b}^{2}}{q^{2}} C_{7},
$$

1 SD-coefficient $C^{L, R}$ and 3 FF's $f_{i}(i=\perp, \|, 0)$

$$
f_{\perp}=\frac{\sqrt{2 \hat{\lambda}}}{1+\hat{M}_{K^{*}}} V, \quad f_{\|}=\sqrt{2}\left(1+\hat{M}_{K^{*}}\right) A_{1}, \quad f_{0}=\frac{\left(1-\hat{s}-\hat{M}_{K^{*}}^{2}\right)\left(1+\hat{M}_{K^{*}}\right)^{2} A_{1}-\hat{\lambda} A_{2}}{2 \hat{M}_{K^{*}}\left(1+\hat{M}_{K^{*}}\right) \sqrt{\hat{s}}}
$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Subleading corrections to TransAmp's

Low hadronic recoil

> FF symmetry breaking

$$
A_{i}^{L, R}{ }_{\sim} C^{L, R} \times f_{i}+C_{7} \times \mathcal{O}\left(\lambda, \alpha_{s}\right)
$$

$$
C^{L, R}=\left(C_{9} \mp C_{10}\right)+\kappa \frac{2 m_{b}^{2}}{q^{2}} C_{7}
$$

1 SD-coefficient $C^{L, R}$ and 3 FF's $f_{i}(i=\perp, \|, 0)$

$$
C_{7}^{S M} \approx-0.3, C_{9}^{S M} \approx 4.2, C_{10}^{S M} \approx-4.2
$$

$$
f_{\perp}=\frac{\sqrt{2 \hat{\lambda}}}{1+\hat{M}_{K^{*}}} V, \quad f_{\|}=\sqrt{2}\left(1+\hat{M}_{K^{*}}\right) A_{1}, \quad f_{0}=\frac{\left(1-\hat{s}-\hat{M}_{K^{*}}^{2}\right)\left(1+\hat{M}_{K^{*}}\right)^{2} A_{1}-\hat{\lambda} A_{2}}{2 \hat{M}_{K^{*}}\left(1+\hat{M}_{K^{*}}\right) \sqrt{\hat{s}}}
$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Subleading corrections to TransAmp's

Low hadronic recoil

> FF symmetry breaking OPE

$$
A_{i}^{L, R} \sim C^{L, R} \times f_{i}+C_{7} \times \mathcal{O}\left(\lambda, \alpha_{s}\right)+\mathcal{O}\left(\lambda^{2}\right), \quad C^{L, R}=\left(C_{9} \mp C_{10}\right)+\kappa \frac{2 m_{b}^{2}}{q^{2}} C_{7}
$$

1 SD-coefficient $C^{L, R}$ and 3 FF's $f_{i}(i=\perp, \|, 0)$

$$
C_{7}^{S M} \approx-0.3, C_{9}^{S M} \approx 4.2, C_{10}^{S M} \approx-4.2
$$

$$
f_{\perp}=\frac{\sqrt{2 \hat{\lambda}}}{1+\hat{M}_{K^{*}}} V, \quad f_{\|}=\sqrt{2}\left(1+\hat{M}_{K^{*}}\right) A_{1}, \quad f_{0}=\frac{\left(1-\hat{s}-\hat{M}_{K^{*}}^{2}\right)\left(1+\hat{M}_{K^{*}}\right)^{2} A_{1}-\hat{\lambda} A_{2}}{2 \hat{M}_{K^{*}}\left(1+\hat{M}_{K^{*}}\right) \sqrt{\hat{s}}}
$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Subleading corrections to TransAmp's

$\lambda=\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.15$
Low hadronic recoil $\quad \Rightarrow$ small, apart from possible duality violations
FF symmetry breaking OPE

$$
A_{i}^{L, R} \sim C^{L, R} \times f_{i}+C_{7} \times \mathcal{O}\left(\lambda, \alpha_{S}\right)+\mathcal{O}\left(\lambda^{2}\right), \quad C^{L, R}=\left(C_{9} \mp C_{10}\right)+\kappa \frac{2 m_{b}^{2}}{q^{2}} C_{7}
$$

