BND School 2015

International Summer School on Particle Physics

Tracking and Tracking Detectors

Norbert Wermes University of Bonn

N. Wermes, BND-School-2015

Outline

Lecture 1

Tracking

- momentum measurement
- vertex measurement
- influence of multiple scattering
- errors and what to do ...

Lectures 2 & 3

Tracking Detectors

- the signal and the noise
- spatial resolution with structured electrodes
- gaseous detectors
- semiconductor detectors

BND School 2015

International Summer School on Particle Physics

Lecture 3 Tracking Detectors (Semiconductors)

universität**bonn**

Silizium Labor Bonn

Norbert Wermes University of Bonn

N. Wermes, BND-School-2015

Content Lecture 3

- □ Looking back at LHC trackers
- □ Tasks of strip/pixel detectors
- Fundamentals of silicon detectors
 - pn and other junctions
 - single and double sided detectors
 - signal and noise
 - δ electrons
 - Ramo for strips again
 - Lorentz angle
- □ Hybrid Pixels
 - sensors
 - front end chips
 - amplifiers, shapers, pile-up
 - thresholds and intime thresholds
 - hybridization
 - biasing

- □ Large tracking detectors
- Upgrades of pixel detectors
- □ Radiation Damage
 - sensor damage and curing measures
 - R/O chip damage and cures
- Noise in ionization detectors
 - Don't be afraid about noise theory
 - When to care about noise?
 - Noise sources in a typical detector system
 - Calculating the noise of a pixel/strip system
- □ How to make things better?
 - Radiation hard sensors and electronics
- Monolithic approaches for pixels
 - DEPFET pixels
 - Monolithic pixels (MAPS)

Looking back at 3 years of LHC (25 /fb) ...

Tracking in pp collisions at 14 TeV (LHC)

 ~1200 tracks every 25 ns or ~ 10¹¹ per second
 ⇒ high radiation dose

10¹⁵ n_{eq} / cm² / 10 yrs @ LHC

or

600 kGy (60 Mrad) through the ionisation of mips in 250 μm bulk silicon

position of tracking detector (pixels, strips, straw tubes)

LHC $\approx 10^6 \text{ x LEP}$ in track rate !

Note: LHC Upgrade (2026): HL–LHC = LHC x 10 !

Tasks of semiconductor strip and pixel detectors

- 1. Pattern Recognition and Tracking
 - precision tracking points in 3D \rightarrow track seeding
 - 1 pixel layer $\leftarrow \rightarrow$ 3-4 strip layers (x,y & u,v for ambiguities)
- 2. Vertexing (primary and secondary vertex) ¹⁾
 - impact parameter resolution
 - secondary vertex resolution
 - primary vertex resolution
 - (life) time resolution

~10μm (rφ), ~70μm (z) ~50μm (rφ), ~70μm (z) ~11μm (rφ), ~45μm (z)

~70 fs

 $\frac{\sigma_{p_{T}}}{p_{T}} = 0.03\% \ p_{T}(GeV) \oplus 1.2\%$ (inner detector)

¹⁾values for ATLAS

Impact parameter resolution (simplified)

Impact parameter resolution (simplified)

N. Wermes, BND-School-2015

Semiconductors suited for detectors

Semiconductor	band gap	$\operatorname{intrinsic}$	average	W_{eh}	mobility		carrier
	(eV)	carrier conc.	\mathbf{Z}	(eV)	$\mathrm{cm}^2/\mathrm{Vs}$		life time
		(cm^{-3})			е	h	
Si	1.12	$1.45 \cdot 10^{10}$	14	3.61	1450	505	$100 \mu s$
Ge	0.66	$2.4 \cdot 10^{13}$	32	2.96	3900	1800	
GaAs	1.42	$1.8 \cdot 10^6$	32	4.35	8800	320	110 ns
CdTe	1.44	10^{7}	50	4.43	1050	100	0.1-2 μs
CdZnTe	~ 1.6		49.1	4.6	$\sim \! 1000$	50 - 80	$\sim \mu { m s}$
CdS	2.42		48 + 16	6.3	340	50	
HgI_2	2.13		62	4.2	100	4	$\sim \mu { m s}$
InAs	0.36		49 + 33		33000	460	
InP	1.35		49 + 15		4600	150	
ZnS	3.68		30 + 16	8.23	165	5	
PbS	0.41		82 + 16		6000	4000	
Diamond	5.48	$< 10^{3}$	6	13.1	1800	1400	${\sim}1~{\rm ns}$

photon absorption by photo effect $\sim Z^{(4-5)}$

Fundamentals of Semiconductor Detectors

The pn junction as a semiconductor particle detector

thin (~µm), highly doped p^+ (~10¹⁹ cm⁻³) layer on lightly doped n^- (~10¹² cm⁻³) substrate

