Statistical Issues in Searches for New Physics

Louis Lyons
Imperial College, London
and
Oxford

```
Theme:
```

Using data to make judgements about H1 (New Physics) versus H0 (S.M. with nothing new)

Why?

Experiments are expensive and time-consuming so

Worth investing effort in statistical analysis

→ better information from data

Topics:

Blind Analysis

Why 5σ for discovery?

Significance

 $P(A|B) \neq P(B|A)$

Meaning of p-values

Wilks' Theorem

LEE = Look Elsewhere Effect

Background Systematics

Coverage

Example of misleading inference

 $p_0 v p_1 plots$

(N.B. Several of these topics have no unique solutions from Statisticians)

Conclusions

BLIND ANALYSES

Why blind analysis? Methods of blinding

Selections, corrections, method

Add random number to result *

Study procedure with simulation only

Look at only first fraction of data

Keep the signal box closed

Keep MC parameters hidden

Keep unknown fraction visible for each bin

After analysis is unblinded,

* Luis Alvarez suggestion re "discovery" of free quarks

Why 5σ for Discovery?

Statisticians ridicule our belief in extreme tails (esp. for systematics)
Our reasons:

- 1) Past history (Many 3σ and 4σ effects have gone away)
- 2) LEE (see later)
- 3) Worries about underestimated systematics
- 4) Subconscious Bayes calculation

$$\frac{p(H_1|x)}{p(H_0|x)} = \frac{p(x|H_1)}{p(x|H_0)} * \frac{\pi(H_1)}{\pi(H_0)}$$

$$p(x|H_0) = \frac{\pi(H_1)}{\pi(H_0)}$$
Posterior Likelihood Priors prob

"Extraordinary claims require extraordinary evidence"

- N.B. Points 2), 3) and 4) are experiment-dependent Alternative suggestion:
- L.L. "Discovering the significance of 5σ " http://arxiv.org/abs/1310.1284

How many σ 's for discovery?

SEARCH	SURPRISE	IMPACT	LEE	SYSTEMATICS	Νο. σ
Higgs search	Medium	Very high	M	Medium	5
Single top	No	Low	No	No	3
SUSY	Yes	Very high	Very large	Yes	7
B _s oscillations	Medium/Low	Medium	Δm	No	4
Neutrino osc	Medium	High	sin²2ϑ, Δm²	No	4
$B_s \rightarrow \mu \mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/V. high	M, decay mode	Medium	7
(g-2) _μ anom	Yes	High	No	Yes	4
H spin ≠ 0	Yes	High	No	Medium	5
4 th gen q, l, v	Yes	High	M, mode	No	6
Dark energy	Yes	Very high	Strength	Yes	5
Grav Waves	No	High	Enormous	Yes	8

Suggestions to provoke discussion, rather than `delivered on Mt. Sinai'

Significance

Significance =
$$S/\sqrt{B}$$
?

Potential Problems:

- Uncertainty in B
- Non-Gaussian behaviour of Poisson, especially in tail
- •Number of bins in histogram, no. of other histograms [LEE]
- •Choice of cuts (Blind analyses)
- •Choice of bins (.....)

For future experiments:

• Optimising: Could give S =0.1, B = 10^{-4} , S/ \sqrt{B} =10

$P(A|B) \neq P(B|A)$

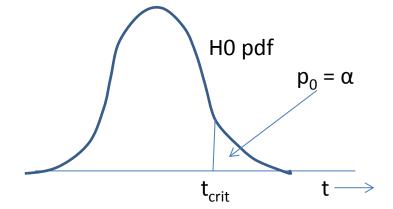
Remind Lab or University media contact person that:

```
Prob[data, given H0] is very small does not imply that Prob[H0, given data] is also very small.
```

```
e.g. Prob{data | speed of v ≤ c}= very small does not imply
Prob{speed of v≤c | data} = very small or
Prob{speed of v>c | data} ~ 1
```

Everyday example: pack of playing cards p(spades|king) = 1/4 p(king|spades) = 1/13

What p-values are (and are not)



```
Reject H0 if t > t_{crit} (p < \alpha)
p-value = prob that t \ge t_{obs}
```

Small p \rightarrow data and theory have poor compatibility

Small p-value does **NOT** automatically imply that theory is unlikely

Bayes prob(Theory | data) related to prob(data | Theory) = Likelihood by Bayes Th, including Bayesian prior

p-values are misunderstood. e.g. Anti-HEP jibe:

"Particle Physicists don't know what they are doing, because half their p < 0.05 exclusions turn out to be wrong"

