
FPGA tutorial

Lecture 1
Monday 07.09.2015 – 14:00

Jochen Steinmann

Organisation
● Structure:

1. Solution of the last Excercise
2. Presentation (FPGA / electronics / Verilog)
3. Hand's on tutorial

Please ask your questions

when they rise up!

Organisation II
● Requirements for this course

– none

– has a basic level, that everyone can follow!

● Slides and skeleton programs
– will be inside the Indico before the tutorial

● Solutions will follow after the tutorial

Organisation III
● Hands-On:

– 20 Laptops with VIVADO installed

– 10 BASYS 3 Boards
● 2 Laptops share one Board

● Today two lectures (2 x 90 min.)
– we will have 2 times Lecture and Hands-On

divided by a coffee break

5

What this tutorial cannot do
● Improve your soldering skills

– it's just software / firmware.

● Make you an electric engineer
– electronics is more than FPGAs...

● Make you an FPGA “expert”
– it needs much more time...

6

What this tutorial can do
● Help you understanding electrical engineers

talking about FPGA / Programmable Logic
● Help you programming a basic firmware
● Get an overview of programmable logic

– Problems and their solutions

– Features and how they can be used

Motivation
● Why do physicists need FPGA-Knowledge

– All Experiment readouts are based on FPGAs

– Understanding the processes inside the FPGA
helps troubleshooting the experiment

– Distribution of work:
● electrical workshop:

– PCB layout and production
● physicists:

– Firmware, tests and commissioning

8

Motivation II

● Programmable Logic is state of the art
– designing prototype electronics

– allow “easy” reconfiguration
● If you need a dual core processor, just implement it
● If you don't need it – remove it
● Decisions can be done, when the PCB is produced

● Firmware has to match the experiment
– Physicists should know all about their experiment

– They know all the timing issues, etc.

9

Historical Background

Let's talk about history!

There is always a historical background!

10

Early times of digital electronicsEarly times of digital electronics

11

Why programmable ICs?
● Producing a Chip costs much more than

producing a PCB
● Using one Chip on many PCBs increases

Number of Chips and reduces Costs per Chip
● If a Chip is programmable, it can be used on

many PCBs in different situations
● Producing one wafer costs ~ 10k€

– Not included man power to design wafer &
packaging

● Saving space on a PCB

12

History of
Programmable Logic Devices

● 1960th
– Fuse Configurable Diode Matrix

● 1971
– Programmable ROM

● 1978
– Programmable Array Logic PAL

– Gate Array Logic GAL

– Complex Programmable Logic Device CPLD
Configured during programming → keep configuration

● 1989
– Field Programmable Gate Array FPGA

reprogrammable

In circuit programmable

PLA Programmable Logic Array
every boolean operation
fixed logic gates and programmable
interconnections (matrix)
OTP (one time programmable)

Development process CLPD & FPGA is almost the same

13

Hand wiringHand wiring
Replace by part of one

14

What are FPGAs?

● Simple:
– Programmable Logic Devices

● More detailed:
– Programmable Logic Devices

● With lot of additional function-block (e.g. RAM, DSP)
● Flexible configuration
● Can host mikrocontroller

Field Programmable Gate Array

15

What means Field programmable?

● FPGAs can be programmed in circuit
– soldered on the final PCB

– the surrounding electronics can be operated as
normal, just the FPGA is programmed.

– just need a couple (5 wires) to program a board

● The early programmable logic needs special
voltages to get programmed.

● Boards with multiple FPGAs can be
programmed via one connection to the board
– FPGAs can be daisy-chained

16

PL and HEP?

● Almost every experiment uses FPGAs!
● Many readouts at R&D experiments are realised with

FPGAs, because they are flexible
● FPGAs (can) have a well defined timing
● Provide easy interfaces to

– Memory – different types SRAM, DDR

– Ethernet – 10, 100, 1000 Mbit/s

– PCI – PCI Express

– High Speed serial transceiver (combined up to 2.8 Tb/s Virtex7)

Improve Firmware inside the Experiment

17

PL and HEP?
● readout of new detectors / prototypes
● easy to adapt to current situation
● readout can be done using various interfaces

– Ethernet, USB, etc.

● future detectors have integrated digitisation
– only digital signal conversion

● collecting data of one event
● zero suppression

18

Firmware written by Physicists
● HADES

– Entire DAQ

● PANDA
– Readout prototypes

– Computing nodes

● T2K – ND280
– Trigger

– Data Concentrators

– DAQ

● Double Chooz
– Trigger Generation

T2K TPC DCC

Designed & built by RWTH Aachen

19

Work flow during FPGA
development

PCB layout

PCB production

PCB commissioning

Idea

Firmware tests
(simulations)

Firmware evaluation

Experiment

EngineeringPhysicists

FirmwareFinal Firmware

How it should be...

