# Phenomenology of $\mathrm{B} \rightarrow K \pi \pi$ modes and Prospects with LHCb and Belle-ll data 

Alejandro Pérez Pérez<br>IPHC - CNRS Strasbourg

On behalf of the CKMfitter Group



CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

## Outline

- Amplitude analyses

The phenomenological framework
a Some theoretical scenarios for constraining CKM
a Constraints on hadronic amplitudes using the latest $B \rightarrow K * \pi$ measurements
a Prospects for future LHCb and Belle-II data
a Summary and outlook

## Amplitude Analyses

## Dalitz Plot (DP)

Three body decays described by two parameters
Mandelstam variables $m_{i j}^{2}=\left(p_{i}+p_{j}\right)^{2}$


Kinematic boundary


$$
P \rightarrow P_{\text {res }}+p_{3}
$$

$$
P_{\text {res }} \rightarrow p_{1}+p_{2}
$$

(Distribution around resonance mass)

## Amplitude Analyses: Parametrization

## Parametrizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model $\left\{\begin{array}{l}A(D P)=\sum a_{j} F_{j}(D P) \\ \bar{A}(D P)=\sum \bar{a}_{j} \bar{F}_{j}(D P)\end{array}\right.$

## Amplitude Analyses: Parametrization

## Parametrizing Decay amplitude using Isobar Model:



Isobar amplitudes:
Weak phases information

## Amplitude Analyses: Parametrization

## Parametrizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model $\left\{\begin{array}{l}A(D P)=\sum a_{j} \bar{F}_{j}(D P) \\ \bar{A}(D P)=\sum \bar{a}_{j} \bar{F}_{j}(D P)\end{array}\right.$

Shapes of intermediate states over DP

$$
F_{j}^{L}(D P)=R_{j}(m) \times X_{L}\left(\left|\vec{p}^{\star}\right| r\right) \times X_{L}(|\vec{q}| r) \times T_{j}(L, \vec{p}, \vec{q}
$$

Line-shape
Kinematic part
Relativistic Breit-Wigner: K*(892) $\boldsymbol{\pi}$

Flatté:
Gounaris-Sakurai: $\quad \mathrm{P}$ (770)K
S-wave K $\pi$ :
Non-resonant:
Other contributions:
$\mathrm{f}_{0}(980) \mathrm{K}$

LASS
Different parameterizations

## Amplitude Analyses: Parametrization

## Parametrizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model $\left\{\begin{array}{l}A(D P)=\sum a_{j} F_{j}(D P) \\ \bar{A}(D P)=\sum \bar{a}_{j} \bar{F}_{j}(D P)\end{array}\right.$

## Time-dependent DP PDF ( $|q / p|=1$ )

$\begin{aligned} f\left(\Delta t, D P, q_{\text {tag }}\right) \propto & \left(|A|^{2}+|\bar{A}|^{2}\right) \frac{e^{-|\Delta t| / \tau}}{4 \tau} \\ & \left(1+q_{\text {tag }} \frac{2 \mathcal{I} m\left[(q / p) \bar{A} A^{*}\right]}{|A|^{2}+|\bar{A}|^{2}} \sin \left(\Delta m_{d} \Delta t\right)-q_{\text {tag }} \frac{|A|^{2}-|\bar{A}|^{2}}{|A|^{2}+|\bar{A}|^{2}} \cos \left(\Delta m_{d} \Delta t\right)\right) \\ & \frac{\text { mixing and decay CPV }}{\text { Direct CPV }}\end{aligned}$
Only different from zero for final states accessible to both $\mathrm{B}^{0}$ and $\overline{\mathrm{B}^{0}}$

$$
\text { (e.g. } \mathbf{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-} \text {) }
$$

## Amplitude Analyses: Parametrization

## Parametrizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model $\left\{\begin{array}{l}A(D P)=\sum a_{j} F_{j}(D P) \\ \bar{A}(D P)=\sum \bar{a}_{j} \bar{F}_{j}(D P)\end{array}\right.$

Time-dependent DP PDF ( $|q / p|=1$ )
Sensitivity to phase difference between amplitudes in the same DP plane (B or $\bar{B}$ )

# $f\left(\Delta t, D P, q_{\mathrm{tag}}\right) \propto\left(|A|^{2}+|\bar{A}|^{2}\right) \frac{e^{-|\Delta t| / \tau}}{4}$ 



Sensitivity to phase differences between $a_{j}$ and $\bar{a}_{j}$ amplitudes Includes q/p mixing phase

## Amplitude Analyses: Parametrization

## Parametrizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model $\left\{\begin{array}{l}A(D P)=\sum a_{j} F_{j}(D P) \\ \bar{A}(D P)=\sum \bar{a}_{j} \bar{F}_{j}(D P)\end{array}\right.$

## Time-dependent DP PDF ( $|q / p|=1$ )

$$
\begin{aligned}
f\left(\Delta t, D P, q_{\text {tag }}\right) \propto & \left(|A|^{2}+|\bar{A}|^{2}\right) \frac{e^{-|\Delta t| / \tau}}{4 \tau} \\
& \left(1+q_{\text {tag }} \frac{2 \mathcal{I} m\left[(q / p) \bar{A} A^{*}\right]}{|A|^{2}+|\bar{A}|^{2}} \sin \left(\Delta m_{d} \Delta t\right)-q_{\text {tag }} \frac{|A|^{2}-|\bar{A}|^{2}}{|A|^{2}+|\bar{A}|^{2}} \cos \left(\Delta m_{d} \Delta t\right)\right) \\
& \text { mixing and decay CPV }
\end{aligned}
$$

Complex amplitudes $a_{j}$ and $\bar{a}_{j}$ determine DP interference pattern. Modules and phases can be directly fitted on data

## Amplitude Analyses: What can be measured?

a Any function of the isobar parameters which does not depend on conventions is a physical observable
a Examples

- Direct CP-asymmetries:

$$
\begin{aligned}
& A_{C P}^{j}=\frac{\left|\bar{a}_{j}\right|^{2}-\left|a_{j}\right|^{2}}{\left|\overline{a_{j}}\right|^{2}+\left|a_{j}\right|^{2}} \\
& B_{j} \propto \iint\left(\left|a_{j}\right|^{2}+\left|\bar{a}_{j}\right|^{2}\right) F_{j}(D P) d D P
\end{aligned}
$$

- Branching Fractions:
- Phase differences in the same $B$ or $\bar{B} D P:$

$$
\varphi_{i j}=\arg \left(a_{i} / a_{j}\right) \quad \bar{\varphi}_{i j}=\arg \left(\bar{a}_{i} / \bar{a}_{j}\right)
$$

- Phase differences between B and $\overline{\mathrm{B}} \mathrm{DP}: \Delta \varphi_{j}=\arg \left(\bar{a}_{j} / a_{j}\right)$
a All amplitude analyses should provide the complete set of isobar parameters together with the full statistical and systematic covariance matrices
a This allows to properly use all the available experimental information and to correctly interpret the results


## Amplitude Analyses: the signal model

a Isobar model needs predefined list of components with their lineshapes: signal model
a No straightforward way of determining the signal model from theory
a The signal model is mainly determined from data

- Use previous experimental results to come out with a smart guess of this predefined list
$\Rightarrow$ Raw Signal Model (RSM)
- Use the data to test for additional contributions which could eventually be added to RSM
$\Rightarrow$ building of "Nominal Signal Model"
- Minor contributions treated as systematics $\Rightarrow$ Model uncertainties
- Additional model errors: uncertainties on line-shapes (e.g. non-resonant and $\mathrm{K} \pi \mathrm{S}$-wave)
a $\mathrm{SU}(3)$ prediction: same components should contribute to $\mathrm{SU}(3)$ related final states
- Final states with high efficiency and low background can be used to build the signal model
- This model can then be used coherently among SU(3) related final states
- This implies correlations of the model uncertainties of the $\operatorname{SU}(3)$ related final states which need to be evaluated $\Rightarrow$ currently it is assumed no correlation
a We strongly recommend to analyst of all $\mathrm{B} \rightarrow \mathrm{hhh}(\mathrm{h}=\pi, \mathrm{K})$ modes to work in coordination, ideally the same set of conventions should be used by all experiments