Demonstrates lack of understanding of p-values

[All results rejecting energy conservation with p $< \alpha = .05$ cut will turn out to be 'wrong']

Combining different p-values

Several results quote independent p-values for same effect:

What is combined significance? Not just $p_{1*}p_{2*}p_{3}....$

If 10 expts each have p $^{\sim}$ 0.5, product $^{\sim}$ 0.001 and is clearly **NOT** correct combined p

$$S = z * \sum_{j=0}^{n-1} (-\ln z)^j / j!$$
, $z = p_1 p_2 p_3$
(e.g. For 2 measurements, $S = z * (1 - \ln z) \ge z$)

Slight problem: Formula is not associative

Combining $\{\{p_1 \text{ and } p_2\}, \text{ and then } p_3\}$ gives different answer from $\{\{p_3 \text{ and } p_2\}, \text{ and then } p_1\}$, or all together

Due to different options for "more extreme than x_1 , x_2 , x_3 ".

****** Better to combine data ********

Wilks' Theorem

Data = some distribution e.g. mass histogram

For H0 and H1, calculate best fit weighted sum of squares S_0 and S_1 Examples: 1) H0 = polynomial of degree 3

H1 = polynomial of degree 5

2) H0 = background only

H1 = bgd + peak with free M_0 and cross-section

3) H0 = normal neutrino hierarchy H1 = inverted hierarchy

If H0 true, S_0 distributed as χ^2 with ndf = ν_0 If H1 true, S_1 distributed as χ^2 with ndf = ν_1 If H0 true, what is distribution of $\Delta S = S_0 - S_1$? Is it χ^2 ?

Wilks' Theorem: ΔS distributed as χ^2 with ndf = $v_1 - v_0$ provided:

- a) H0 is true
- b) H0 and H1 are nested
- c) Params for $H1 \rightarrow H0$ are well defined, and not on boundary
- d) Data is asymptotic

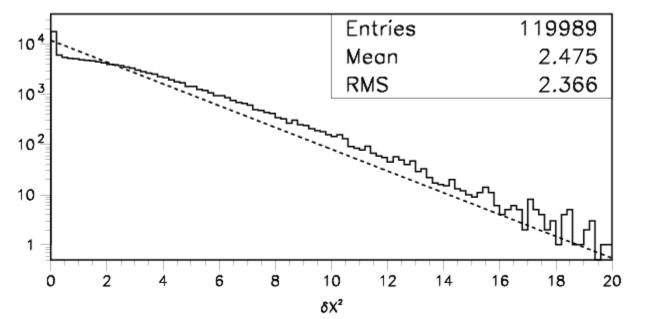
Wilks' Theorem, contd

Examples: Does Wilks' Th apply?

```
1) H0 = polynomial of degree 3
    H1 = polynomial of degree 5
YES: \Delta S distributed as \chi^2 with ndf = (d-4) - (d-6) = 2
2) H0 = background only
    H1 = bgd + peak with free M_0 and cross-section
NO: H0 and H1 nested, but M<sub>0</sub> undefined when H1\rightarrow H0. \Delta S \neq \chi^2
(but not too serious for fixed M)
3) H0 = normal neutrino hierarchy
    H1 = inverted hierarchy
NO: Not nested. \Delta S \neq \chi^2 (e.g. can have \Delta \chi^2 negative)
```

- N.B. 1: Even when W. Th. does not apply, it does not mean that ΔS is irrelevant, but you cannot use W. Th. for its expected distribution.
- N.B. 2: For large ndf, better to use ΔS , rather than S_1 and S_0 separately

Is difference in χ^2 distributed as χ^2 ?

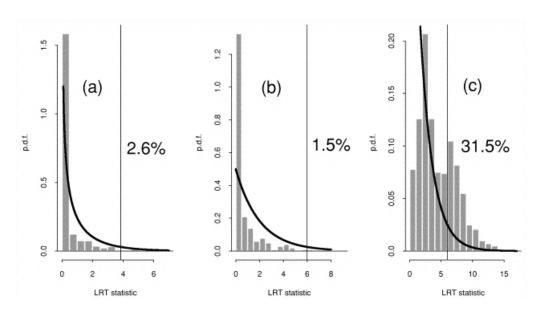


Demortier:

H0 = quadratic bgd

H1 =+

Gaussian of fixed width, variable location & ampl



Protassov, van Dyk, Connors,

H0 = continuum

- (a) H1 = narrow emission line
- (b) H1 = wider emission line
- (c) H1 = absorption line

Nominal significance level = 5%

Is difference in χ^2 distributed as χ^2 ?, contd.