1 SD-coefficient $C^{L, R}$ and 3 FF's $f_{i}(i=\perp, \|, 0)$

$$
C_{7}^{S M} \approx-0.3, C_{9}^{S M} \approx 4.2, C_{10}^{S M} \approx-4.2
$$

$$
f_{\perp}=\frac{\sqrt{2 \hat{\lambda}}}{1+\hat{M}_{K^{*}}} V, \quad f_{\|}=\sqrt{2}\left(1+\hat{M}_{K^{*}}\right) A_{1}, \quad f_{0}=\frac{\left(1-\hat{s}-\hat{M}_{K^{*}}^{2}\right)\left(1+\hat{M}_{K^{*}}\right)^{2} A_{1}-\hat{\lambda} A_{2}}{2 \hat{M}_{K^{*}}\left(1+\hat{M}_{K^{*}}\right) \sqrt{\hat{s}}}
$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Large hadronic recoil

$$
A_{\perp, \|}^{L, R} \sim \pm C_{\perp}^{L, R} \times \xi_{\perp}+\mathcal{O}\left(\alpha_{s}, \lambda\right), \quad A_{0}^{L, R} \sim C_{\|}^{L, R} \times \xi_{\|}+\mathcal{O}\left(\alpha_{s}, \lambda\right)
$$

2 SD-coefficients $C_{\perp, \|}^{L, R}$ and 2 FF's $\xi_{\perp}, \|$

$$
C_{\perp}^{L, R}=\left(C_{9} \mp C_{10}\right)+\frac{2 m_{b} M_{B}}{q^{2}} C_{7}, \quad C_{\|}^{L, R}=\left(C_{9} \mp C_{10}\right)+\frac{2 m_{b}}{M_{B}} C_{7}
$$

Subleading corrections to TransAmp's

$\lambda=\Lambda_{\mathrm{QCD}} / m_{b} \sim 0.15$
Low hadronic recoil $\quad \Rightarrow$ small, apart from possible duality violations
FF symmetry breaking OPE

$$
A_{i}^{L, R} \sim C^{L, R} \times f_{i}+C_{7} \times \mathcal{O}\left(\lambda, \alpha_{S}\right)+\mathcal{O}\left(\lambda^{2}\right), \quad C^{L, R}=\left(C_{9} \mp C_{10}\right)+\kappa \frac{2 m_{b}^{2}}{q^{2}} C_{7}
$$

1 SD-coefficient $C^{L, R}$ and 3 FF's $f_{i}(i=\perp, \|, 0)$

$$
C_{7}^{S M} \approx-0.3, C_{9}^{S M} \approx 4.2, C_{10}^{S M} \approx-4.2
$$

$$
f_{\perp}=\frac{\sqrt{2 \hat{\lambda}}}{1+\hat{M}_{K^{*}}} V, \quad f_{\|}=\sqrt{2}\left(1+\hat{M}_{K^{*}}\right) A_{1}, \quad f_{0}=\frac{\left(1-\hat{s}-\hat{M}_{K^{*}}^{2}\right)\left(1+\hat{M}_{K^{*}}\right)^{2} A_{1}-\hat{\lambda} A_{2}}{2 \hat{M}_{K^{*}}\left(1+\hat{M}_{K^{*}}\right) \sqrt{\hat{s}}}
$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

Large hadronic recoil
\Rightarrow limited, end-point-divergences at $\mathcal{O}(\lambda)$

$$
A_{\perp, \|}^{L, R} \sim \pm C_{\perp}^{L, R} \times \xi_{\perp}+\mathcal{O}\left(\alpha_{s}, \lambda\right), \quad \quad A_{0}^{L, R} \sim C_{\|}^{L, R} \times \xi_{\|}+\mathcal{O}\left(\alpha_{s}, \lambda\right)
$$