The pn junction as a semiconductor particle detector

N. Wern depletion zone grows from the junction into the lower doped bulk

Detector shapes

DC - Coupling

AC - Coupling

The Signal in pixel detectors => particle tracks

in Si bulk fully depleted

- w_i = 3.65 eV per e/h
- <u>a high energy particle</u>
 - \rightarrow ~ 80 e/h per μ m
- all charge collected
- ~ <mark>20 000 e/h</mark> per 250 μm
- = 3 fC
- <u>radiation</u>

e.g. 10 keV X-ray: 3000 e/h ≈ 0.5 fC

• pixel or strip pattern

- typical cells: 100 x 150 μm^2 50 x 400 μm^2
- charge drift in E-field
- charge diffusion σ ~ 8-10 μm
 → charge spreads over 2-3 pixels/strips

note: photo effect $\sim Z^{(4-5)}$ Si \rightarrow CdTe, CZT, Hgl₂, ...

Charge distribution and delta electrons

Delta electrons

effect of δ -electrons

100 keV δ -electron occurs in 300 μm Si with 6% probability and has "range" of 60 μm

δ -electron with perpendicular emission

DEPFET pixels (25 μ m x 25 μ m)

Signal generation in a strip/pixel detector

reminder: weighting field and weighting potential

$\Phi_{\sf W}$ for a strip/pixel geometry

$$\Phi(x,y) = \frac{1}{\pi} \arctan \frac{\sin(\pi y) \cdot \sinh(\pi \frac{a}{2})}{\cosh(\pi x) - \cos(\pi y) \cosh(\pi \frac{a}{2})}$$

Signal generation in a magnetic field

Ē

Hybrid Pixel Detectors

Today's "state of the art" of running detectors

all based on "Hybrid Pixels"

Important: Readout Chips (ASICs)

- becomes integral part of the detector
 - micro electronics
 - up to 700 million transistors so far
 - development takes typ. 10 man years
- ATLAS FE-I3
 - 0,25 μm CMOS technology
 - pixel cell size: 50 x 400 μm²
 - 18 columns x 160 rows = 2880 cells
 - parallel processing in all cells
 - $\,\circ\,$ amplification
 - $\circ\,$ zero suppression

L. Blanquart, P. Fischer et al., NIM-A 456 (2001) 217-231

Charge Sensitive (Pre)-Amplifiers

.

The amplifier: Charge Sensitive Amplifier (CSA)

Functions in the cell (binary readout + "poor man's" analog)

Integration of signal charge by charge sensitive amplifier

- Pulse shaping by feedback circuit with constant current feed back
- Hit detection by comparator
- ~5 bit analog information via "time over threshold"
- storage of address and time stamps in RAM at the periphery

N. Wermes, BND-School-2015

L. Blanquart et al., NIM-A565:178-187, 2006

Pixel Frontend Chip

Requirements on the electronics performance

<

<

- small noise hit rate \rightarrow
- $\sigma_{\mathsf{noise}} \oplus \sigma_{\mathsf{threshold}}$
- time stamp

- low noise and small threshold dispersion
 - \sim 600 e⁻ @ a threshold of 3000 e⁻
- 20 ns after BX for all signal heights

Distribution of pixel cell thresholds

➔ in-time efficiency ~99% wanted and achieved !

universität**bonn**

ATLAS Pixel Frontend Chip

- becomes integral part of the detector
 - micro electronics
 - up to 700 million transistors so far
 - development takes typ. 10 man years
- ATLAS FE-I3
 - 0,25 μm CMOS technology
 - pixel cell size: 50 x 400 μm²
 - 18 columns x 160 rows = 2880 cells
 - parallel processing in all cells
 - amplification
 - zero suppression
- End of Column logic
 - storage of hit information during trigger latency (2.5 μs)
 - $\circ~$ hit selection upon L1 trigger