## Phenomenological Framework

## $B \rightarrow K \times \pi$ System: Isospin relations

SU(2) Isospin relations: $A^{0+}+\sqrt{ } 2 A^{+0}=\sqrt{ } 2 A^{00}+A^{+}$ $\overline{\mathbf{A}^{0+}}+\sqrt{2} \bar{A}^{+0}=\sqrt{2} \bar{A}^{00}+\bar{A}^{+-}$

(S)

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}}^{*} \mathrm{~T}^{+-} \quad+\quad \mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{P}^{+-}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{ } 2 A\left(B^{+} \rightarrow K^{+} \pi^{0}\right)=V_{\text {us }} V^{*}{ }_{\text {ub }}\left(T^{+}+T^{00}{ }_{C}-N^{0+}\right)+V_{\text {ts }} V^{*}{ }_{\text {tb }}\left(P^{+}\left(P^{+}{ }_{E W}^{c}+P_{E W}\right)\right. \\
& \sqrt{2} A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{u s} V_{u b}^{*} T_{c}^{00} \quad+\quad V_{t s} V_{t b}^{*}\left(-P^{+-}+P_{E W}\right)
\end{aligned}
$$

- Due to CKM unitarity the hadronic amplitudes receive contributions of different topologies. In the above convention they are referred by the main contributions
, $\mathrm{T}^{+}$and $\mathrm{P}^{+}$: colour allowed three and penguin
> $\mathbf{N}^{0+}$ : annihilation contributions
, $\mathrm{T}^{00}{ }_{\mathrm{c}}$ : colour suppressed tree
- $P_{E W}$ and $P_{E w}^{C}$ : colour allowed and colour suppressed electroweak penguins


## $B \rightarrow K^{\prime} \pi$ System: extraction of $\alpha$ (CPS/GPSZ)

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{++} \pi^{-}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}} \mathrm{~T}^{+-} \quad+\quad \mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}} \mathrm{P}^{+-} \\
& A\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)=\mathrm{V}_{\text {us }} \mathrm{V}_{\mathrm{ub}}^{*} \mathrm{~N}^{0+} \quad+\quad \mathrm{V}_{\text {ts }} \mathrm{V}_{\text {tb }}^{*}\left(-\mathrm{P}^{++}+\mathrm{P}_{\mathrm{Ew}}^{\mathrm{C}}\right) \\
& \sqrt{ } 2 \mathrm{~A}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{++} \pi^{0}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{~V}^{*}{ }_{\mathrm{ub}}\left(\mathrm{~T}^{++}+\mathrm{T}^{00}{ }_{\mathrm{c}}-\mathrm{N}^{0+}\right)+\mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{ts}}^{*}\left(\mathrm{P}^{+-} \mathrm{P}_{\mathrm{EW}}^{\mathrm{C}}+\mathrm{P}_{\mathrm{EW}}\right) \\
& \sqrt{2 A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{u s} V_{u b}^{*} T_{c}^{00} \quad+\quad V_{\text {ts }} V_{t 0}^{*}\left(-P^{+}+P_{E w}\right)}
\end{aligned}
$$

Neglecting $\mathrm{P}_{\mathrm{EW}}$, the amplitude combinations:

$$
\begin{aligned}
& 3 A_{312}=A\left(B^{0} \rightarrow K^{+} \pi^{-}\right)+\sqrt{ } 2 . A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{\text {us }} V_{\text {ub }}{ }^{( }\left(T^{+}+T^{00}\right) \\
& 3 \bar{A}_{312}=\bar{A}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right)+\sqrt{ } 2 \cdot \bar{A}\left(\overline{B^{0}} \rightarrow \overline{K^{0}} \pi^{0}\right)=V_{\text {us }}{ }^{*} V_{u b}\left(T^{+}+T^{00}\right)
\end{aligned}
$$

which gives:

$$
R_{3 / 2}^{\prime}=\left(3 A_{312}\right) /\left(3 \bar{A}_{3 / 2}\right)=e^{-2 i \gamma} .
$$

The actually physical observable is
(invariant under phase redefinitions)
$R_{3 / 2}=(q / p)\left(3 A_{3 / 2}\right) /\left(3 \bar{A}_{3 / 2}\right)=\mathbf{e}^{-2 i \beta} \mathbf{e}^{-2 i \gamma}=\mathbf{e}^{-2 i \alpha}$

## $B \rightarrow K " \pi$ System: unknowns and observables count

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{~B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}}^{*} \mathrm{~T}^{+-} \quad+\quad \mathrm{V}_{\text {ts }} \mathrm{V}_{\mathrm{tb}} \mathrm{P}^{+-}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{ } 2 \mathrm{~A}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \pi^{0}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{~V}^{*}{ }_{\mathrm{ub}}\left(\mathrm{~T}^{++}+\mathrm{T}^{00}{ }_{\mathrm{c}}-\mathrm{N}^{0+}\right)+\mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{ts}}^{*}\left(\mathrm{P}^{+-}-\mathrm{P}_{\mathrm{EW}}^{\mathrm{C}}+\mathrm{P}_{\mathrm{EW}}\right) \\
& \sqrt{2} A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{\text {us }} V^{*}{ }_{\text {ub }}{ }^{00}{ }_{c}+V_{\text {ts }} V^{*}{ }_{\text {tb }}\left(-P^{+}+P_{E w}\right)
\end{aligned}
$$

## 11 QCD and 2 CKM = 13 unknowns

## Observables:

- 4 BFs and 4 A $_{\text {cp }}$ from DP and Q2B analyses.
- 5 phase differences:

$$
\begin{aligned}
& \Delta \phi=\arg \left((q / p) \bar{A}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right) A^{*}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)\right): B^{0} \rightarrow K^{0} \pi^{+} \pi^{-} \\
& \phi=\arg \left(A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right) A^{*}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)\right) \text {and } \\
& \bar{\phi}=\arg \left(\bar{A}\left(\overline{B^{0}} \rightarrow K^{* 0} \pi^{0}\right) \overline{A^{*}}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right)\right) \text {from } B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \\
& \phi=\arg \left(A\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right) A^{*}\left(B^{+} \rightarrow K^{*+} \pi^{0}\right)\right) \text { and } \\
& \bar{\phi}=\arg \left(A\left(B^{-} \rightarrow \overline{K^{*}} \pi \pi^{-}\right) A^{*}\left(B^{-} \rightarrow K^{*} \pi^{0}\right)\right) \text { from } B^{+} \rightarrow K^{0} \pi^{+} \pi^{0} \\
& A \text { total of } 13 \text { observables }
\end{aligned}
$$

## Event if

N(unknowns) = N(obs), reparametrization invariance prevents the simultaneous extraction of all CKM and hadronic parameters without additional information

## $B \rightarrow K * \pi$ System: two strategies

Scenario 1: set some constraints on hadronic parameters:

- If Had $\rightarrow$ Had $+\delta$ Had gives $\mathrm{CKM} \rightarrow$ CKM $+\delta$ CKM

Ex.: $\alpha$ from $B \rightarrow \pi \pi$

- If Had $\rightarrow$ Had $+\delta \operatorname{Had}$ gives $\mathrm{CKM} \rightarrow \mathrm{CKM}+\Delta \mathrm{CKM}$ ©


## Goal: test CPS/GPSZ method

Scenario 2: CKM from external input (global fit) and fit hadronic parameters:

- Uncontroversial: only assumes CKM unitarity
- inputs:
* Fix CKM parameters from global fit
* $B \rightarrow K \pi \pi$ experimental measurements
- output:
* Prediction of unavailable observables
* Exploration of hadronic amplitudes $\Rightarrow$ test of QCD predictions


## $\mathrm{B} \rightarrow \mathrm{K}^{\prime \pi}$ System: CPSIGPSZ theoretical prediction

GPSICPSZ: relation between the $P_{E w}$ and $T_{312}=T^{+-}+\mathrm{T}^{00}{ }_{\mathrm{C}}$

- $B \rightarrow \pi \pi: P_{E w}=R T_{3 / 2}, R=1.35 \%$ and real. (SU(2) and Wilson coeff. $\left|c_{8,9}\right|$ small). $P$ and TCKM of same order $\rightarrow P_{E w}$ negligible
- $\mathrm{B} \rightarrow \mathrm{K} \pi: \mathrm{P}_{\mathrm{Ew}}=\mathrm{RT}_{3 / 2}$ (same as $\pi \pi$ and $\mathrm{SU}(3)$ )

P amplified CKM wrt. T ( $\left.\left|\mathrm{V}_{\mathrm{ts}} \mathrm{V}^{*}{ }_{\mathrm{tb}} / \mathrm{V}_{\mathrm{us}} \mathrm{V}^{*}{ }_{\mathrm{ub}}\right| \sim 55\right) \rightarrow \mathrm{P}_{\mathrm{EW}}$ non-negligible
$-B \rightarrow K^{*} \pi: P_{E w}=R_{\text {eff }} \mathbf{T}_{3 / 2}$
$-R_{\text {eff }}=R\left(1-r_{v p}\right) /\left(1+r_{v p}\right)$

- $r_{\text {vp }}$ complex $\rightarrow$ vector-pseudoscalar phase space
- GPSZ estimation $\left|r_{v p}\right|<5 \%$


## $B \rightarrow K * \pi$ System: proposed parametrization of observables

| $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$ | $\mathrm{B}^{0} \rightarrow \mathbf{K}^{+} \pi^{-} \boldsymbol{\pi}^{0}$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \boldsymbol{\pi}^{+}$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0}{ }_{\mathrm{S}} \mathrm{\pi}^{+} \pi^{0}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)$ | $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)$ | $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)$ | $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)$ |
| $\mathrm{A}_{\text {CP }}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*+} \pi\right)$ | $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{++} \pi^{-}\right)$ | $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)$ | $\mathrm{A}_{\text {CP }}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)$ |
| $\Delta \phi\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{\star+} \pi^{-}\right)$ | $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \pi^{0}\right)$ |  | $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \pi^{0}\right)$ |
|  | $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \pi^{0}\right)$ |  | $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \pi^{0}\right)$ |
|  | $\phi\left(\mathrm{K}^{\star 0} \pi^{0} / \mathrm{K}^{\star+} \pi^{-}\right)$ |  | $\phi\left(\mathrm{K}^{*+} \pi^{0} / \mathrm{K}^{* 0} \pi^{+}\right)$ |
|  | $\phi\left(\overline{\mathrm{K}^{* 0}} \pi^{0} / \mathrm{K}^{*} \pi^{+}\right)$ |  | $\phi\left(\mathrm{K}^{*} \pi^{0} / \mathrm{K}^{*} \pi^{-}\right)$ |
| $\theta$ | $\square$ | $\theta$ | $\square$ |
| $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{*-} \pi^{+}\right) / \mathrm{A}\left(\mathrm{K}^{++} \pi^{-}\right)\right)$ | $\overline{\mathrm{A}}\left(\mathrm{K}^{\star-} \pi^{+}\right) / \mathrm{A}\left(\mathrm{K}^{*+} \pi^{-}\right) \mid$ | $\left\|\mathrm{A}\left(\overline{\mathrm{K}^{* 0}} \pi^{-}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{-}\right)\right\|$ | $\left\|\mathrm{A}\left(\mathrm{K}^{*} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{*^{+}} \pi^{0}\right)\right\|$ |
| $\operatorname{lm}\left(\mathrm{A}\left(\mathrm{K}^{\star-} \pi^{+}\right) / \mathrm{A}\left(\mathrm{K}^{\star+} \pi^{-}\right)\right)$ | $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{* 0} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{*^{+}} \pi^{-}\right)\right)$ | $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)$ | $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{*+} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right)$ |
| $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)$ | $\operatorname{Im}\left(\mathrm{A}\left(\mathrm{K}^{* 0} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{*+} \pi^{-}\right)\right)$ |  | $\operatorname{Im}\left(\mathrm{A}\left(\mathrm{K}^{*+} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right)$ |
|  | $\operatorname{Re}\left(\mathrm{A}\left(\bar{K}^{*} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{*} \pi^{+}\right)\right)$ |  | $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{*} \pi^{0}\right) / \mathrm{A}\left(\overline{\mathrm{K}^{*}} \pi^{-}\right)\right)$ |
|  | $\operatorname{Im}\left(\mathrm{A}\left(\overline{\mathrm{K}^{*}} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{\star} \pi^{+}\right)\right)$ |  | $\operatorname{Im}\left(\mathrm{A}\left(\mathrm{K}^{*} \pi^{0}\right) / \mathrm{A}\left(\overline{\mathrm{K}^{*}} \pi^{-}\right)\right)$ |
|  | $B\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)$ |  | $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{*+} \pi^{0}\right)$ |

## Scenarios to constrain CKM

## Scenarios to constrain CKM: the strategy

## Closure test

- Fix CKM parameters to current values
- Assing ad-hoc "true" values to Had. amplitudes
- Deduce corresponding values of physical observables
- Explore constraints on CKM parameters assuming very small uncertainties on observables
- Had. amplitudes constrained to follow naïve hierarchy pattern

$$
\mathrm{T}^{+-}>\mathrm{T}^{00}>\mathrm{N}^{0+} \text { and } \mathrm{P}^{+-}>\mathrm{P}_{\mathrm{EW}}>\mathrm{P}_{\mathrm{EW}}^{\mathrm{C}}
$$

- Furthermore, $\mathrm{P}_{\mathrm{EW}}$ constrained to match CPS/GPSZ assumption

$$
\left|\mathrm{P}_{\mathrm{Ew}} /\left(\mathrm{T}^{++}+\mathrm{T}^{00}\right)\right|=0.0135 \text { and } \arg \left(\mathrm{P}_{\mathrm{Ew}}\right)=\arg \left(\mathrm{T}^{++}+\mathrm{T}^{00}\right)
$$

- This ad-hoc choice of "true" values roughly reproduces current BF and $A_{C P}$ (c.f. table)

| Hadronic par. | magnitude | phase (deg) | Physical observable | Measurement | Value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $T^{+-}$ | 2.540 | 0.00 | $\mathcal{B}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)$ | $8.2 \pm 0.9$ | 7.1 |
| $T^{00}$ | 0.762 | 75.74 | $\mathcal{B}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)$ | $3.3 \pm 0.6$ | 1.6 |
| $N^{0+}$ | 0.143 | 108.37 | $\mathcal{B}\left(B^{+} \rightarrow K^{*+} \pi^{0}\right)$ | $9.2 \pm 1.5$ | 8.5 |
| $P^{+-}$ | 0.091 | -6.48 | $\mathcal{B}\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)$ | $11.6 \pm 1.2$ | 10.9 |
| $P_{\text {EW }}$ | 0.038 | 15.15 | $A_{C P}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)$ | $-24.0 \pm 7.0$ | -12.9 |
| $P_{\text {EW }}^{\mathrm{C}}$ | 0.029 | 101.90 | $A_{C P}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)$ | $-15.0 \pm 13.0$ | -46.5 |
| $\left\|\frac{V_{t s} V_{t P}^{*} P^{+-}}{V_{u s} V_{u b}^{*} T^{+-}}\right\|$ | 1.801 |  | $A_{C P}\left(B^{+} \rightarrow K^{*+} \pi^{0}\right)$ | $-0.52 \pm 15.0$ | -35.4 |
| $\left\|T^{00} / T^{+-}\right\|$ | 0.300 |  | $A_{C P}\left(B^{+} \rightarrow K^{* 0} \pi^{+}\right)$ | $+5.0 \pm 5.0$ | +3.9 |
| $\left\|N^{0+} / T^{00}\right\|$ | 0.187 |  |  |  |  |
| $\left\|P_{\text {EW }} / P^{+-}\right\|$ | 0.420 |  |  |  |  |
| $\left\|P_{\text {EW }} /\left(T^{+-}+T^{00}\right)\right\| / R$ | 1.000 |  |  |  |  |
| $\left\|P_{\text {EW }} / P_{\text {EW }}^{\mathrm{C}}\right\|$ | 0.762 |  |  |  |  |