So need to determine the $\Delta \chi^2$ distribution by Monte Carlo N.B.

- 1) Determining $\Delta \chi^2$ for hypothesis H1 when data is generated according to H0 is not trivial, because there will be lots of local minima
- 2) If we are interested in 5σ significance level, needs lots of MC simulations (or intelligent MC generation)
- 3) Asymptotic formulae may be useful (see K. Cranmer, G. Cowan, E. Gross and O. Vitells, 'Asymptotic formulae for likelihood-based tests of new physics', http://link.springer.com/article/10.1140%2Fepjc%2Fs10052-011-1554-0)

Look Elsewhere Effect (LEE)

Prob of bgd fluctuation at that place = local p-value Prob of bgd fluctuation 'anywhere' = global p-value Global p > Local p

Where is `anywhere'?

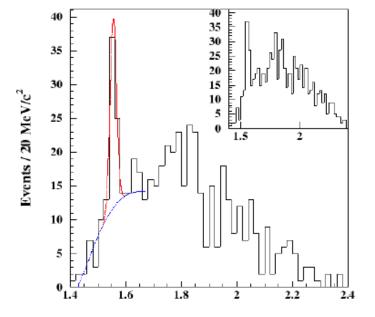
- a) Any location in this histogram in sensible range
- b) Any location in this histogram
- c) Also in histogram produced with different cuts, binning, etc.
- d) Also in other plausible histograms for this analysis
- e) Also in other searches in this PHYSICS group (e.g. SUSY at CMS)
- f) In any search in this experiment (e.g. CMS)
- g) In all CERN expts (e.g. LHC expts + NA62 + OPERA + ASACUSA +)
- h) In all HEP expts

etc.

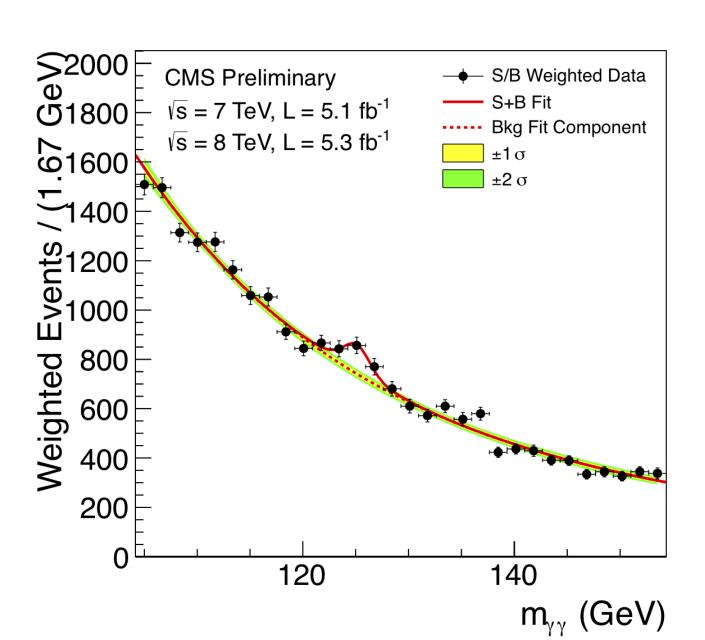
- d) relevant for graduate student doing analysis
- f) relevant for experiment's Spokesperson

INFORMAL CONSENSUS:

Quote local p, and global p according to a) above. Explain which global p



Background systematics



Background systematics, contd

```
Signif from comparing \chi^2's for H0 (bgd only) and for H1 (bgd + signal)
Typically, bgd = functional form f_a with free params
      e.g. 4<sup>th</sup> order polynomial
Uncertainties in params included in signif calculation
  But what if functional form is different? e.g. f<sub>h</sub>
Typical approach:
    If f<sub>b</sub> best fit is bad, not relevant for systematics
    If f_b best fit is "comparable to f_a fit, include contribution to systematics"
    But what is '~comparable'?
Other approaches:
    Profile likelihood over different bgd parametric forms
                    http://arxiv.org/pdf/1408.6865v1.pdf?
    Background subtraction
    sPlots
    Non-parametric background
    Bayes
      etc
```

No common consensus yet among experiments on best approach {Spectra with multiple peaks are more difficult}

"Handling uncertainties in background shapes: the discrete profiling method"