L. Blanquart, P. Fischer et al., NIM-A 456 (2001) 217-231

ALTAS FE-chip readout architecture (animated)

- 40 MHz Gray coded clock transmitted to all cells
- Pixel cells generate hit information (address and time stamp) which are stored at the end of column
- hits are removed if no trigger conicidence occurs
- Hit information agreeing with L1 trigger time are read out

- Analogue circuits
- Digital readout circuits
- Registers used to store configuration bits
- Time information
- Trigger

ATLAS Pixel Chip: binary hit information with additional information on signal hight via ToT measurement (~4-5 bit)

CMS pixel-chip (analog readout)

CMS Pixel-Chip PSI46V2

- functional blocks similar to ATLAS Pixel-Chip FE-I3
- additional storage of analog pulse height (sample/hold)
- analog output signal \rightarrow amplitude + row/column address coded in analog levels

H.C. Kastli et al., e-print physics/0511166

CMS pixel-chip (analog readout)

• Overlay of 4160 pixel readouts (analog coded address levels)

H.C. Kastli et al., e-print physics/0511166

HL-LHC data rates

N. Wermes, BND-School-2015

M. Garcia-Sciveres et al, Nucl.Instrum.Meth. A636 (2011) 155-159

٠

37

1.1 mm

Hybrid Pixel assembly => called "hybridization"

Sensors

- n⁺ in n (oxygenated Si)
- wafer size (Ø 10 cm)
- ~200-250 µm thick

Electronics - Chip

- chip size limited by yield ~1-2.5 cm²
- wafer size (Ø 20 cm)

Hybridization

- PbSn or Indium bumps (wafer scale)
- IC wafers thinned after bumping to ${\sim}180~\mu\text{m}$
- ,flip-chip' to mate the parts
- ~3000 bumps/chip, ~50000 bumps/module

ATLAS Modul, Foto:IZM, Berlin

IZM,Berlin

ATLAS pixel BARE module

Hybrid Pixel Assembly

Indium bumping process

Solder bumping & flip chip process

of the plating base / UBM

Spin coating and printing of Photoresist

Electroplating of Cu and PbSn

Reflow

d)

Resist stripping and wet etching of the plating base

Sensor

Flip-Chip

How to bias a pixel detector?

punch through biasing

Semiconductor Tracking Detectors

basically all collider and vertex detectors now possess high precision semiconductor detectors close to the interaction region; often entire "trackers"

Tracking Detectors: CMS (pp collisions)

Largest Si – Detector ever (~200 m²)

N. Wermes, BND-School-2015

modules

Tracking Detectors LHCb VErtex LOcator

Tracking Detectors: ATLAS (pp collisions)

Silicon Strip Detector	~ 60 m²
Silicon Pixel Detector	~ 1.8 m ²

	points	σ (R φ) (μ m)	σ (Rz) (μm)
TRT	36	170	-
SCT	4	17	580
PIXELS	3	10	115

ATLAS Pixel Detector

- light weight "carbon-carbon" structures
- cooling (pumped C_3F_8 : boiling point = -25⁰)
- T < -6° C to limit damage from irradiation

1st Upgrade ... (detector in place)

IBL = ATLAS' insertable B-Layer

- move closer to IP (5.5 cm -> 3.5 cm)
- higher rate
- higher radiation levels (~1/r²)
 - FE-I4: larger chip smaller feature size higher rate capability

~0.6 × 1.1 cm²

250 nm technology pixel size 400 \times 50 μ m² 3.5 M transistors

130 nm technology pixel size 250 × 50 μm² 87 M transistors installed in ATLAS: May 2014

 $\sim 2 \times 5 \text{ cm}^2$

ATLAS Pixel 16-chip module $\sim 2 \times 4 \text{ cm}^2$

INFN GENOVA		

IBL: 2-chip module49

ATLAS IBL in operation

Number of Pixel hits

next generation based on 65 nm technology ...