Explored hypothesis
a CPS/GPSZ-like assumption
a Hypothesis on the annihilation

## Scenarios to constrain CKM: CPS/GPSZ-like (l)

- The CKM $\alpha$ is extracted from $B \rightarrow \pi \pi$, $\rho \pi$ and $\rho \rho$ isospin analysis by neglecting the $P_{E W}$ contributions to the decay amplitudes
- A similar approach is tested here

CPS PRD74:051301, GPSZ PRD75:014002


Only for $\mathrm{P}_{\mathrm{EW}}=0$

- Yields constraint on $\rho-\eta$ following $\alpha$ contours
- But fails (by large amounts!) to reproduce true $\alpha$


$$
\text { If } P_{E W} \neq 0 \text { (fixed to its true value) }
$$

- Yields unbiased constraint
- Which does not follow $\alpha$ contour


## Scenarios to constrain CKM: CPS/GPSZ-like (II)



## Scenarios to constrain CKM: CPS/GPSZ-like (II)



## Scenarios to constrain CKM: hypothesis on $\mathrm{N}^{0+}(\mathrm{I})$

- CKM enhancement does not affect tree terms
- Furthermore, the annihilation $\mathrm{N}^{0+}$ is naïvely expected to be small
- May be constrained from theory and/or from annihilation-dominated modes



Hypotheses in the $\mid \mathbf{N}^{0+} / T^{+} \dagger$ provides a " $\beta$-like" constraint in $\rho-\eta$

## Scenarios to constrain CKM: hypothesis on $\mathrm{N}^{0+}$ (II)






## Scenarios to constrain CKM: hypothesis on $\mathrm{N}^{0+}$ (II)



## Scenarios to constrain CKM: hypothesis on $\mathbb{N}^{0+}$ (III)

$\beta$ coverage vs Upper bound on $\left|\mathrm{N}^{0+} / \mathrm{T}^{+}\right|$(in units of the generation value)


## Scenarios to constrain CKM: Summary

a CPS/GPSZ-like hypothesis:

- Conservative values on the uncertainty of the $P_{E W}$ prediction gives uncontrollable effects of the $\rho-\eta$ constraints
$\Rightarrow$ The method is dominated by the theoretical uncertainties
- This is expected due to the CKM enhancement $\left(\left|V_{\text {ts }} \mathrm{V}_{\text {tb }}^{*} / \mathrm{V}_{\mathrm{us}} \mathrm{V}^{*}{ }_{\mathrm{ub}}\right| \sim 55\right)$ of "penguin" w.r.t "tree" terms
a Hypothesis on the annihilation ( $\mathbf{N}^{0+}$ )
- It is possible to set a constraint in $\rho-\eta$ by just setting a upper bound on the $\left|\mathrm{N}^{0+} / \mathrm{T}^{+}\right|$
- Constraint on CKM less sensitive to theoretical uncertainties as there is no CKM enhancement
Uncertainty of $500 \%$ on $\| \mathrm{N}^{0+} / T^{+-} \mid$gives a theory error of less than 9 degrees
- Possibility to get bounds on the annihilation from data by measuring the annihilationdominated mode $\mathrm{B}_{\mathrm{s}}^{+} \rightarrow \mathrm{K}^{* 0} \mathrm{~K}^{+}$which is U-spin related to $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \pi^{+}$
$\Rightarrow$ Accessible to LHCb


## Current constraints on Hadronic amplitudes

## Experimental inputs: BABAR (I)

a BABAR $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ analysis: PRD83:112010 (2011)

a BABAR $B^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-}$analysis: PRD80:112001 (2009)
two minima differing by 0.16 2NLL units

| Global minimum |
| :--- |
| $\operatorname{Re}\left(\mathrm{K}^{*-} \pi^{+} / \mathrm{K}^{*^{+}} \pi^{-}\right)=0.43 \pm 0.41 ;$ |
| $\operatorname{Im}\left(\mathrm{K}^{{ }^{-}} \pi^{+} / \mathrm{K}^{{ }^{+}} \pi^{-}\right)=-0.69 \pm 0.26 ;$ |
| $\mathrm{B}\left(\mathrm{K}^{{ }^{+}} \pi^{-}\right)=(8.3 \pm 1.2) \times 10^{-6} ;$ |

Full Correlation matrix

$$
\left(\begin{array}{ccc}
1.0 & 0.93 & 0.02 \\
& 1.0 & -0.08 \\
& & 1.0
\end{array}\right)
$$

## Local Minimum

$\operatorname{Re}\left(K^{*-} \pi^{+} / K^{*+} \pi^{-}\right)=-0.82 \pm 0.09 ;$
$\operatorname{Im}\left(K^{*-} \pi^{+} / K^{\star+} \pi^{-}\right)=-0.05 \pm 0.43 ;$
$B\left(\mathrm{~K}^{\star+} \pi^{-}\right)=(8.3 \pm 1.2) \times 10^{-6}$;
Full Correlation matrix

$$
\left(\begin{array}{ccc}
1.0 & -0.20 & 0.22 \\
& 1.0 & -0.01 \\
& & 1.0
\end{array}\right)
$$

## Experimental inputs: BABAR (II)

a BABAR $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$analysis: PRD78:012004 (2008)
$\left|\mathrm{A}\left(\mathrm{K}^{* 0} \pi^{-}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right|=1.033 \pm 0.047$; Full Correlation matrix
$B\left(K^{* 0} \pi^{+}\right) \quad=(10.8 \pm 1.4) \times 10^{-6} ;$
$\left(\begin{array}{cc}1.0 & 0.02 \\ & 1.0\end{array}\right)$
a BABAR $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}{ }^{0} \pi^{+} \pi^{0}$ analysis: Arxiv : 1501.00705[hep-ex] (2015) New Result!

- Currently in communication with authors to get full set of observables and correlation matrices
- The results shown in next slides just use
> $\mathrm{B}\left(\mathrm{K}^{\star+} \pi^{0}\right)=(9.2 \pm 1.5) \times 10^{-6}$;
, $C\left(K^{\star+} \pi^{0}\right)=-0.52 \pm 0.15 ; \Rightarrow \sim 3.5 \sigma$ significance