2 SD-coefficients $C_{\perp, \|}^{L, R}$ and 2 FF's $\xi_{\perp}, \|$

$$
C_{\perp}^{L, R}=\left(C_{9} \mp C_{10}\right)+\frac{2 m_{b} M_{B}}{q^{2}} C_{7}, \quad C_{\|}^{L, R}=\left(C_{9} \mp C_{10}\right)+\frac{2 m_{b}}{M_{B}} C_{7}
$$

$P_{5}^{\prime} \&$ subleading corrections

tension in $P_{5}^{\prime}: 3.7 \sigma$ for $q^{2} \in[4.3,8.7] \mathrm{GeV}^{2}$ 2.5σ for $q^{2} \in[1.0,6.0] \mathrm{GeV}^{2}$
comparing experiment
[LHCb arXiv:1308.1707] with theory [Descotes-Genon/Hurth/Matias/Virto 1303.5794]
$\Rightarrow 2$ "recipes" used to estimate subleading crr's @ low q^{2} (mainly for FF's)

$P_{5}^{\prime} \&$ subleading corrections

tension in $P_{5}^{\prime}: 3.7 \sigma$ for $q^{2} \in[4.3,8.7] \mathrm{GeV}^{2}$ 2.5σ for $q^{2} \in[1.0,6.0] \mathrm{GeV}^{2}$
comparing experiment
[LHCb arXiv:1308.1707] with theory [Descotes-Genon/Hurth/Matias/Virto 1303.5794]
$\Rightarrow 2$ "recipes" used to estimate subleading crr's
@ low q^{2} (mainly for FF's)

I) Egede/Hurth/Matias/Ramon/Reece arXiv:0807.2589

Introduce "rescaling factor ζ " for each K^{*}-transversity amplitude

$$
A_{0, \perp, \|}^{L / R} \longrightarrow \zeta_{0,1, \|}^{L / R} \times A_{0, \perp, \|} \quad 1-\frac{\Lambda_{\mathrm{QCD}}}{m_{b}} \lesssim \zeta \lesssim 1+\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}
$$

- mimic subleading crr's from A) FF relations and B) $1 / m_{b}$ contr. to ampl.
- can account for q^{2}-dep.: introduce ζ for each q^{2}-bin
- used in most analysis/fits

$P_{5}^{\prime} \&$ subleading corrections

 tension in $P_{5}^{\prime}: 3.7 \sigma$ for $q^{2} \in[4.3,8.7] \mathrm{GeV}^{2}$ 2.5σ for $q^{2} \in[1.0,6.0] \mathrm{GeV}^{2}$comparing experiment
[LHCb arXiv:1308.1707] with theory [Descotes-Genon/Hurth/Matias/Virto 1303.5794]
$\Rightarrow 2$ "recipes" used to estimate subleading crr's
@ low q^{2} (mainly for FF's)

II) Jäger/Martin-Camalich arXiv:1212.2263 (updates in arXiv:1412.3183)

Keep track of subleadig crr.'s to FF-relations ($\xi_{j}=$ universal FF)

$$
F F_{i} \propto \xi_{j}+\alpha_{s} \Delta F F_{i}+a_{i}+b_{i} \frac{q^{2}}{m_{B}^{2}}+\ldots
$$

with a_{i}, b_{i} from spread of nonperturbative FF-calculations (LCSR, quark models ...) a_{i}, b_{i} are $\sim \Lambda_{\mathrm{QCD}} / m_{b}$ and $\triangle F F_{i}$ QCD crr's [Beneke/Feldmann hep-ph/0008255]
"Scheme-dependence" for definition of ξ_{j} in terms of QCD FF's
Scheme 1

$$
\xi_{\perp}^{(1)} \equiv \frac{m_{B}}{m_{B}+m_{K^{*}}} V
$$

$$
\xi_{\|}^{(1)} \equiv \frac{m_{B}+m_{K^{*}}}{2 E} A_{1}-\frac{m_{B}-m_{K^{*}}}{m_{B}} A_{2}
$$