20

This course
● we will focus on the newest XILINX 7 series

● Digilent BASYS3 Board
– But the development environment also allows

powerful simulations

● sometimes, you can see the NEXYS3 board,
it's the same FPGA but a bit more hardware

21

Kinds of FPGA

7-Series

22

Xiling flag ship – 7 Series
● Announced & Released 2012
● Virtex 7

● starting @ ~ 2,500 US-$ / chip
● ending @ ~ 40,000.00 US-$ / chip

● Artix 7
● starting @ ~ 40.00 US-$ / chip
● ending @ ~ 500.00 US-$ / chip

status 21.10.2014 → avnet

You should always know what you are doing!
when designing and programming FPGA-Boards

Xilinx 7 series

HowTo Program...
● Describe your logic / functions in HDL

– we use VERILOG

● Hardware Description Language
– no “programming and compiling”

● Integrated Design Environment

What language?
● Hardware Description Language
● We will use Verilog

– Alternative: VHDL

● Why Verilog?
– quite similar to C / C++

– easier to learn

– need less words to describe the hardware

What does HDL mean?
● Origin in development of Chips

– HDL were used to describe the behaviour of the
chip and the simulation stimulus

– another language was used to create the netlists
needed for production

– At some point it has been decided to use one
language for both processes

We don't want to spent time on learning the language,
we want to use the hardware!

With Verilog we can write the behaviour and simulation stimulus
using the same language!

27

How “programming” a FPGA?

Hardware Description
HDL

No programming, just description!

Synthesis

Place & Route

Describe what the hardware should do.

Map

Translate

“compiles” the design to transform HDL source into an
architecture-specific design netlist. (connections)

Merges incoming netlists and constraints into a Xilinx design file
→ connections are merged with timing

Fits the design into the available resources
→ tell the FPGA which gate structures should be used

Places and routes the design to the timing constrains
→ decide, which gate is used for which function

Programming Write configuration into the FPGA or configuration memory

Syntax Check Check Syntax

Basic Digital Input

● Direct user inputs
– Keyboard, buttons, rotary dials, switches

● BASYS 3
– Buttons

– Slide switches

10KΩ
To

FPGA

10KΩ

V
DD

10KΩ
To

FPGA

V
DD

Pulldown Resistor

Protection

Protection

+3V3

+3V3

on
off

3V3
0V

on
off

3V3
0V

Xilinx Artix 7 – BASYS 3

User Switches

 Buttons

Basic Digital Output
● Todays state of the art:

– Light Emitting Diodes

● BASYS 3
– Single (green) LED

– 7 Segment LED (red)
● 7 LEDs in one housing with a common Anode or Cathode

→ on Wednesday

From

FPGA
+

-
3.3V

GND

10mA

130Ω
2V

LED on = High Level 1
LED off = Low Level 0

7-segment display
● common anode

– all leds share one anode

● common cathode

● typically all same segments of
all digits share one output
– saves number of outputs

● Multiplexing
– using the persistance of vision (1 kHz)We will

use th
is 7-segment d

isplay la
ter in

 th
is course!

BASYS 3 - LEDs

Status
● now you should be familiar with

– switches

– buttons

– LEDs

– 7-segment display

1st Project
● First template:

– Control all LEDs with the corresponding Slide
Switch

● Switch n controls LED n 1:1

● First introduction to VERILOG
● Get used to VIVADO and try to set it up

Verilog I
● How do we describe the hardware?

– Datatypes

– Functions (called module in Verilog)

– basic operators

● Distinguish between
– combinatorical logic “hardwired”

● this you are able to build easily with discrete gates

– sequential logic “do this, when”

Verilog II - Datatypes
● reg

– source of signal

● wire
– acts as a connection

transports a signal

Every signal needs one source!

External inputs can also be sources.

Data – Levels:
0 – OFF
1 – ON

X – undefined
Z – high impedance

appears when data is not initialised.
Always do proper initialisation!

Needed for input and output on the same pin.
Means, that the output driver of the pin is not
connected.
We will not use this!

Multiple drivers are not allowed!

Verilog III – Datatypes
● multiple data-”lines” can be grouped into busses

– compare to arrays

● length must be given
– wire [MSB:LSB] test

reg [15:0] sw; / wire [15:0] led;
● access to single elements:

– test[3] / test[2] …

● access to multiple elements:
– test[3:0] ← first 4 bits

– test[7:4] ← second 4 bits

Verilog can join busses:
output = { sw[8:0], sw[15:8] };

Verilog III – Datatypes
● Filling datatypes

– single bits → 0, 1

– multiple bits → [Width]'[Radix][Value] → 2'b01
● 2 bit wide
● binary
● 01 filled

● We can also use:
– 'b → binary

– 'h → hexadecimal

– 'd → decimal

Width of number has to match wire or reg width!