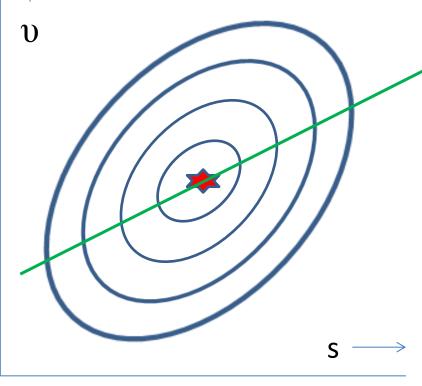
Dauncey, Kenzie, Wardle and Davies (Imperial College, CMS) arXiv:1408.6865v1 [physics.data-an]

Has been used in CMS analysis of H $\rightarrow \gamma \gamma$ EPJC doi:10.1140/epjc/s10052-014-3076-z

Problem with 'Typical approach': Alternative functional forms do or don't contribute to systematics by hard cut, so systematics can change discontinuously wrt $\Delta \chi^2$

Method is like profile \mathcal{L} for continuous nuisance params. Here 'profile' over discrete functional forms

Reminder of Profile £



Stat uncertainty on s from width of $\boldsymbol{\mathcal{L}}$ fixed at υ_{best}

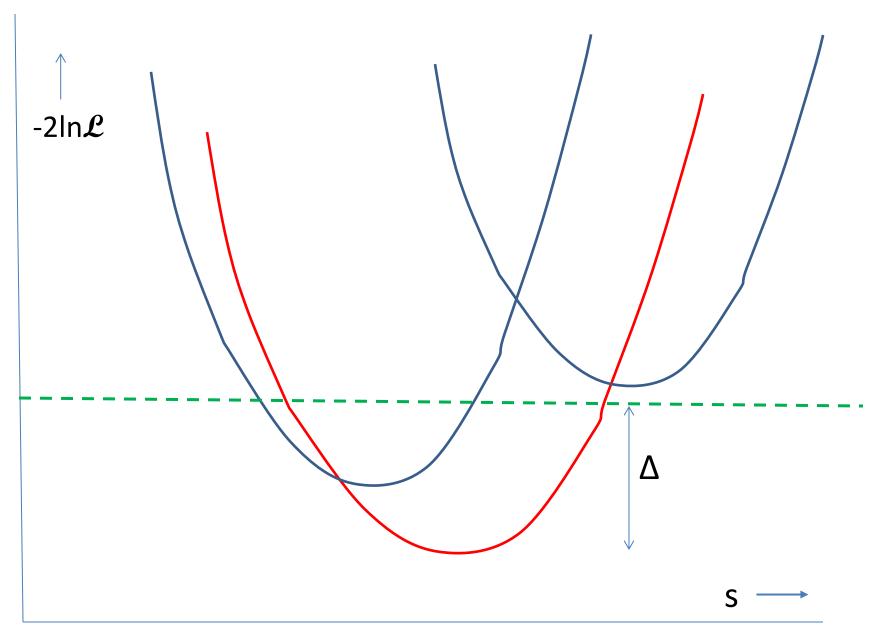
Total uncertainty on s from width of $\mathcal{L}(s, v_{prof(s)}) = \mathcal{L}_{prof}$ $v_{prof(s)}$ is best value of v at that s $v_{prof(s)}$ as fn of s lies on green line

Contours of $\ln \mathcal{L}(s,v)$

s = physics param

v = nuisance param

Total uncert \geq stat uncertainty



Red curve: Best value of nuisance param v

Blue curves: Other values of v

Horizontal line: Intersection with red curve \rightarrow

statistical uncertainty

'Typical approach': Decide which blue curves have small enough Δ Systematic is largest change in minima wrt red curves'.

Profile \mathcal{L} : Envelope of lots of blue curves

Wider than red curve, because of systematics (υ)

For \mathcal{L} = multi-D Gaussian, agrees with 'Typical approach'

Dauncey et al use envelope of finite number of functional forms

Point of controversy!

Two types of 'other functions':

a) Different function types e.g.

$$\sum a_i x_i$$
 versus $\sum a_i/x_i$

b) Given fn form but different number of terms

DDKW deal with b) by $-2lnL \rightarrow -2lnL + kn$

n = number of extra free params wrt best

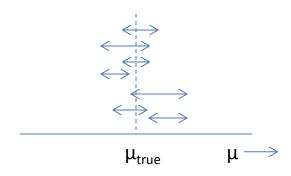
k = 1 {cf AIC = Akaike Information Criterion}

Opposition claim choice k=1 is arbitrary.

DDKW agree but have studied different values, and say k = 1 is optimal for them.