65 nm prototypes of analog and digital circuits submitted and successfully tested first large prototype submission scheduled for Sept. 2015

N. Wermes, BND-School-2015

universität**bon**

Radiation Damage

J target: 10 years LHC $\approx 10^{15} n_{eq}$ /cm² (600 kGy = 60 Mrad)

- Si sensors: depletion voltage and leakage currents rise
- FE chips: threshold shifts & parasitic transistors occur
- glue: becomes hard and brittle
- mechanics: material performance degrades
- cooling: larger capacity is needed to cool more power

➔ intensive irradiation and test beam program over years including dedicated high intensity beams with LHC like rates and timing structure

Note: Plans for HL – LHC (~2023): HL-LHC = LHC x 10 => up to 1000 Mrad

Pixel Sensors in the LHC radiation environment

particle interactions with lattice nuclei

NIEL

non-ionizing energy loss (not reversible) normalized to 1 MeV neutron damage

recoiling Si-atom can cause further defects → defect clusters (10nm x 200nm)

generation/recombination levels in band gap
 → increase of leakage current

- 2. change of space charge in depleted region
 → change of effective doping concentration
- 3. trapping centers created
 - \rightarrow trapping of signal charge

Pixel Sensors in the LHC radiation environment

particle interactions with lattice nuclei

recoiling Si-atom can cause further defects → defect <u>clusters</u> (10nm x 200nm)

- 2. change of space charge in depleted region
 → change of effective doping concentration
- 3. trapping centers created
 - \rightarrow trapping of signal charge

Change of Depletion Voltage V_{dep} (N_{eff})

• "Type inversion": N_{eff} changes from positive to negative (Space Charge Sign Inversion)

fluence (NIEL) > $10^{15} n_{eq}/cm^2$ total dose > 600 kGy / 60 Mrad

Radiation Damage (NIEL)

Annealing

- shaking the lattice => beneficial annealing
- too long at a high temperature => defects, that did not harm so far, become active => reverse annealing
- hence: keep detectors cool @ -5 to -10° C

Pixel Sensors in the LHC radiation environment

reason: complex interaction of various (point+cluster) defects: V₂O interplay with a "shallow donor" that act against each other, V_2O decreases with oxygenation. For neutrons => only clusters N. Wermes, BND-School-2015

Pixel Sensors in the LHC radiation environment

n-substrate

nverted bulk

to negative (Space Charge Sign Inversion)

fluence (NIEL) > $10^{15} n_{eq}/cm^2$ total dose > 600 kGy

L. Andricek et al, NIM-A 409 (1998) 184-193

Pixel Sensors: isolation of pixel implants

before irradiation the pn- diode is on the "wrong" side: n+ in n- contact.

p-stop

p-spray

moderated p-spray

highest E-fields after irradiation

E-fields decrease with irradiation

optimum configuration for overall voltage stability

R. Richter et al, NIM-A 377 (1996) 412

Measuring the effective depletion depth after irradiation

Measuring the effective depletion depth after irradiation

Radiation damage to the FE-electronics ... and cure

Effects: generation of positive charges in the SiO_2 and defects in Si - SiO_2 interface

1. Threshold shifts of transistors

→ Deep Submicron CMOS technologies with small structure sizes (≤ 350 nm) and thin gate oxides (d_{ox} < 5 nm) → holes tunnel out

2. Leakage currents under the field oxide

➔ Layout of annular transistors with annular gate-electrodes + guard-rings

Radiation damage to the FE-electronics ... and cure

radiation induced bit errors

("single event upsets" SEU)

large amounts of charge on circuit nodesby nuclear reactions, high track densities -can cause "bit-flip"

2 examples of error resistant logic cells

enlarge storage capacitances in SRAM cells:
 Q_{crit} = V_{threshold} · C

→ storage cells with redundancy (DICE SRAM cell)

information and its inverse stored on 2+2 independent and cross-coupled nodes \rightarrow temporary flip of one node cannot permanently flip the cell.