Verilog also supports:
'b01→ automatic width matching
'b0 → sets all bits to zero

Signals ↔ Pinout
● constraint file, which is board specific.
● Here the signal names are mapped to the

FPGA Pins.
– e.g.

set_property PACKAGE_PIN V17 [get_ports {sw[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {sw[0]}]

input / output levels

set_property PACKAGE_PIN U16 [get_ports {led[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {led[0]}]

There is one predefined constraints – file (Basys3_Master.xdc)
Note: '#' marks comments, to use the lines, just uncomment them.
Do not change the XDC file, because this can cause malfunctions.

Verilog III - Module
● Logic can be encapsulated in modules

– modules can be in different files

● There must be one top-module, which does
the connection from the FPGA to the board
– signal names here are given in the constraint-file

Verilog III - Module
● First module using:

– 16 slide switches

– 16 LEDs
module BND01top(

input [15:0] sw,
output [15:0] led

)

// do some logic with sw and led

endmodule

input / output defines data direction

width of input / output

module BND01top(
input [15:0] sw,
output [15:0] led

)

// do some logic with sw and led

endmodule

Verilog III - Module
● How are submodules instantiated

module simple_logic(
input [15:0] switch,
output [15:0] ledout

)

// do some logic with sw and led

endmodule

module BND01top(
input [15:0] sw,
output [15:0] led

)
simple_logic mylog01 (.switch(sw), .ledout(led));
simple_logic mylog02 (.ledout(led), .switch(sw));

simple_logic mylog03 (sw, led);

endmodule

Pay attention to the order!

Verilog IV – doing logic
● Basic logical operators:

– OR bitwise 'b01 | 'b10 = 'b11

– AND bitwise 'b01 & 'b11= 'b01

– NOT bitwise ~ 'b01 = 'b10

– XOR bitwise 'b01 ^ 'b11 = 'b10

● Basic comparisons
– equality logical ==

– inequality logical !=

– AND logical &&

– OR logical ||

There are a lot more operators:
>, >=, < etc.

I will introduce them, when they are
needed.

Verilog IV – doing logic
● Howto assing values to outputs

– combinatorical logic:

assign led[0] = sw[0] & sw[1]; sw0 and sw1

assign led[0] = sw[0] | ~sw[1]; sw0 or not sw1

Starting VIVADO

Newest Development Software from Xilinx for 7-Series Development

There should be a Icon on the Desktop!
simply double click it!

You might get a warning, witch notes:
Problem parsing board_part file …

This is related to faulty file.
The software is working as aspected.

We are using the free WebPack-Version.
This license supports the used FPGA, but
not all features of VIVADO.

For this course, we are using version
2014.2

Open existing Project
● Download BND01skel.zip from Indico

– unzip and open the project

● Run Synthesis
● Run Implementation

– do not open the design (it needs to much time)

● Generate the Bitstream
● Program the Board

You can find all items on the left or
top side of your VIVADO window

Running all steps within VIVADO

after its done

takes some time ….

Run Implementation

Generate Bitstream

Failures ?!
● If one step fails always have a look at the

messages.
● Xilinx is quite verbose and most errors can be

solved by having a look at the messages

In this first project there should be no error!

Programming

If you want to program a board:

Connect to Hardware Server

after connecting a BASYS3 use the local server

Select Hardware

Summary

Test Boards
● There are 10 BASYS 3 Boards for this course

– Try it on BASYS 3.

– You can also do a simulation
● I will show later how to do this

Everyone should have a chance to test
his / her firmware on the real hardware!

Please let the others also use the boards!

Program

for normal, there is no need to change these values

What's happening now...

same should happen with the other switches

How-to Save your Solutions
● VIVADO has an option to Archive the Project

Generates small ZIP file
If you want to re-use it later

uncheck
ensure this is checked

1st Project – Summary
● Start VIVADO
● First knowledge about Verilog

– module

– datatypes & levels

– logical operators

● connect inputs with outputs
– using combinatorical logic

● assign

– constraint file (XDC)

2nd Project – doing Logic
● We want to extend the first project by a bit

more logic.
– Create a submodule for the 2nd Project

Now we want to do some logic
– LED0 = SW0 & SW1 ← AND

– LED1 = SW0 | SW1 ← OR

– LED2 = SW0 ^ SW1 ← XOR

– LED3 = ~LED0 ← NOT

LED4 – LED7 = SW4 – SW7 Hint: merge single Bits to a Bus!

Hands On
● Please start with the Hands On!

– solutions will be shown right after the coffee break.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61

