New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

in collaboration with

Joachim Brod, Alexander Lenz, Gilberto Tetlalmatzi-Xolocotzi

based on [arXiv:1412.1446]

February 2015, Karlsruhe

Determination of γ

The CKM angle γ is measured in $B \rightarrow DK$ decays.

Current experimental value (LHCb):

$$\gamma = (73 \pm 10)^{\circ}$$

Expected sensitivity at Belle II:

$$\Delta \gamma = 1^{\circ}$$
 [arXiv:1011.0352]

Theoretical uncertainty due to higher order electroweak corrections (in the SM):

$$rac{\Delta \gamma}{\gamma} < 10^{-7}$$
 [JHEP 1401 (2014) 051]

 \Rightarrow What about new physics?

New Physics in Tree-Level Decays and the CKM Angle γ

GLW Method

New Physics in Tree-Level Decays and the CKM Angle γ

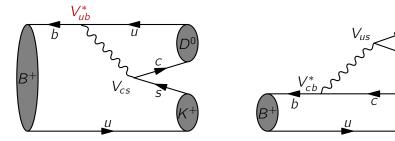
Martin Wiebusch

$$\begin{split} B^+ &\to D^0 K^+, \ \bar{D}^0 K^+, \ D^0_1 K^+ \\ B^- &\to D^0 K^-, \ \bar{D}^0 K^-, \ D^0_1 K^- \\ D^0_1 &= \frac{1}{\sqrt{2}} (D^0 + \bar{D}^0) \end{split}$$

Decay rates into all three final states can be measured separately.

$$B^+ \rightarrow D^0 K^+$$

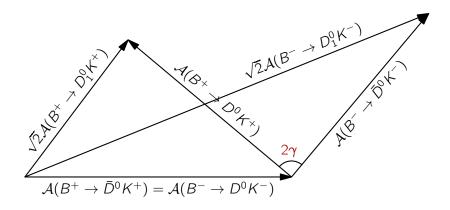
$$B^+ \rightarrow \bar{D}^0 K^+$$



GLW Method

New Physics in Tree-Level Decays and the CKM Angle γ

$$\begin{aligned} \arg \mathcal{A}(B^+ \to D^0 \mathcal{K}^+) &= \delta + \boldsymbol{\gamma} \quad , \quad \arg \mathcal{A}(B^- \to \bar{D}^0 \mathcal{K}^-) = \delta - \boldsymbol{\gamma} \\ \mathcal{A}(B^+ \to \bar{D}^0 \mathcal{K}^+) &= \mathcal{A}(B^- \to D^0 \mathcal{K}^-) \\ \sqrt{2}\mathcal{A}(B^\pm \to D_1^0 \mathcal{K}^\pm) &= \mathcal{A}(B^\pm \to D^0 \mathcal{K}^\pm) + \mathcal{A}(B^\pm \to \bar{D}^0 \mathcal{K}^\pm) \end{aligned}$$



Weak Effective Hamiltonian

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

$$\mathcal{H}_{eff}^{\bar{u}_{i}u_{j}d_{k}} = \frac{G_{F}}{\sqrt{2}} V_{u_{i}b} V_{u_{j}d_{k}}^{*} [C_{1}^{\bar{u}_{i}u_{j}d_{k}} Q_{1}^{\bar{u}_{i}u_{j}d_{k}} + C_{2}^{\bar{u}_{i}u_{j}d_{k}} Q_{2}^{\bar{u}_{i}u_{j}d_{k}} + C_{3}^{\bar{u}_{i}u_{j}d_{k}} Q_{3}^{\bar{u}_{i}u_{j}d_{k}} + \dots]$$

Tree level operators:

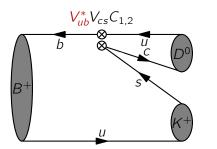
$$\begin{aligned} Q_1^{\bar{u}_i u_j d_k} &= (\bar{u}_i^{\alpha} b^{\beta})_{V-A} (\bar{d}_k^{\beta} u_j^{\alpha})_{V-A} \\ Q_2^{\bar{u}_i u_j d_k} &= (\bar{u}_i^{\alpha} b^{\alpha})_{V-A} (\bar{d}_k^{\beta} u_j^{\beta})_{V-A} \end{aligned}$$

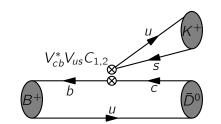
In theories without FCNCs the penguin operators Q_3 , Q_4 , ... are loop induced and absent for $i \neq j$.