Scheme 2

$$
\xi_{\perp}^{(2)} \equiv T_{1}
$$

$$
\xi_{\|}^{(2)} \equiv \frac{m_{K^{*}}}{E} A_{0}
$$

$P_{5}^{\prime} \&$ subleading corrections

 tension in $P_{5}^{\prime}: 3.7 \sigma$ for $q^{2} \in[4.3,8.7] \mathrm{GeV}^{2}$ 2.5σ for $q^{2} \in[1.0,6.0] \mathrm{GeV}^{2}$ comparing experiment[LHCb arXiv:1308.1707] with theory [Descotes-Genon/Hurth/Matias/Virto 1303.5794]
$\Rightarrow 2$ "recipes" used to estimate subleading crr's
@ low q^{2} (mainly for FF's)

III) Descotes-Genon/Hofer/Matias/Virto arXiv:1407.8526 Update of method II) \Rightarrow find smaller subleading FF corrections, contrary to II)
parametric + subleading $1 / m_{b}$

- use LCSR results of FF's to estimate subleading $1 / m_{b}$ contributions \Rightarrow typically $\lesssim 10 \%$
- contrary to II), do not fix central values of subleading contributions to zero, obtain them from fit
contrary to II), use q^{2}-dep. of $\xi_{\perp, \|}$ as given by
LCSR result of QCD FF's, do not use q^{2}-dep.
predicted by power count. in $m_{b} \rightarrow \infty$ limit
contrary to II), use q^{2}-dep. of $\xi_{\perp, \|}$ as given by
LCSR result of QCD FF's, do not use q^{2}-dep. as
predicted by power count. in $m_{b} \rightarrow \infty$ limit
contrary to II), use q^{2}-dep. of $\xi_{\perp, \|}$ as given
LCSR result of QCD FF's, do not use q^{2}-d
predicted by power count. in $m_{b} \rightarrow \infty$ limit
- Scheme 1 better for observables sensitive to $C_{9,10}$, $\bar{c} c$ estimate Scheme 2 for observables ~ C_{7}

Angular analysis and "real life"

When aiming at precision measurements in $B \rightarrow K^{*}(\rightarrow K \pi) \bar{\ell} \ell$ (P-wave config)

- inclusion of resonant and non-resonant $K \pi$ (in S-wave config) important in experiments
\Rightarrow additional contributions to angular distribution
$\Rightarrow P$ - and S-wave can be disentangled in angular analysis
\Rightarrow taken into account by LHCb and CMS
[Lu/Wang arXiv:1111.1513, Becirevic/Tayduganov 1207.4004, Blake/Egede/Shires 1210.5279, Matias 1209.1525]

Angular analysis and "real life"

When aiming at precision measurements in $B \rightarrow K^{*}(\rightarrow K \pi) \bar{\ell} \ell$ (P-wave config)

- inclusion of resonant and non-resonant $K \pi$ (in S-wave config) important in experiments
\Rightarrow additional contributions to angular distribution
$\Rightarrow P$ - and S-wave can be disentangled in angular analysis
\Rightarrow taken into account by LHCb and CMS
[Lu/Wang arXiv:1111.1513, Becirevic/Tayduganov 1207.4004, Blake/Egede/Shires 1210.5279, Matias 1209.1525]

Extended angular analysis

- $B \rightarrow K \pi \bar{\ell} \ell$ off-resonance ($m_{K \pi}^{2} \neq m_{K^{*}}^{2}$) at high- q^{2}
$\frac{\mathrm{d}^{4} \Gamma}{\mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi} \longrightarrow \frac{\mathrm{~d}^{5} \Gamma}{\mathrm{~d} m_{K \pi}^{2} \mathrm{~d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}$
\Rightarrow include contributions from S_{-}, P_{-}, and D-wave
\Rightarrow provide access to further combinations of Wilson coefficients
\Rightarrow probe strong phase differences with resonant contribution
\Rightarrow analogously for $B_{s} \rightarrow \bar{K} K \bar{\ell} \ell$
- complementary constraints from angular analysis of $\Lambda_{b} \rightarrow \Lambda \bar{\ell} \ell$