Irradiated Modules after 1 MGy (20 years @ LHC)

Noise

Noise in ionisation detectors

When to care about noise ...

even if you are not interested in an energy measurement, remember ... thresholds

shot noise	white noise	
resistor noise	white hoise	current noise
	switching noise	series noise
flicker noise	popcorn noise	
		Nyquist Noise
Johnson Noise	parallel noise	kT/C noise
1/f noise	RTS noise	Thermal noise

Noise in a pixel/strip detector (ionisation detector)

 \rightarrow

 \rightarrow

three physical noise sources:

- number fluctuations of quanta
- velocity fluctuations of quanta

- 1. shot noise
 - 2. 1/f noise
 - 3. thermal noise

 $<i^2> = 2q <i>df$ $<i^2> = const. 1/f df$ $<i^2> = 4kT / R df$

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta \rightarrow 1. shot noise $\langle i^2 \rangle = 2q \langle i \rangle df$ 2. 1/f noise2. 1/f noise $\langle i^2 \rangle = const. 1/f df$ velocity fluctuations of quanta \rightarrow 3. thermal noise $\langle i^2 \rangle = 4kT / R df$

where do they appear in a typical pixel detector readout chain ?

three physical noise sources:

number fluctuations of quanta	\rightarrow	1. <mark>shot</mark> noise	<i²> = 2q <i> df</i></i²>
		2. 1/f noise	<i²> = const. 1/f df</i²>
velocity fluctuations of quanta	\rightarrow	3. thermal noise	<i²> = 4kT / R df</i²>

where do they appear in a typical pixel detector readout chain ?

ENC =

equivalent noise charge

noise output voltage (rms) signal output voltage for the input charge of 1e⁻

 $ENC_{tot}^2 = ENC_{shot}^2 + ENC_{therm}^2 + ENC_{1/f}^2$

charge sensitive preamplifier only

$$ENC_{\text{shot}} = \sqrt{\frac{I_{\text{leak}}}{2q}}\tau_f \qquad = 56e^- \times \sqrt{\frac{I_{\text{leak}}}{nA}\frac{\tau_f}{\mu s}}$$
$$ENC_{\text{therm}} = \frac{C_f}{q}\sqrt{\langle v_{\text{therm}}^2 \rangle} = \sqrt{\frac{kT}{q}\frac{2C_D}{3q}\frac{C_f}{C_{load}}} = 104e^- \times \sqrt{\frac{C_D}{100\,\text{fF}}\frac{C_f}{C_{load}}}$$
$$ENC_{1/\text{f}} \approx \frac{C_D}{q}\sqrt{\frac{K_f}{C_{ox}WL}}\sqrt{\ln\left(\tau_f\frac{g_m}{C_{load}}\frac{C_f}{C_D}\right)} = 9e^- \times \frac{C_D}{100\,\text{fF}} \text{(for NMOS trans.)}$$

W, L = width and length of trans. gate $K_f = 1/f$ noise coefficient C_{ox} = gate oxide capacitance C_f = feedback capacitance C_{load} = load capacitance C_D = detector capacitance τ_f = feedback time constant

reference Rossi, Fischer, Rohe, Wermes Pixel Detectors. Springer 2006

... with an additional filter amplifier (shaper) being the band width limiter

... with an additional filter amplifier (shaper) being the band width limiter

U typical figures for an LHC pixel detector

Noise =	150 e ⁻ initially	
	200 e ⁻ after 10 years @ LHC	
Signal =	20000 e⁻ total charge in 250 µm Si	
	13000 e ⁻ including charge sharing	
	6000 – 8000 e⁻ after 10 yrs @ LHC	

□ S/N > 30

The typical S/N situation (... here ATLAS)

- Signal of a high energy particle \Rightarrow 19500 e⁻ \rightarrow 10000 e⁻ after irradiation Charge on more than 1 pixel => S/N > 30 \rightarrow S/N \sim 10
- Discriminator thresholds = 3500 e, ~40 e spread, ~170 e noise
- 99.8% data taking efficiency
- 95.9% of detector operational
- \Box ca. 10 µm x 100 µm resolution (track angle dependent)
- □ 12% dE/dx resolution

Particle Identification by dE/dx

possibility to identify different particles
when E or p is known
→ particle identification by dE/dx

How to make things better?