New Physics in γ Measurement

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch





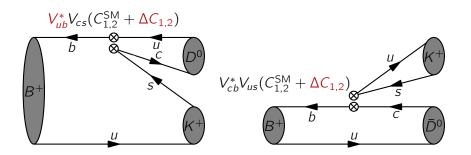
The determination of γ is unaffected by new physics as long as

- no penguin operators are induced by new physics and
- C_1 and C_2 are real.

New Physics in γ Measurement

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch



The determination of γ is unaffected by new physics as long as

- no penguin operators are induced by new physics and
- C_1 and C_2 are real.
- \Rightarrow What do we really know about C_1 and C_2 experimentally?

Universality

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Assume universal Wilson coefficients

$$C_1^{\bar{u}_i u_j d_k} \equiv C_1$$
 , $C_2^{\bar{u}_i u_j d_k} \equiv C_2$ for all $i, j, k \in \{1, 2\}$.

and use

$$b \rightarrow \bar{u}ud$$
, $\bar{c}ud$, $\bar{c}ud$, $\bar{c}cd$,...

transitions to constrain C_1 and C_2 .

Most relevant observables are already discussed in [arXiv:1404.2531].

Observables (I)

• $b \rightarrow \bar{u}ud$:

- decay rates for $B \to \pi \pi$, $\rho \pi$, $\rho \rho$, $(R_{\pi^+\pi^0}, R_{\rho^-\rho^0/\rho^+\rho^-})$,
- mixing induced *CP* asymmetries in $B \to \pi\pi$, $\rho\pi$ $(S_{\pi^+\pi^-}, S_{\rho\pi})$,
- $b \rightarrow \bar{c}ud$, $\bar{u}cd$:

- decay rate for
$$B^0
ightarrow D^{*+} \pi^ (R_{D^{*+}\pi^-})$$
,

- indirect *CP* asymmetries for $B^0 \rightarrow D^{(*)0}h^0$ $(S_{D^*h^0}, h^0 = \pi^0, \eta, \omega),$

Theory formulae based on QCD factorisation.

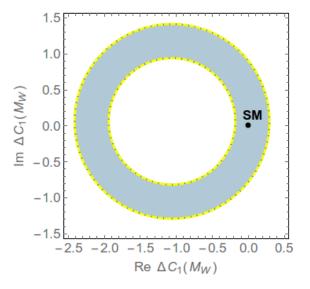
New Physics in Tree-Level Decays and the CKM Angle γ

Observables (II)

- $b \rightarrow \bar{c}cd$:
 - Br $(B
 ightarrow X_d \gamma)$,
 - $\sin(2\beta_d)$ from $B \rightarrow J/\psi K_S$,
 - semileptonic asymmetry a_{sl}^d ,
- $b \rightarrow \bar{c}cs$:
 - Br $(B \rightarrow X_s \gamma)$,
 - semileptonic asymmetry a_{sl}^s ,
- $b \rightarrow$ anything:
 - total *B* meson lifetime $\Gamma_{B,tot}$,
 - B_s lifetime difference $\Delta\Gamma_s$.

New Physics in Tree-Level Decays and the CKM Angle γ

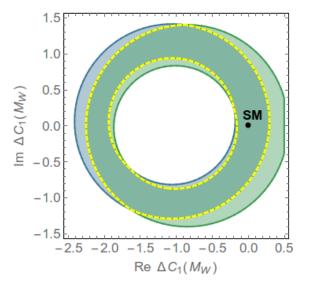
University of Durham



New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from $R_{\pi^+\pi^0}$



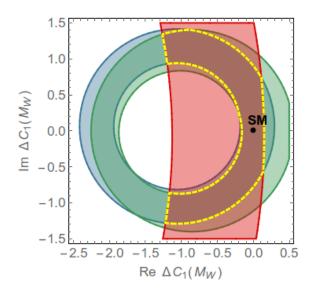
New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from $R_{\rho^-\rho^0/\rho^+\rho^-}$

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch



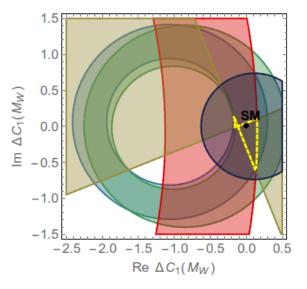
Constraint from $R_{D^{*+}\pi^{-}}$

1.5 1.0 0.5 0.0 ∇ U(*M*^M) 0.0 E -0.5 0.5 SM -1.0-1.5-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 Re $\Delta C_1(M_W)$

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from $S_{D^*h^0}$



New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from $\Gamma_{B,tot}$

1.5 1.0 0.5 0.0 0.0 0.0 0.5 0.5 SM -1.0 -1.5-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 Re $\Delta C_1(M_W)$