## Experimental inputs: Belle

a Belle $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}{ }^{1} \pi^{+} \pi^{-}$analysis: PRD75:012006 (2007) and PRD79:072004 (2009)
two minima differing by 7.5 2NLL units

| Global minimum |
| :---: |
| $\operatorname{Re}\left(\mathrm{K}^{*-} \pi^{+} / \mathrm{K}^{*+} \pi^{-}\right)=0.79 \pm 0.14 ;$ |
| $\operatorname{Im}\left(\mathrm{K}^{\star-} \pi^{+} / \mathrm{K}^{\star+} \pi^{-}\right)=-0.21 \pm 0.40 ;$ |
| $\mathrm{B}\left(\mathrm{K}^{++} \pi^{-}\right)=(8.4 \pm 1.5) \times 10^{-6} ;$ |
| Full Correlation matrix |
| $\left(\begin{array}{ccc}1.0 & 0.62 & 0.0 \\ 1.0 & 0.0 \\ & 1.0\end{array}\right)$ |

$$
\begin{aligned}
& \text { Local Minimum } \\
& \operatorname{Re}\left(\mathrm{K}^{*-} \pi^{+} / \mathrm{K}^{+} \pi^{-}\right)=0.81 \pm 0.11 ; \\
& \operatorname{Im}\left(\mathrm{K}^{*-} \pi^{+} / \mathrm{K}^{*+} \pi^{-}\right)=0.01 \pm 0.44 ; \\
& \mathrm{B}\left(\mathrm{~K}^{*+} \pi^{-}\right)=(8.4 \pm 1.5) \times 10^{-6} ; \\
& \quad \text { Full Correlation matrix }
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
1.0 & 0.01 & 0.0 \\
& 1.0 & 0.0 \\
& & 1.0
\end{array}\right)
$$

a Belle $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$analysis: PRL96:251803 (2006)
$\left|\mathrm{A}\left(\mathrm{K}^{* 0} \pi^{-}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right|=0.86 \pm 0.09 ;$
Full Correlation matrix
$B\left(\mathrm{~K}^{* 0} \pi^{+}\right) \quad=(9.7 \pm 1.1) \times 10^{-6}$;
$\left(\begin{array}{ll}1.0 & 0.0 \\ & 1.0\end{array}\right)$

- No Belle results on:
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{+} \pi^{0}$ and $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi^{+} \pi^{0}$


## Combining BABAR + Belle: $\mathrm{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}^{0} \pi^{+} \pi^{-}$

a Two solutions for both BABAR and Belle analyses

- Combine all possible combinations of BABAR and Belle solutions taking into account the difference in 2NLL
- Results: 4 solutions differing in $\chi^{2}: 0,7.7,8.4$ and 97.2 . Consider only the global minimum



## Combining BABAR + Belle: $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+}$

## a Single solution for both BABAR and Belle

Likelihood vs Mod(Kbar*Opi-/K*Opi+)



Likelihood vs $\mathrm{B}\left(\mathrm{K}^{*}\right.$ Opi+ $)$


## Results on Had. Amplitudes: CP violation (I)

a Decay amplitudes ( $\delta_{i}$ and $\varphi_{i}$ are weak/strong phases)
$A=M_{1} \exp \left(i \delta_{1}\right) \exp \left(i \varphi_{1}\right)+M_{2} \exp \left(i \delta_{2}\right) \exp \left(i \varphi_{2}\right)$
$A=M_{1} \exp \left(i \delta_{1}\right) \exp \left(-i \varphi_{1}\right)+M_{2} \exp \left(i \delta_{2}\right) \exp \left(-i \varphi_{2}\right)$
$A_{C P}=2 \frac{\sin (\Delta \delta) \sin (\Delta \varphi)}{\left(M_{1} / M_{2}\right)+\left(M_{2} / M_{1}\right)+2 \cos (\Delta \delta) \cos (\Delta \varphi)}$
a In our case $\Delta \varphi=\arg \left(\mathrm{V}_{\text {ts }} \mathrm{V}^{*}{ }_{\text {to }} / V_{\text {us }} \mathrm{V}^{*}{ }_{\text {ub }}\right)=2 \gamma \neq 0$
a If $A_{C P}$ is significantly different from zero then

- $\left|\mathrm{CKM}^{*}(\mathrm{P} / \mathrm{T})\right| \sim 1$
- $\arg (\mathrm{P} / \mathrm{T}) \neq 0$
a $3 \sigma$ significance for $\mathrm{C}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)$
$\mathrm{A}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{*+} \pi^{-}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{V}^{*}{ }_{\mathrm{ub}} \mathbf{T}^{+-}+\mathrm{V}_{\mathrm{ts}} \mathrm{V}_{\mathrm{tb}}^{*} \mathrm{P}^{+-}$
- Two solutions with same $\chi^{2}$ (Sol A and B)
- Both inconsistent with $\arg (P / T)=0 / \pi$
- Only solution A has $|C K M *(P / T)| \sim 1$

(P/T) ${ }^{+}$
p-value



## Results on Hadl. Amplitudes: CP violation (II)

a Decay amplitudes ( $\delta_{i}$ and $\varphi_{i}$ are weak/strong phases)
$A=M_{1} \exp \left(i \delta_{1}\right) \exp \left(i \varphi_{1}\right)+M_{2} \exp \left(i \delta_{2}\right) \exp \left(i \varphi_{2}\right)$
$A=M_{1} \exp \left(i \delta_{1}\right) \exp \left(-i \varphi_{1}\right)+M_{2} \exp \left(i \delta_{2}\right) \exp \left(-i \varphi_{2}\right)$
$A_{C P}=2 \frac{\sin (\Delta \delta) \sin (\Delta \varphi)}{\left(M_{1} / M_{2}\right)+\left(M_{2} / M_{1}\right)+2 \cos (\Delta \delta) \cos (\Delta \varphi)}$
a In our case $\Delta \varphi=\arg \left(\mathrm{V}_{\text {ts }} \mathrm{V}^{*}{ }_{\text {to }} / V_{\text {us }} \mathrm{V}^{*}{ }_{\text {ub }}\right)=2 \gamma \neq 0$
a If $A_{C P}$ is significantly different from zero then

- $\left|\mathrm{CKM}^{*}(\mathrm{P} / \mathrm{T})\right| \sim 1$
- $\arg (P / T) \neq 0$
a $3.4 \sigma$ significance for $\mathrm{C}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{*+} \pi^{0}\right)$

- Both solutions inconsistent with $\arg (P / T)=0 / \pi$ and with $\left|\mathrm{CKM}^{*}(\mathrm{P} / \mathrm{T})\right|$ ~ 1
- Appearance of other local minima

(P/T) ${ }^{+0}$



## Results on Had. Amplitudes: CP violation (III)




$(\mathrm{P} / \mathrm{T})^{0+}$

$\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{* 0} \pi^{0}\right)$ and $\mathrm{A}_{\mathrm{CP}}\left(\mathrm{K}^{\star 0} \pi^{+}\right)$ consistent with zero @ 1 $\sigma$ P/T constraints are consistent either with

- $\left|\mathrm{CKM}^{*}(\mathrm{P} / \mathrm{T})\right| \gg 1$ or $\ll 1$
- $\arg (\mathrm{P} / \mathrm{T})=0$ or $\pm \pi$


## Results on Had. Amplitudes: all together



## Results on Hadl. Amplitudles: agreement with CPS/GPSZ

a CPS/GPSZ prediction
$P_{E W} /\left(T^{+-}+T^{00}\right)=R\left(1-r_{v P}\right) /\left(1+r_{v P}\right)$
with $R=1.35 \%$ and $\left|r_{v p}\right|<5 \%$
a The current experimental constraints in poor agreement with the CPS/GPSZ prediction
a Marginal agreement only reached by inflating the uncertainty on $\left|r_{v p}\right|$ up to $30 \%$



## Results on Had. Amplitudes: Hierarchies (I)

a Current data favours a relatively high $P_{E W}$
a This results is mainly driven by the $\mathrm{K}^{*+} \pi^{-} / \mathrm{K}^{* 0} \pi^{0}$ phase differences measured in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$
a Without these phases there is good agreement among the experimental observables ( $\chi^{2}=1.29, p$-Value $\sim 1.1 \sigma$ )
a Adding the phases brings slight tension $\left(\Delta \chi^{2}=7.7,2.6 \sigma\right)$
a Only one experiment has performed the $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ analysis
a An independent confirmation is needed to claim non-zero (and large!) value of $P_{E w}$