How to make sensors more radiation hard

800

Diamond sensors: (RD42 & DBM collab)

- ~2000e at 2x10¹⁶ n_{eq} cm² \rightarrow need low thresh.
- but S/N potentially better than Si at high fluence
- option for inner layers

skip 3D and CVD? 82

current focus on poly-crystalline pixel modules (ATLAS DBM)

LHC upgrades ATLAS IBL (installed 5/2014)

N. Wermes, BND-School-2015

CVD diamond as a sensor material

property	diamond	Si
band gap [eV]	5.47	1.12
breakdown field [V/cm]	10^{7}	3×10^{5}
resistivity $[\Omega \text{ cm}]$	>10 ¹⁵	2.3×10^{5}
intrinsic carrier density [cm ⁻³]	$< 10^{3}$	1.5×10^{10}
mass density [g cm ⁻³]	3.52	2.33
atomic charge	6	14
dielectric constant	5.7	11.9
displacement energy [eV/atom]	(43)	13-20
energy to create e-h pair [eV]	13	3.6
radiation length [cm]	12.2	9.4
avg. signal created/µm [e]	36	89
avg. signal created/0.1% rad. length X_0 [e]	4400	8400

Diamond is

- "newer" ... pCVD ... scCVD not in large quantities ...
- has no leakage current, smaller C_{det}
 - ... has nice thermal features
- has lower minmium displacement energy => radiation harder
- to be traded off against a ~2.5x smaller signal (unirr. 36e/μm)

□ radiation hard due to

- 5x larger band gap than Si \Rightarrow no leakage current
- strong lattice (x2 stronger than Si) \Rightarrow less NIEL damage

low Z

Rate and radiation challenges at the innermost pixel layers

NEW developments

DEPFET Pixels -> Belle II Monolithic Pixels -> STAR@RHIC, ALICE (Mixed) monolithic/hybrid -> LHC Upgrade?

(Semi)-Monolithic Pixel Detector Projects

STAR / RHIC

in operation since 2014

in production for 2017 (talk by C. Marinas on Wednesday)

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_{d} . FET in saturation:

$$I_{d} = \frac{W}{2L} \mu C_{ox} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox} WL} - V_{th} \right)^{2}$$

 $\begin{array}{ll} I_d: \mbox{ source-drain current} \\ C_{ox}: \mbox{ sheet capacitance of gate oxide} \\ W,L: \mbox{ Gate width and length} \\ \mu: \mbox{ mobility (p-channel: holes)} \\ V_g: \mbox{ gate voltage} \\ V_{th}: \mbox{ threshold voltage} \end{array}$

Conversion factor:

q

$$g_{q} = \frac{dI_{d}}{dq_{s}} = \frac{\alpha \mu}{L^{2}} \left(V_{G} + \frac{\alpha q_{s}}{C_{ox}WL} - V_{th} \right) = \alpha \sqrt{2 \frac{I_{d} \mu}{L^{3}WC_{ox}}}$$
$$g_{m} = g_{q} = \alpha \frac{g_{m}}{WLC_{ox}} = \alpha \frac{g_{m}}{C}$$

How does a DEPFET work?

A charge q in the internal gate induces a mirror charge α q in the channel (α <1 due to stray capacitance). This mirror charge is compensated by a change of the gate voltage: $\Delta V = \alpha q / C = \alpha q / (C_{ox} W L)$ which in turn changes the transistor current I_{d} .

- Internal amplification $g_q \sim 500 \text{ pA/e}^-$
- Small intrinsic noise
- Sensitive off-state, no power consumption

DEPFET pixel array

- DEPFET pixel transistors arranged in a matrix
- row wise select -> column wise readout of transistor (drain) currents
- Gate and clear lines need a steering chip
- Long drain readout lines to keep material out of the acceptance region
- 100 ns per row
 20 µs per frame

DEPFET PXD ... very different from LHC pixels

CMOS Pixels (sometimes called MAPS)

skip?

N. Wermes, BND-School-2015

From HYBRID to (more) monolithic ...

- standard HYBRID pixels
 - various sensors: planar-Si, 3D-Si, diamond
 - mixed signal R/O chip (FE-I3, FE-I4, ROC ...)

- 3D integration of CMOS Tiers
 - separate analog / digital / opto
 - FE-TC4 (Tezzaron/Chartered)

A classification ... from HYBRID to new challenges

- standard HYBRID pixels
 - various sensors: planar-Si, 3D-Si, diamond
 - mixed signal R/O chip (FE-I3, FE-I4, ROC ...)