Angular analysis of $B \rightarrow K \bar{\ell} \ell$

Besides $d \Gamma / d q^{2}$, two more obs's measured

LHCb 3/fb arXiv:1403.8045

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{\ell}}=\frac{F_{H}}{2}+A_{\mathrm{FB}} \cos \theta_{\ell}+\frac{3}{4}\left[1-F_{H}\right] \sin ^{2} \theta_{\ell}
$$

In the SM:

- $F_{H} \sim m_{\ell}^{2} / q^{2}$ tiny for $\ell=e, \mu$ and reduced FF uncertainties @ low- \& high- q^{2}

CB/Hiller/Piranishvili arXiv:0709.4174, CB/Hiller/van Dyk/Wacker arXiv:1111.2558

- $A_{\mathrm{FB}} \simeq 0+\mathcal{O}\left(\alpha_{e}\right)+\mathcal{O}(\operatorname{dim}-8) \quad$ up to "QED-background" \& higher dim. m_{b}^{2} / m_{W}^{2}

Beyond SM: test scalar \& tensor operators
CB/Hiller/Piranishvili arXiv:0709.4174

- $F_{H} \sim\left|C_{T}\right|^{2}+\left|C_{T 5}\right|^{2}+\mathcal{O}\left(m_{\ell}\right)$
- $A_{\mathrm{FB}} \sim\left(C_{S}+C_{S^{\prime}}\right) C_{T}+\left(C_{P}+C_{P^{\prime}}\right) C_{T 5}+\mathcal{O}\left(m_{\ell}\right)$

Angular analysis of $B \rightarrow K \bar{\ell} \ell$

Besides $d \Gamma / d q^{2}$, two more obs's measured

LHCb 3/fb arXiv:1403.8045

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{\ell}}=\frac{F_{H}}{2}+A_{\mathrm{FB}} \cos \theta_{\ell}+\frac{3}{4}\left[1-F_{H}\right] \sin ^{2} \theta_{\ell}
$$

In the SM:

- $F_{H} \sim m_{\ell}^{2} / q^{2}$ tiny for $\ell=e, \mu$ and reduced FF uncertainties @ low- \& high- q^{2}

CB/Hiller/Piranishvili arXiv:0709.4174, CB/Hiller/van Dyk/Wacker arXiv:1111.2558

- $A_{\mathrm{FB}} \simeq 0+\mathcal{O}\left(\alpha_{e}\right)+\mathcal{O}(\operatorname{dim}-8) \quad$ up to "QED-background" \& higher dim. m_{b}^{2} / m_{W}^{2}

Beyond SM: test scalar \& tensor operators
CB/Hiller/Piranishvili arXiv:0709.4174

- $F_{H} \sim\left|C_{T}\right|^{2}+\left|C_{T 5}\right|^{2}+\mathcal{O}\left(m_{\ell}\right)$
- $A_{\mathrm{FB}} \sim\left(C_{S}+C_{S^{\prime}}\right) C_{T}+\left(C_{P}+C_{P^{\prime}}\right) C_{T 5}+\mathcal{O}\left(m_{\ell}\right)$

Lepton-flavour violating (LFV) effects: generalise $C_{i} \rightarrow C_{i}^{\ell}$!!!
Take ratios of observables for $\ell=\mu$ over $\ell=e($ or $\ell=\tau)$

Krüger/Hiller hep-ph/0310219
CB/Hiller/Piranishvili arXiv:0709.4174

$$
R_{M}^{\left[q_{\min }^{2}, q_{\max }^{2}\right]}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma[B \rightarrow M \bar{\mu} \mu]}{d q^{2}}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma[B \rightarrow M \bar{e} e]}{d q^{2}}}
$$

for $M=K, K^{*}, X_{s}$

Angular analysis of $B \rightarrow K \bar{\ell} \ell$

Besides $d \Gamma / d q^{2}$, two more obs's measured

LHCb 3/fb arXiv:1403.8045

$$
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{\ell}}=\frac{F_{H}}{2}+A_{\mathrm{FB}} \cos \theta_{\ell}+\frac{3}{4}\left[1-F_{H}\right] \sin ^{2} \theta_{\ell}
$$