Also, any parametric method needs to make such a choice

Coverage



* What it is:

For given statistical method applied to many sets of data to extract confidence intervals for param μ , coverage C is fraction of ranges that contain true value of param. Can vary with μ

* Does not apply to **your** data:

It is a property of the **statistical method** used

It is **NOT** a probability statement about whether μ_{true} lies in your confidence range for μ

* Coverage plot for Poisson counting expt Observe n counts

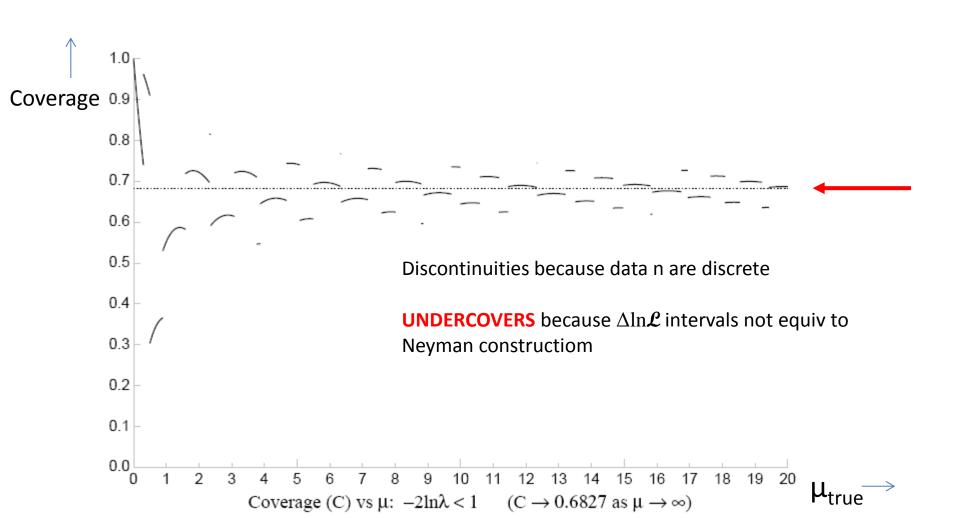
Estimate μ_{best} from maximum of likelihood

 $L(\mu)=e^{-\mu}\,\mu^n/n!\quad\text{and range of μ from}\quad\ln\{L(\mu_{best})/L(\mu)\}<0.5$ For each μ_{true} calculate coverage $C(\mu_{true})$, and compare with nominal 68%

Coverage : $\Delta \ln \mathcal{L}$ intervals for μ

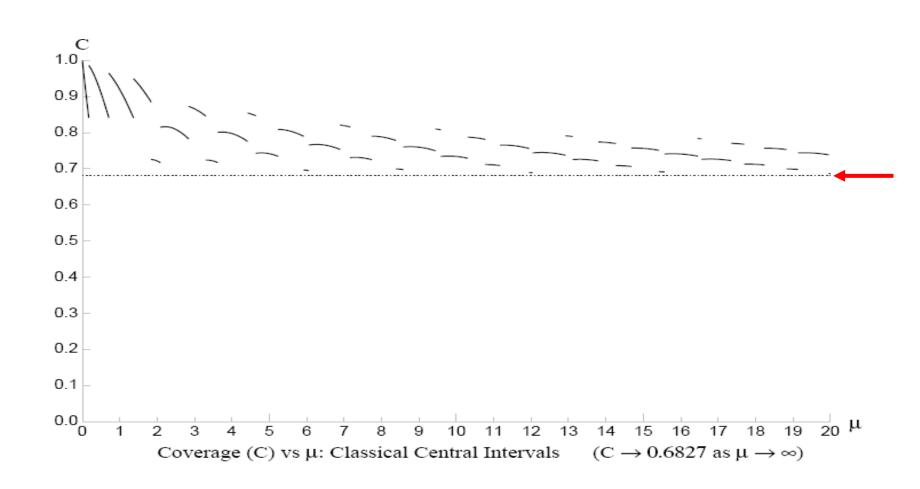
 $P(n,\mu) = e^{-\mu}\mu^n/n!$ (Joel Heinrich CDF note 6438)