Constraints on $\left|\mathrm{P}_{\mathrm{Ew}} / \mathrm{P}^{+}\right|$


## Results on Had. Amplitudes: Hierarchies (II)

a Essentially no constraint is possible on $\mathrm{N}^{0+} / \mathrm{T}^{00}$ with current data
a Strong constrain on $\mathrm{P}_{\mathrm{EW}}^{\mathrm{C}} / \mathrm{P}_{\mathrm{EW}}$

- 2 solutions at $\sim 0.8$ and $\sim 1.0$
- Result on $P_{E W}^{C} / P_{E w}$ is also consequence of the large $\mathrm{P}_{\mathrm{Ew}}$
- Needs also confirmation for the $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ analysis





## Prospects for future LHCb and Belle-II data

## Prospects for LHCb and Belle-II (I)

a Assume future experiments will measure central values used in the closure test study
a LHCb will have high statistic measurements in the fully charged modes:
$\mathrm{B}^{0} \rightarrow \mathrm{~K}^{0}{ }_{\mathrm{s}}\left(\rightarrow \pi^{+} \pi^{-}\right) \pi^{+} \pi^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$

- Expect a significant improvement of signal/background ratio w.r.t BABAR/Belle
- Error on $\Delta \phi\left(K^{\star}-p i+/ K^{\star}+p i-\right)$ scale as $1 / \sqrt{ }$ Q (effective tagging efficiency)
$\Rightarrow$ degrade the error by a factor sqrt(30.5/2.38) 3.6
- Resolution in Dalitz plot $\Rightarrow$ negligible effect according to LHCb experts
- Scale the errors by the expected statistics
- LHCb will have signal for $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{0}{ }^{5} \pi^{+} \pi^{0}$, but difficult to anticipate performances due to $\pi^{0}$ reconstruction efficiency and resolution
a Belle II will measure all modes: $\mathbf{B}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}, \mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}, \mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}_{\mathrm{s}}{ }_{\mathrm{s}} \pi^{+} \pi^{0}$
- Experimental environment similar to $B A B A R / B e l l e$. Will scale uncertainties by luminosity $\Rightarrow$ errors should get reduced by a factor of $\sqrt{ }\left(50 \mathrm{ab}^{-1} / 1.0 \mathrm{ab} \mathrm{b}^{-1}\right) \sim 7$
a Both LHCb and Belle II will be able to measure $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$mode with high precision
- Will be able to well define the signal model and probe line-shapes of the main components
- Model systematics will be significantly reduced $\Rightarrow$ assume negligible model uncertainty


## Prospects for LHCb and Belle-II (II)

## Expected evolution of the uncertainties on the observables

| Observable | Analysis | Current | LHCb (run1+run2) | Belle-II |
| :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{*} \pi^{+}\right) / \mathrm{A}\left(\mathrm{K}^{*} \pi^{-}\right)\right)$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{0} \pi^{+} \pi^{-}$ | 0.11 | 0.04 | 0.014 |
| $\operatorname{lm}\left(\mathrm{A}\left(\mathrm{K}^{*} \pi^{+}\right) / \mathrm{A}\left(\mathrm{K}^{*} \pi\right)\right)$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{0} \pi^{+} \pi^{-}$ | 0.16 | 0.11 | 0.023 |
| $B\left(K^{*} \pi^{+}\right) \times 10^{-6}$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{0} \pi^{+} \pi^{-}$ | 0.69 | 0.32 | 0.094 |
| $\left\|\mathrm{A}\left(\mathrm{K}^{*} \pi^{+}\right) / \mathrm{A}\left(\mathrm{K}^{+} \pi^{-}\right)\right\|$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ | 0.06 | 0.06 | 0.008 |
| $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{* 0} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{++} \pi^{-}\right)\right)$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ | 0.11 | 0.11 | 0.016 |
| $\operatorname{Im}\left(\mathrm{A}\left(\mathrm{K}^{* 0} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{*+} \pi^{-}\right)\right)$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ | 0.23 | 0.23 | 0.033 |
| $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{ \pm 0} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{+} \pi^{-}\right)\right)$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ | 0.10 | 0.10 | 0.014 |
| $\operatorname{Im}\left(\mathrm{A}\left(\overline{\mathrm{K}^{\star 0}} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{\star+} \pi^{-}\right)\right)$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ | 0.30 | 0.30 | 0.042 |
| $\mathrm{B}\left(\mathrm{K}^{* 0} \pi^{0}\right) \times 10^{-6}$ | $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ | 0.35 | 0.35 | 0.05 |
| $\left\|A\left(\overline{K^{* 0}} \pi^{-}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right\|$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$ | 0.04 | 0.005 | 0.004 |
| $B\left(K^{* 0} \pi^{+}\right) \times 10^{-6}$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}$ | 0.81 | 0.50 | 0.113 |
| $\left\|A\left(K^{*} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{*} \pi^{0}\right)\right\|$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+} \pi^{0}$ | 0.15 | 0.15 | 0.021 |
| $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{+} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right)$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+} \pi^{0}$ | 0.16 | 0.16 | 0.023 |
| $\operatorname{Im}\left(\mathrm{A}\left(\mathrm{K}^{\star+} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right)$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+} \pi^{0}$ | 0.30 | 0.30 | 0.042 |
| $\operatorname{Re}\left(\mathrm{A}\left(\mathrm{K}^{+} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{* 0} \pi^{+}\right)\right)$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+} \pi^{0}$ | 0.21 | 0.21 | 0.030 |
| $\operatorname{Im}\left(\mathrm{A}\left(\mathrm{K}^{\star+} \pi^{0}\right) / \mathrm{A}\left(\mathrm{K}^{\star 0} \pi^{+}\right)\right)$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+} \pi^{0}$ | 0.13 | 0.13 | 0.018 |
| $B\left(K^{*+} \pi^{0}\right) \times 10^{-6}$ | $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0} \pi^{+} \pi^{0}$ | 0.92 | 0.92 | 0.130 |

- LHCb cannot perform Bcounting like in B -factories
- BF are normalized w.r.t modes measured somewhere else (mainly @ B-factories)
- Error contribution from norm. modes not scaling with stat.
- $\mathrm{B}\left(\mathrm{B}^{0} \rightarrow \mathrm{~K}^{++} \pi^{-}\right)$norm. mode: $B\left(B^{0} \rightarrow K^{0} \pi^{+} \pi^{-}\right)\left(\sigma_{\text {rel }}-4 \%\right)$
- $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{* 0} \pi^{+}\right)$norm. mode: $B\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \pi^{-} \pi^{+}\right)\left(\sigma_{\text {rel }} \sim 5 \%\right)$


## Had. Pars. : LHCb (run1+run2) 2018



a Main impact of LHCb data on $\mathrm{N}^{0+}, \mathrm{P}^{+-}$and $\mathrm{P}_{\mathrm{EW}}$
a Only upper limits on $\mathrm{T}^{00}$ and $P^{C}$ EW




## Had. Pars. : LHCb + Belle-II 2023



## Summary and Outlook

## Summary and Outlook (I)

a $B \rightarrow \mathrm{~K}^{*} \pi$ system has a large amount of physical observables among charmless decays

- Charmless B decay system with as many observables as unknowns
- Large potential for phenomenology of charmless B decays
, Model-independent extraction of hadronic parameters (assuming CKM and SU(2) as only hypotheses)
- Extraction of CKM parameters limited by hadronic uncertainties
a Extraction of CKM parameters
- $\alpha$-like constraints spoiled by sensitivity to electroweak penguins
- $\beta$-like constraints in the vanishing annihilation approximation
, Future constraints from annihilation-dominated $B \rightarrow P V$ modes could be used
, LHCb measurement of $\mathrm{B}_{(\mathrm{s})} \rightarrow \mathrm{K}^{*} \mathrm{~K}$ will play an important contribution to this program