In the SM:

- $F_{H} \sim m_{\ell}^{2} / q^{2}$ tiny for $\ell=e, \mu$ and reduced FF uncertainties @ low- \& high- q^{2}

CB/Hiller/Piranishvili arXiv:0709.4174, CB/Hiller/van Dyk/Wacker arXiv:1111.2558

- $A_{\mathrm{FB}} \simeq 0+\mathcal{O}\left(\alpha_{e}\right)+\mathcal{O}(\operatorname{dim}-8) \quad$ up to "QED-background" \& higher dim. m_{b}^{2} / m_{W}^{2}

Beyond SM: test scalar \& tensor operators
CB/Hiller/Piranishvili arXiv:0709.4174

- $F_{H} \sim\left|C_{T}\right|^{2}+\left|C_{T 5}\right|^{2}+\mathcal{O}\left(m_{\ell}\right)$
- $A_{\mathrm{FB}} \sim\left(C_{S}+C_{S^{\prime}}\right) C_{T}+\left(C_{P}+C_{P^{\prime}}\right) C_{T 5}+\mathcal{O}\left(m_{\ell}\right)$

Lepton-flavour violating (LFV) effects: generalise $C_{i} \rightarrow C_{i}^{\ell}!!!$

Take ratios of observables for $\ell=\mu$ over $\ell=e($ or $\ell=\tau)$
Krüger/Hiller hep-ph/0310219
\Rightarrow FF's cancel in SM up to $\mathcal{O}\left(m_{\ell}^{4} / q^{4}\right) @$ low- q^{2}
CB/Hiller/Piranishvili arXiv:0709.4174

$$
R_{M}^{\left[q_{\min }^{2}, q_{\max }^{2}\right]}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma[B \rightarrow M \bar{\mu} \mu]}{d q^{2}}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} d q^{2} \frac{d \Gamma[B \rightarrow M \bar{e} e]}{d q^{2}}}
$$

for $M=K, K^{*}, X_{s}$

Recent measurement of

$$
R_{K}^{[1,6]}=0.745_{-0.074}^{+0.090} \pm 0.036
$$

LHCb 3/fb arXiv:1406.6482 deviates by 2.6σ from SM

$$
R_{K, S M}^{[1,6]}=1.0008 \pm 0.0004
$$

Bouchard et al. arxiv:1303.0434

$B_{s} \rightarrow \bar{\mu} \mu$ at higher order in the Standard Model - I

Motivation

Th: test of the SM at loop-level (FCNC decay)
\Rightarrow only hadronic uncertainty from $B_{d, s}$ decay constant additional helicity suppression
\Rightarrow sensitivity to beyond-SM (pseudo-) scalar interactions
Exp: important B-decay @ LHCb, CMS \& ATLAS

$$
\begin{align*}
& \overline{\mathcal{B}}\left(B_{s} \rightarrow \bar{\mu} \mu\right)_{\text {Exp }}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9} \\
& \overline{\mathcal{B}}\left(B_{d} \rightarrow \bar{\mu} \mu\right)_{\text {Exp }}=\left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10} \\
& \quad \Rightarrow \text { exp. prospects: } \sim 5 \% \text { error with } 50 \mathrm{fb}^{-1} @ \text { LHCb }
\end{align*}
$$