$$-2 \ln \lambda < 1$$
 $\lambda = p(n,\mu)/p(n,\mu_{best})$

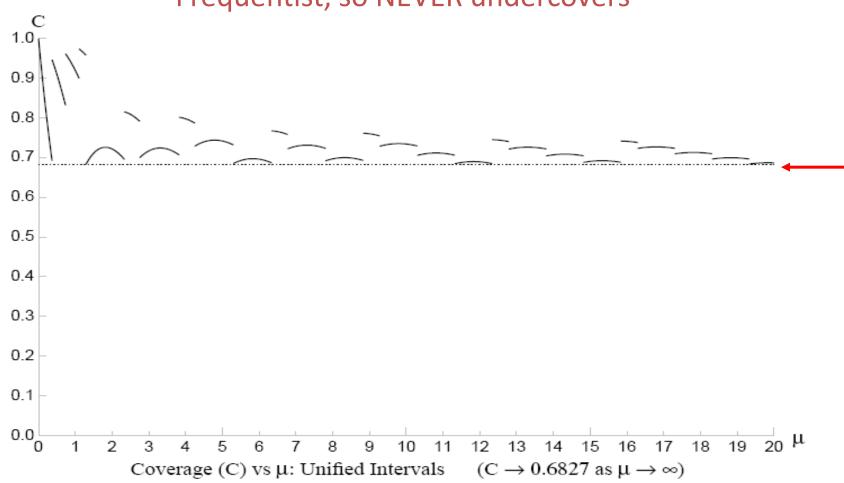


Frequentist central intervals, NEVER undercover

(Conservative at both ends)



Feldman-Cousins Unified intervals



Example of misleading inference

Ofer Vitells, Weizmann Institute PhD thesis (2014)

```
On-off problem (signal + bgd, bgd only)
e.g. n_{on} = 10, m_{off} = 0
```

i.e. convincing evidence for signal

Now, to improve analysis, look at spectra of events (e.g. in mass) in "on" and "off" regions

e.g. Use 100 narrow bins \rightarrow n_i = 1 for 10 bins, m_i = 0 for all bins

Assume bins are chosen so that signal s_i is uniform in all bins but bgd b_i is unknown

\mathcal{L} ikelihood: $\mathcal{L}(s,b_i) = e^{-Ks} e^{-(1+\tau)\Sigma bi} \Pi_j(s+b_j)$

```
K = number of bins (e.g. 100)

\tau = scale factor for bgd (e.g. 1)

j = "on" bins with event (e.g. 1..... 10)
```

Profile over background nuisance params b_i

 $\mathcal{L}_{prof}(s)$ maximises at

s=0 if
$$n_{on} < K/(1+\tau)$$

s= n_{on}/K if $n_{on} \ge K/(1+\tau)$

{Similar result for Bayesian marginalisation of $\mathcal{L}(s,b_i)$ over backgrounds b_i }

i.e. With many bins, profile (or marginalised) \mathcal{L} maximises at s=0, even though $n_{on} = 10$ and $m_{off} = 0$ BUT when mass distribution ignored (i.e. just counting experiment), signal+bgd is favoured over just bgd

WHY?

Background given greater freedom with large number K of nuisance parameters

Compare:

Neyman and Scott, "Consistent estimates based on partially consistent observations", Econometrica 16: 1-32 (1948)

```
Data = n pairs X_{1i} = G(\mu_i, \sigma^2)

X_{2i} = G(\mu_i, \sigma^2)

Param of interest = \sigma^2

Nuisance params = \mu_i. Number increases with n

Profile L estimate of \sigma^2 are biassed E = \sigma^2/2

and inconsistent (bias does not tend to 0 as n \rightarrow \infty)
```

MORAL: Beware!

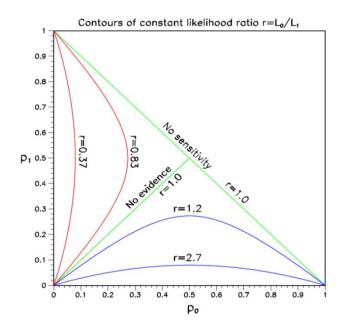
$p_0 v p_1 plots$

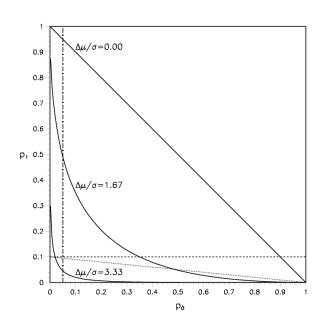
Preprint by Luc Demortier and LL, "Testing Hypotheses in Particle Physics: Plots of p₀ versus p₁" http://arxiv.org/abs/1408.6123

For hypotheses H0 and H1, p₀ and p₁ are the tail probabilities for data statistic t

Provide insights on:

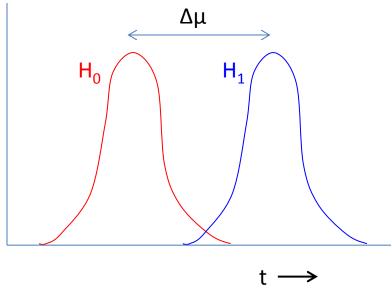
CLs for exclusion
Punzi definition of sensitivity
Relation of p-values and Likelihoods
Probability of misleading evidence
Sampling to foregone conclusion
Jeffreys-Lindley paradox





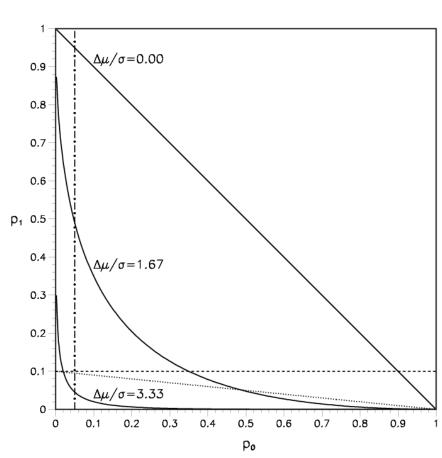
CLs = $p_1/(1-p_0)$ \rightarrow diagonal line Provides protection against excluding H_1 when little or no sensitivity

Punzi definition of sensitivity: Enough separation of pdf's for no chance of ambiguity



Can read off power of test e.g. If H_0 is true, what is prob of rejecting H_1 ?

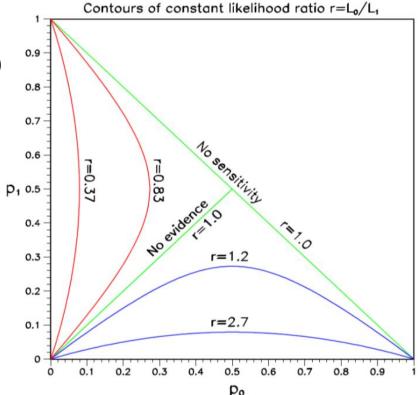
N.B. p_0 = tail towards H_1 p_1 = tail towards H_0



Why p \neq Likelihood ratio

Measure different things:

p₀ refers just to H0; L₀₁ compares H0 and H1



Depends on amount of data:

e.g. Poisson counting expt little data:

For H0,
$$\mu_0 = 1.0$$
. For H1, $\mu_1 = 10.0$

Observe n = 10
$$p_0 \sim 10^{-7}$$
 $L_{01} \sim 10^{-5}$

Now with 100 times as much data, $\mu_0 = 100.0$ $\mu_1 = 1000.0$

Observe n = 160
$$p_0 \sim 10^{-7}$$
 $L_{01} \sim 10^{+14}$

Jeffreys-Lindley Paradox

 H_0 = simple, H_1 has μ free p_0 can favour H_1 , while B_{01} can favour H_0 $B_{01} = L_0 / \int L_1(s) \pi(s) ds$

Likelihood ratio depends on signal: e.g. Poisson counting expt small signal s:

For H_0 , $\mu_0 = 1.0$. For H_1 , $\mu_1 = 10.0$

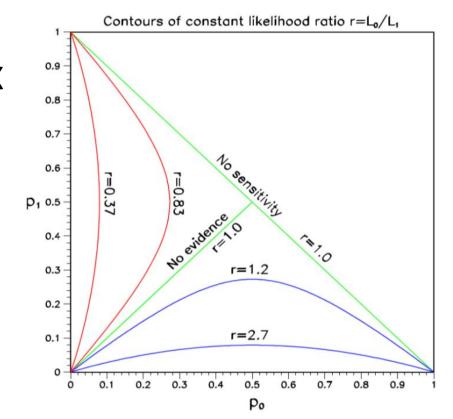
Observe n = 10 $p_0 \sim 10^{-7}$ $L_{01} \sim 10^{-5}$ and favours H_1