## Summary and Outlook (II)

a Study of hadronic amplitudes with available experimental data

- For the first time, at least one complete amplitude analysis of each $B \rightarrow K \pi \pi$ mode available
- Evidence of CP-violation provides strong constraints on the relevant tree-to-penguin ratios
- Loose bounds on colour-suppressed tree and annihilation amplitudes
- Current data favours relatively large EWPs
, Mainly driven by BABAR $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ analysis
- If confirmed, would set evidence for EWPs in charmless B decays
, Until now, EWPs only established in $\varepsilon^{\prime} / \varepsilon \neq 0$ (radiative $B$ decays are different operators)
a Expect significant improvements with LHCb and Belle II data
- Model-independent measurement of all hadronic parameters
> Both amplitudes and phases can be measured with outstanding accuracy
- Results on hadronic $B \rightarrow K^{*} \pi$ parameters can be used as "standard candles" to study other $B_{(s)} \rightarrow P V$ modes
$>B_{s} \rightarrow K^{*} \pi, B_{(s)} \rightarrow K^{*} K, B_{(s)} \rightarrow p K$


## Back up Slides

## Parameterization

## Parameterizing Decay amplitude using Isobar Model:



$$
F_{j}^{L}(D P)=\left(R_{j}(m)\right) \times X_{L}\left(\left|\vec{p}^{\star}\right| r\right) \times X_{L}(|\vec{q}| r) \times T_{j}(L, \vec{p}, \vec{q})
$$

## Rela:

Gou

$$
R_{j}\left(m_{K \pi}\right)=\underbrace{\frac{m_{K \pi}}{q \cot \delta_{B}-i q}}+e^{2 i \delta_{B}} \frac{m_{0} \Gamma_{0} \frac{m_{0}}{q_{0}}}{\left(m_{0}^{2}-m_{K \pi}^{2}\right)-i m_{0} \Gamma_{0} \frac{q}{m_{K \pi}} \frac{m_{0}}{q_{0}}}
$$

## $\mathrm{B} \rightarrow \mathrm{pK}$ System: Physical Observables

$$
\begin{aligned}
& \mathrm{A}\left(\mathrm{~B}^{0} \rightarrow \mathrm{p}^{+} \mathrm{K}^{-}\right)=\mathrm{V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}} \mathrm{t}^{+-} \quad+\quad \mathrm{V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{p}^{+-} \\
& A\left(B^{+} \rightarrow \rho^{0} K^{+}\right)=V_{\text {us }} V_{u b}^{*} n^{0+} \quad+\quad V_{\text {ts }} V_{\text {tb }}^{*}\left(-p^{+-}+p_{\text {Ew }}^{C}\right) \\
& \sqrt{ } 2 A\left(B^{+} \rightarrow \rho^{+} K^{0}\right)=V_{u s} V_{u b}^{*}\left(t^{+-}+t^{00}{ }_{c}-n^{0+}\right)+V_{t s} V_{t b}^{*}\left(p^{+-}-p^{c}{ }_{E W}+p_{E w}\right) \\
& \sqrt{2} A\left(B^{0} \rightarrow \rho^{0} K^{0}\right)=V_{u s} V^{*}{ }_{u b} t^{00}{ }_{c} \quad+\quad V_{t s} V^{*}\left(-p^{+-}+p_{E W}\right) \\
& 11 \text { QCD and } 2 C K M=13 \text { unknowns }
\end{aligned}
$$

Same Isospin relations as K* $\pi$

## Observables:

- 4 BFs and 4 A $_{\text {cp }}$ from DP and Q2B analyses.
- 1 phase differences:
* $2 \beta_{\text {eff }}=\arg \left((q / p) \bar{A}\left(\overline{B^{0}} \rightarrow p^{0} \overline{K^{0}}\right) A^{*}\left(B^{0} \rightarrow p^{0} K^{0}\right)\right)$ from $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-}$

Under constraint system. Still some constrains possible

## A total of 9 observables

## pK+K" $\pi$ system: Physical Observables

Global phase between $K^{*} \pi$ and $\rho K$ now accessible:

- K* $\pi$ : 11 hadronic parameters (1 global phase fixed)
- pK: 12 parameters
- CKM: 2 parameter

A total of $=25$ unknowns

Observables:

- K* $\pi$ only: 13 observables
- pK only: 9 observables
- 7 phase differences from: interference between $K^{*} \pi$ and $\rho K$ resonances contributing to the same DP
$-\phi=\arg \left(A\left(B^{0} \rightarrow p^{0} K^{0}\right) A^{*}\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)\right)$from $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-}$
$-\phi=\arg \left(A\left(B^{0} \rightarrow p^{-} K^{+}\right) A^{*}\left(B^{0} \rightarrow K^{+} \pi \pi^{-}\right)\right)$and $C P$ conjugated from $B^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$
$-\phi=\arg \left(A\left(B^{0} \rightarrow p^{0} K^{+}\right) A^{*}\left(B^{0} \rightarrow K^{00} \pi^{+}\right)\right.$and $C P$ conjugated from $B^{+} \rightarrow K^{+} \pi^{-} \pi^{+}$
$-\phi=\arg \left(A\left(B^{0} \rightarrow p^{+} K^{0}\right) A^{*}\left(B^{0} \rightarrow K^{+} \pi^{0}\right)\right.$ and $C P$ conjugated from $B^{+} \rightarrow K^{0} \pi^{+} \pi^{0}$


## $B \rightarrow K$ " $\pi$ System: extraction of of (CPS/GPSZ)

Neglecting $\mathrm{P}_{\mathrm{EW}}$, the amplitude combinations:

$$
\text { which gives: } \mathrm{R}_{3 / 2}=(q / / \mathrm{p})\left(3 \mathrm{~A}_{3 / 2}\right) /\left(3 \overline{\mathrm{~A}}_{3 / 2}\right)=\mathbf{e}^{-2 i \beta} \mathbf{e}^{-2 i \gamma}=\mathbf{e}^{-2 i \alpha}
$$



$$
\begin{aligned}
& 3 A_{312}=A\left(B^{0} \rightarrow K^{+} \pi^{-}\right)+\sqrt{ } 2 . A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{\text {us }} V_{\text {ub }}\left(T^{++}+T^{00}\right) \\
& 3 \bar{A}_{312}=\bar{A}\left(\bar{B}^{0} \rightarrow K^{*} \pi^{+}\right)+\sqrt{ } 2 \cdot \bar{A}\left(\overline{B^{0}} \rightarrow \overline{K^{* 0}} \pi^{0}\right)=V_{\text {us }}^{*} V_{\text {ub }}\left(T^{+}+T^{00}\right)
\end{aligned}
$$

## $\mathrm{B} \rightarrow \mathrm{K}^{*} \pi$ System: extraction of $\alpha$ (CPS/GPSZ)

Neglecting $\mathrm{P}_{\mathrm{EW}}$, the amplitude combinations:

$$
3 A_{312}=A\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)+\sqrt{ } 2 \cdot A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{u s} V^{*}{ }_{u b}^{*}\left(T^{+}+T^{00}\right)
$$

$$
3 \bar{A}_{3 / 2}=\bar{A}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right)+\sqrt{ } 2 \cdot \bar{A}\left(\overline{B^{0}} \rightarrow \overline{K^{* 0}} \pi^{0}\right)=V^{*}{ }_{\text {us }} V_{u b}\left(T^{++}+T^{00}\right)
$$

$$
\text { which gives: } R_{312}=(q / p)\left(3 A_{312}\right) /\left(3 \bar{A}_{312}\right)=e^{-2 i \beta} e^{-2 i \gamma}=e^{-2 i \alpha}
$$

From experiment:

$$
\begin{aligned}
& \phi=\arg \left(A\left(B^{0} \rightarrow K^{+} \pi^{-}\right) A^{*}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)\right) \\
& \bar{\phi}=\arg \left(\overline{A^{\prime}}\left(\overline{\mathbf{B}^{0}} \rightarrow K^{*} \pi^{+}\right) \overline{\boldsymbol{A}^{*}}\left(\overline{B^{0}} \rightarrow{\overline{K^{0}} \pi^{0}}^{0}\right)\right)
\end{aligned}
$$