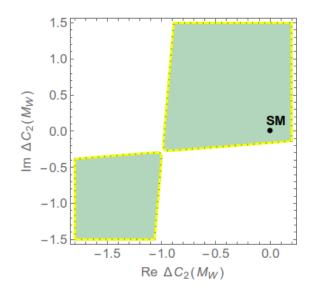
New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from a_{sl}^d

New Physics in Tree-Level Decays and the CKM Angle γ

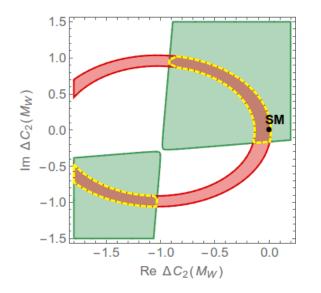
Martin Wiebusch



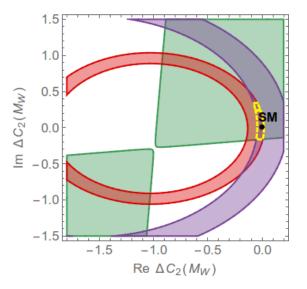
Constraint from $S_{\pi^+\pi^-}$

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch



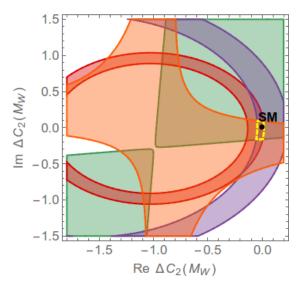
Constraint from $R_{D^{*+}\pi^-}$



New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from $Br(B \rightarrow X_s \gamma)$



New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

Constraint from a_{sl}^d

Determination of γ

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

 γ is determined from the amplitude ratio

$$\frac{\mathcal{A}(B^- \to \bar{D}^0 K^-)}{\mathcal{A}(B^- \to D^0 K^-)} = \frac{\mathcal{A}(B^- \to \bar{D}^0 K^-)}{\mathcal{A}(B^- \to D^0 K^-)}\Big|_{\text{SM}} \cdot \left[1 + (r_{A'} - r_A)\frac{\Delta C_1}{C_2}\right]$$

with

$$r_{A} = \frac{\langle D^{0}K^{-}|Q_{1}^{\bar{c}us}|B^{-}\rangle}{\langle D^{0}K^{-}|Q_{2}^{\bar{c}us}|B^{-}\rangle} \quad , \quad r_{A'} = \frac{\langle \bar{D}^{0}K^{-}|Q_{1}^{\bar{u}cs}|B^{-}\rangle}{\langle \bar{D}^{0}K^{-}|Q_{2}^{\bar{u}cs}|B^{-}\rangle}$$

Consequently

$$\gamma_{\rm exp} = \gamma_{\rm SM} + (r_{\rm A} - r_{\rm A'}) \frac{{\rm Im}\,\Delta C_1}{C_2} \equiv = \gamma_{\rm SM} + \delta\gamma$$

New Physics in γ

New Physics in Tree-Level Decays and the CKM Angle γ

Martin Wiebusch

We don't know the value of $r_A - r_{A'}$ very well.

Colour counting:

$$r_A = \mathcal{O}(1)$$
 , $r_{A'} = \mathcal{O}(3)$

Naive factorisation:

$$r_A \approx \frac{f_D F_0^{B \to K}(0)}{f_K F_0^{B \to D}(0)} \approx 0.4$$
 , $r_{A'} = ??$

Tentatively using $r_A - r_{A'} = -0.6$ we find allowed region for $\delta \gamma$:

$$|\delta m \gamma| \lesssim 4^\circ$$

Conclusions

• The determination of γ can be "contaminated" by new physics in the Wilson coefficients C_1 and C_2 .

$$\delta \gamma = (r_A - r_{A'}) \frac{\mathrm{Im}\,\Delta C_1}{C_2}$$

- The hadronic ratios r_A and $r_{A'}$ have very large theoretical uncertainties.
- Current data from tree-level B decays still allows new physics effects in the Wilson coefficients C₁ and C₂ of the order of 10%.
- This corresponds to $|\delta\gamma| \approx 4^{\circ}$ (with a large theoretical uncertainty due to r_A and $r_{A'}$).

New Physics in Tree-Level Decays and the CKM Angle γ

Global Fits with myFitter

Definition of *p*-Values

- Consider model with parameters $\vec{\omega} \in \Omega$ and observables $\vec{x} \in \mathbb{R}^n$,
- described by probability density $f(\vec{x}, \vec{\omega})$.
- Null hypothesis: $\omega \in \Omega_0 \subset \Omega$.
- Define test statistic

$$\Delta \chi^{2}(\vec{x}) = -2 \ln \frac{\max_{\vec{\omega} \in \Omega_{0}} f(\vec{x}, \vec{\omega})}{\max_{\vec{\omega} \in \Omega} f(\vec{x}, \vec{\omega})}$$

.