Now with 100 times as much signal s, $\mu_0 = 100.0$ $\mu_1 = 1000.0$

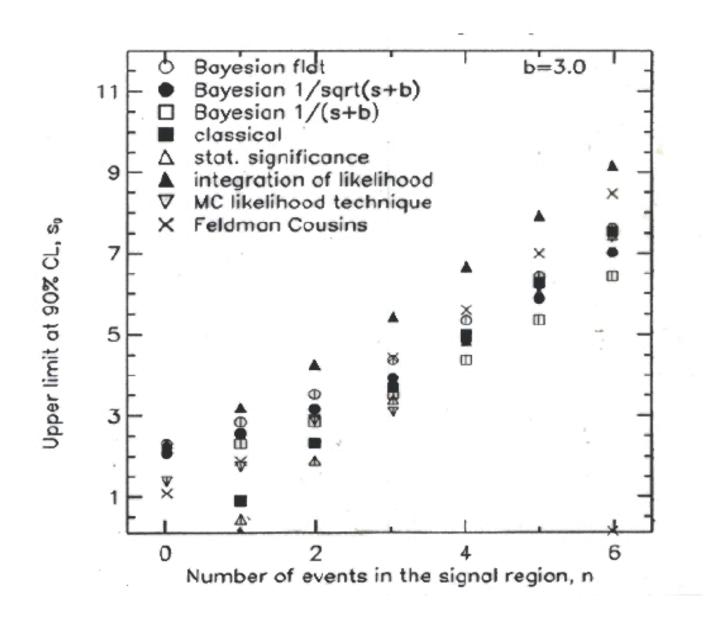
Observe n = 160 $p_0 \sim 10^{-7}$ $L_{01} \sim 10^{+14}$ and favours H_0

 ${\rm B}_{01}$ involves intergration over s in denominator, so a wide enough range will result in favouring ${\rm H}_0$

However, for B_{01} to favour H_0 when p_0 is equivalent to 5σ , integration range for s has to be $O(10^6)$ times Gaussian widths



Ilya Narsky, FNAL CLW 2000



Conclusions

Resources:

Software exists: e.g. RooStats

Books exist: Barlow, Cowan, James, Lyons, Roe,.....

New: `Data Analysis in HEP: A Practical Guide to

Statistical Methods', Behnke et al.

PDG sections on Prob, Statistics, Monte Carlo

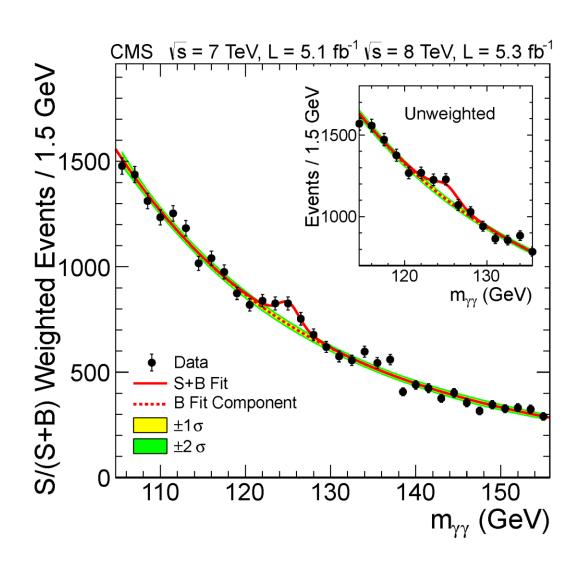
CMS and ATLAS have Statistics Committees (and BaBar and CDF

earlier) – see their websites

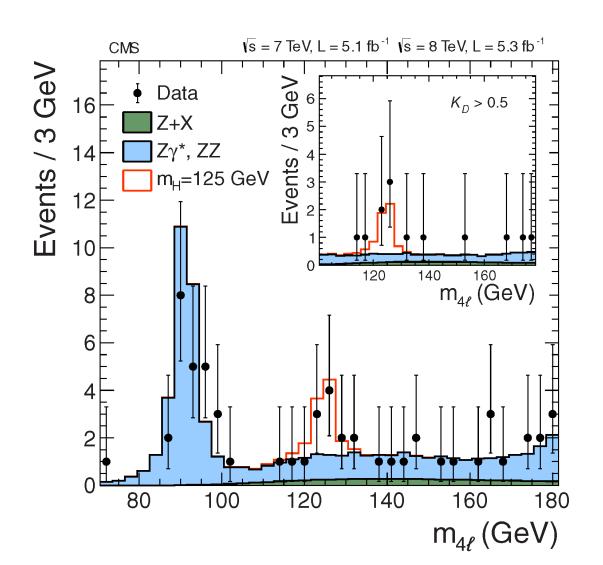
Before re-inventing the wheel, try to see if Statisticians have already found a solution to your statistics analysis problem.

Don't use a square wheel if a circular one already exists.

$H \rightarrow \gamma \gamma$: low S/B, high statistics



$H \rightarrow Z Z \rightarrow 4$ I: high S/B, low statistics



p-value for 'No Higgs' versus m_H