Measured from an amplitude analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ decays


## $B \rightarrow K ; \pi$ System: extraction of $\alpha$ (CPS/GPSZ)

Neglecting $\mathrm{P}_{\mathrm{EW}}$, the amplitude combinations:

$$
\begin{aligned}
& 3 A_{312}=A\left(B^{0} \rightarrow K^{*+} \pi^{-}\right)+\sqrt{ } 2 \cdot A\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)=V_{u s} V_{u b}^{*}\left(T^{++}+T^{00}\right) \\
& 3 \overline{A A}_{312}=\bar{A}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right)+\sqrt{ } \cdot \bar{A}\left(\overline{B^{0}} \rightarrow \overline{K^{* 0}} \pi^{0}\right)=V_{u s}^{*} V_{u b}\left(T^{++}+T^{00}\right)
\end{aligned}
$$

$$
\text { which gives: } \mathbf{R}_{3 / 2}=(q / / p)\left(3 A_{3 / 2}\right) /\left(3 \bar{A}_{3 / 2}\right)=\mathbf{e}^{-2 i \beta} \mathbf{e}^{-2 i \gamma}=\mathbf{e}^{-2 i \alpha}
$$

From experiment:

$$
\begin{aligned}
& \phi=\arg \left(A\left(B^{0} \rightarrow K^{+} \pi^{-}\right) A^{*}\left(B^{0} \rightarrow K^{* 0} \pi^{0}\right)\right) \\
& \bar{\phi}=\arg \left(\bar{A}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right) \overline{\boldsymbol{A}^{*}}\left(\overline{B^{0}} \rightarrow \overline{K^{0}} \pi^{0}\right)\right)
\end{aligned}
$$

Measured from an amplitude analysis of $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-} \pi^{0}$ decays
$\Delta \phi=\arg \left((q / p) \bar{A}\left(\overline{B^{0}} \rightarrow K^{*} \pi^{+}\right) A^{*}\left(B^{0} \rightarrow K^{+} \pi^{-}\right)\right)$

Measured from a time-dependent amplitude analysis of $B^{0} \rightarrow K_{s}^{0} \pi^{+} \pi^{-}$decays

## Scenarios to constrain CKM: hypothesis on $\mathbb{N}^{0+}$ (III)



## Feynman Diagrams



Gluonic Penguin


Aıejanuru rerez rerez, Ivew rirysics at Belle II, Feb. 25th 2015

## CPSIGPSZ theoretical prediction

a Effective Hamiltonian of $\mathrm{B} \rightarrow \mathrm{K}^{\star} \pi$

$$
\mathcal{H}=\frac{G_{F}}{\sqrt{2}}\left\{\sum_{i=1,2} c_{i}\left(\Omega_{u} Q_{i}^{u}+\Omega_{c} Q_{i}^{c}\right)-\Omega_{t} \sum_{i=3}^{10} c_{i} Q_{i}\right\}+\text { h.c. }, \text { with } \quad \Omega_{q}=V_{q s} V_{q b}^{*}
$$

- Hierarchy of Wilson coefficients for electro-weak operators $\left|c_{9,10}\right| \gg\left|c_{7,8}\right|$
$\left[\mathcal{H}_{E W P}\right]_{\Delta I=1}=\frac{3}{2} \frac{c_{9}+c_{10}}{2}\left[Q_{1}^{u}+Q_{2}^{u}\right]_{\Delta I=1}+\frac{3}{2} \frac{c_{9}-c_{10}}{2}\left[Q_{1}^{u}-Q_{2}^{u}\right]_{\Delta I=1}$ Electro-weak Hamiltonian
$\left[\mathcal{H}_{C C}\right]_{\Delta I=1}=\frac{c_{1}+c_{2}}{2}\left[Q_{1}^{u}+Q_{2}^{u}\right]_{\Delta I=1}+\frac{c_{1}-c_{2}}{2}\left[Q_{1}^{u}-Q_{2}^{u}\right]_{\Delta I=1}$ Current-current Hamiltonian
a Using $\left(\frac{c_{9}+c_{10}}{c_{1}+c_{2}} \simeq-0.0084\right) \simeq\left(\frac{c_{9}-c_{10}}{c_{1}-c_{2}} \simeq+0.0084\right)$

$$
\left[\mathcal{H}_{E W P}\right]_{\Delta I=1}=R \frac{c_{1}+c_{2}}{2}\left[Q_{1}^{u}+Q_{2}^{u}\right]_{\Delta I=1}-R \frac{c_{1}-c_{2}}{2}\left[Q_{1}^{u}-Q_{2}^{u}\right]_{\Delta I=1} \quad \begin{aligned}
& R=(3 / 2)\left(c_{9}+c_{10}\right) /\left(c_{1}+c_{2}\right) \\
& R=(1.35 \pm 0.12) \%
\end{aligned}
$$

a Obtain the relation $P_{E W}=R_{\text {eff }}\left(T^{+-}+T^{00}\right)$,

$$
\text { with } \mathrm{R}_{\mathrm{eff}}=\mathrm{R}\left(1+\mathrm{r}_{\mathrm{vp}}\right) /\left(1-\mathrm{r}_{\mathrm{vp}}\right) \quad r_{V P}=\frac{\left\langle K^{*} \pi(I=3 / 2)\right| Q_{-}|B\rangle}{\left\langle K^{*} \pi(I=3 / 2)\right| Q_{+}|B\rangle}, Q_{ \pm}=\left(Q_{1} \pm Q_{2}\right) / 2
$$

$r_{V P}=\left|\frac{f_{K^{*}} F_{0}^{B \rightarrow \pi}-f_{\pi} A_{0}^{B \rightarrow K^{*}}}{f_{K^{*}} F_{0}^{B \rightarrow \pi}+f_{\pi} A_{0}^{B \rightarrow K^{*}}}\right| \lesssim 0.05$

## Outlook

## a CKM constraints

- $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{* 0} \pi^{+}$and $\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{~K}^{+}$modes related by U-spin
$\Rightarrow$ expects the same annihilation amplitude $\left(\mathrm{N}^{0+}\right)$ up to U -spin breaking effects
$\mathrm{A}\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~K}^{* 0} \mathrm{~K}^{+}\right)=\mathrm{V}_{\mathrm{ud}} \mathrm{V}^{*}{ }_{\mathrm{ub}} \mathrm{N}^{0+}+\mathrm{V}_{\mathrm{ts}} \mathrm{V}^{*}{ }_{\text {tb }} \mathrm{P}^{0+}{ }_{\mathrm{s}}$
- LHCb will measure this modes in the near future
- Can include this mode in out phenomenological framework to set a bound on $\mathrm{N}^{0+}$ and be able to set constraints on CKM
a Extending the $B \rightarrow K^{*} \pi$ system: include $B \rightarrow \rho K$ modes
- $B \rightarrow \rho K$ resonances also contribute to the $B \rightarrow K \pi \pi$ final states and hav same isospin relations as $B \rightarrow K^{*} \pi \Rightarrow$ same number of hadronic parameters
- Smaller number of observables (9) than $B \rightarrow K^{*} \pi$ (13), but can measure interference phases (7) between $B \rightarrow K^{*} \pi$ and $B \rightarrow \rho K$ modes
- Combined system $B \rightarrow K^{*} \pi+B \rightarrow \rho K$
, Unknowns: $11+12$ hadronic from $B \rightarrow K^{*} \pi$ and $B \rightarrow \rho K+2 C K M=25$
. Observables: $13+9$ from $B \rightarrow K^{*} \pi$ and $B \rightarrow \rho K+7$ phase differences $=28$
- Still need hypothesis on hadronic or CKM to raise reparametrization invariance