.

• For observed data $\vec{x_0}$

$$p = \max_{\vec{\omega}\in\Omega_0} \Pr(\Delta\chi^2(\vec{X}) > \Delta\chi^2(\vec{x}_0) | \vec{X} \sim f(\cdot, \vec{\omega}))$$
$$= \max_{\vec{\omega}\in\Omega_0} \int d^n \vec{x} f(\vec{x}, \vec{\omega}) \theta(\Delta\chi^2(\vec{x}) - \Delta\chi^2(\vec{x}_0))$$

New Physics in Tree-Level Decays and the CKM Angle γ

Wilks' Theorem

The asymptotic formula

$$p = Q(\frac{k}{2}, \frac{1}{2}\Delta\chi^2(\vec{x}_0))$$

holds exactly only for linear regression models, i.e.

$$f(\vec{x}, \vec{\omega}) \propto \exp[-\frac{1}{2}(\vec{\mu}(\vec{\omega}) - \vec{x})^{\mathsf{T}} \Sigma^{-1}(\vec{\mu}(\vec{\omega}) - \vec{x})]$$

with

- Σ fixed,
- $\vec{\mu}(\vec{\omega}) = C\vec{\omega} + \vec{b}$ and C, \vec{b} fixed,
- $\Omega = \mathbb{R}^{p}$.

New Physics in Tree-Level Decays and the CKM Angle γ

Wilks' Theorem

The asymptotic formula

$$p = Q(\frac{k}{2}, \frac{1}{2}\Delta\chi^2(\vec{x}_0))$$

holds exactly only for linear regression models, i.e.

$$f(\vec{x}, \vec{\omega}) \propto \exp[-\frac{1}{2}(\vec{\mu}(\vec{\omega}) - \vec{x})^{\mathsf{T}} \Sigma^{-1}(\vec{\mu}(\vec{\omega}) - \vec{x})]$$

with

- Σ fixed,
- $\vec{\mu}(\vec{\omega}) = C\vec{\omega} + \vec{b}$ and C, \vec{b} fixed (never true in BSM fits),
- $\Omega = \mathbb{R}^{p}$ (not true in presence of theoretical constraints).

p. 17.2

New Physics in Tree-Level Decays and the CKM Angle γ

Non-nested Models: The Case of the SM4

- Add a sequential 4-th generation to the SM.
- Chiral fermions do not decouple.
- \Rightarrow SM is not a limiting case of SM4.
- \Rightarrow The parameter space Ω is not a vector space.

 $\Omega = \Omega_{\mathsf{SM}} \sqcup \Omega_{\mathsf{SM4}}$

• The *p*-value is very small ($\mathcal{O}(10^{-7})$), mostly because of Higgs data.

New Physics in Tree-Level Decays and the CKM Angle γ

Computing the *p*-Value

• Use the bootstrap *p*-value

$$\hat{\rho} = \int d^n \vec{x} f(\vec{x}, \hat{\vec{\omega}}_0) \theta(\Delta \chi^2(\vec{x}) - \Delta \chi^2(\vec{x}_0))$$

 $\hat{\vec{\omega}}_0$: maximum likelihood estimate of $\vec{\omega}$ under the null hypothesis $\vec{\omega}\in\Omega_0$

- Compute the integral numerically with importance sampling method.
- Choose sampling density $\rho(\vec{x})$ which samples the linearised model perfectly.
- \Rightarrow Speeds up the computation for the SM4 by factor 100 to 1000.

New Physics in Tree-Level Decays and the CKM Angle γ

*my*Fitter

This method is implemented in the public code myFitter, which

- is a model-independent framework for maximum likelihood fits and numerical *p*-value computations,
- supports parallelised integration,
- is available in a C++ version (complete with a manual and examples)
- and a Python version with better support for non-linear constraints (documentation is work in progress).

More details in [arXiv:1207.1446] and on

```
http://myfitter.hepforge.org
```

New Physics in Tree-Level Decays and the CKM Angle γ

Conclusions (*p*-Values)

New Physics in Tree-Level Decays and the CKM Angle γ

University of Durham

- $p = Q(\frac{k}{2}, \frac{1}{2}\Delta\chi^2)$ is an approximation.
- The approximation can be very bad in realistic BSM models (especially for non-decoupling models).
- Toy simulations become unfeasible for small *p*-values.
- Importance sampling techniques as implemented in *my*Fitter can speed things up considerably.