$B_{s} \rightarrow \bar{\mu} \mu$ at higher order in the Standard Model - I

Motivation

Th: test of the SM at loop-level (FCNC decay)
\Rightarrow only hadronic uncertainty from $B_{d, s}$ decay constant additional helicity suppression
\Rightarrow sensitivity to beyond-SM (pseudo-) scalar interactions
Exp: important B-decay @ LHCb, CMS \& ATLAS

$$
\begin{align*}
& \overline{\mathcal{B}}\left(B_{s} \rightarrow \bar{\mu} \mu\right)_{\operatorname{Exp}}=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9} \\
& \overline{\mathcal{B}}\left(B_{d} \rightarrow \bar{\mu} \mu\right)_{\operatorname{Exp}}=\left(3.9_{-1.4}^{+1.6}\right) \times 10^{-10} \\
& \quad \Rightarrow \text { exp. prospects: } \sim 5 \% \text { error with } 50 \mathrm{fb}^{-1} @ \text { LHCb }
\end{align*}
$$

NLO electroweak (EW) corrections

[CB/Gorbahn/Stamou arXiv:1311.1348]
!!! LO EW theory unc.: $\gtrsim 7 \% \quad$ [Buras et al. arXiv:1208.0934] (from different EW renormalization schemes)

- NLO EW matching ($\mu_{0} \sim 160 \mathrm{GeV}$) in 3 different schemes \Rightarrow convergence: $0.3 \% ~ \lesssim$ deviation
- size of NLO correction: ~ (3...5)\% (dep on μ_{0})
- resummation of NLO QED logarithms from $\mu_{0} \rightarrow \mu_{b} \sim 5 \mathrm{GeV}$: residual μ_{b}-dep. $\lesssim 0.3 \%$

reduced EW uncertainty
@ LO:
7\%
@ NLO: 0.6\%
$\approx \quad 7 \%$

$B_{s} \rightarrow \bar{\mu} \mu$ at higher order in the Standard Model - II

- NNLO QCD crrs. reduce μ_{0}-dep. from 1.8% at NLO $\rightarrow 0.2 \%$ at NNLO
[Hermann/Misiak/Steinhauser arXiv:1311.1347]

$B_{s} \rightarrow \bar{\mu} \mu$ at higher order in the Standard Model - II

- NNLO QCD crrs. reduce μ_{0}-dep. from 1.8% at NLO $\rightarrow 0.2 \%$ at NNLO
[Hermann/Misiak/Steinhauser arXiv:1311.1347]

Standard Model predictions @ (NLO EW + NNLO QCD)

$$
\begin{aligned}
& \overline{\mathcal{B}}\left(B_{S} \rightarrow \bar{\mu} \mu\right)_{\mathrm{SM}}=(3.65 \pm 0.23) \times 10^{-9} \\
& \overline{\mathcal{B}}\left(B_{d} \rightarrow \bar{\mu} \mu\right)_{\mathrm{SM}}=(1.06 \pm 0.09) \times 10^{-10}
\end{aligned}
$$

[CB/Gorbahn/Hermann/Misiak/Stamou/Steinhauser arXiv:1311.0903]
Error budget

	$f_{B_{q}}$	CKM	τ_{H}^{q}	M_{t}	α_{s}	other param.	non- param.	\sum
$\overline{\mathcal{B}}_{s \mu}$	4.0%	4.3%	1.3%	1.6%	0.1%	$<0.1 \%$	1.5%	6.4%
$\overline{\mathcal{B}}_{d \mu}$	4.5%	6.9%	0.5%	1.6%	0.1%	$<0.1 \%$	1.5%	8.5%

Non-parametric uncertainties:

- 0.3% from $\mathcal{O}\left(\alpha_{e m}\right)$ corrections from $\mu_{b} \in\left[m_{b} / 2,2 m_{b}\right]$
- $2 \times 0.2 \%$ from $\mathcal{O}\left(\alpha_{s}^{3}, \alpha_{e m}^{2}, \alpha_{s} \alpha_{e m}\right)$ matching corrections from $\mu_{0} \in\left[m_{t} / 2,2 m_{t}\right]$
- 0.3% from top-mass conversion from on-shell to $\overline{\mathrm{MS}}$ scheme
- 0.5% further uncertainties (power corrections $\mathcal{O}\left(m_{b}^{2} / M_{W}^{2}\right), \ldots$)

[^0]: C. Bobeth