- Monolithic Active Pixel Sensors
 - MAPS using CMOS with Q-collection in epilayer (usually by <u>diffusion</u> → recent advances)
 - depleted DMAPS using HR substrate or
 HV process to create depletion region:

Diode + Amp + Digital

 $d \sim \sqrt{\rho \cdot V}$

- CMOS on SOI

A classification ... from HYBRID to new challenges

- (voltage) signal coupled to R/O-chip
- **DEPFET** pixels (one in-pixel transistor)

N. Wermes, BND-School-2015

dedicated digital R/O chip

MAPS - epi

- + 'standard CMOS' process
- + fewer interconnections
- + very thin ... low mass
- + low power
- + small pixel size
- + CMOS circuitry, but limited to NMOS
- small signal
- slow charge collection
- frame readout, rolling shutter
- area limited by chip size
- radiation tolerance

• target for ALICE upgrade

CMOS with epi-layer as active layer

universität**bonn**

MAPS – epi: PROBLEM

- + 'standard CMOS' process
- + fewer interconnections
- + very thin ... low mass
- + low power
- + small pixel size
- + CMOS circuitry, but limited to NMOS
- small signal
- slow charge collection
- frame readout, rolling shutter
- area limited by chip size
- radiation tolerance

MAPS for ALICE (2018) and for the ILC (20xx?)

^a This includes a safety factor of ten

N. Wermes, BND-School-2015

And for LHC – upgrade? ...

pixelsensor discriminator ... o(100) transistors

signal \propto depletion depth

$$d\sim \sqrt{\rho\cdot V}$$

chip: column/region architecture buffers, periphery ... o(>100M) transistors ... requires full CMOS i.e. pMOS and nMOS in circuit

TCAD simulations: resistivity – voltage – fill factor

Substrate: $10 \Omega cm - 2k\Omega cm$ Nwell: 1V - 20 VPwell: 0V

from Tomasz Hemperek

N. Wermes, BND-School-2015

TCAD simulations: resistivity – voltage – fill factor

Substrate: 10 Ω cm – 2k Ω cm Nwell: 1V – 20 V Pwell: 0V

from Tomasz Hemperek

Fill Factor influence: here at $10^{15} n_{eq}/cm^2$

Electron Velocity

Tomasz Hemperek

Charge_Collection

fraction of collected charge in first 10ns

substrate resistivity [Ωcm]	Bias [V]	Fill Factor [%]
10	1	15
10	20	15
2k	1	15
2k	20	15
2k	20	75

from Tomasz Hemperek

universität**bonn**

Enabling technologies

"High" Voltage Special processing add-ons (from automotive and power management applications) increase the voltage handling capability and create a depletion layer in a well's pn-junction of o(10-15 μm).

"High" Resistive
Wafers8" hi/mid resistivity silicon wafers accepted/qualified by the foundry.
Create depletion layer due the high resistivity.

Technology features
(130-180 nm)Radiation hard processes with multiple nested wells.
Foundry must accept some process/DRC changes in
order to optimize the design for HEP.

from: www.xfab.com

BacksideWafer thinning from backside and backside implantProcessingto fabricate a backside contact after CMOS processing.

Current approaches (a classification)

HV - CMOS

$$d \sim \sqrt{\rho \cdot V}$$

I. Peric et al.

Nucl.Instrum.Meth. A582 (2007) 876-885 Nucl.Instrum.Meth. A765 (2014) 172-176

- AMS 350 nm and 180 nm HV process (p-bulk) ... 60-100 V
- deep n-well to put nMOS (in extra p-well) and pMOS (limitation)
- \geq ~10 15 µm depletion depth \rightarrow 1-2 ke signal
- \blacktriangleright various pixel sizes (~20 x 20 to 50 x 125 μ m²)
- can also replace "sensor" (amplified signal) in a "hybrid pixel" bonding (bump, glue, other...) to FE-chip => CCPD
Current approaches (a classification)

deep N-well

ი ⁻ ი^թ

ĴĒ

Kolanoski, Wermes 2015

skip to end?

e-

۰lyh

Mattiazzo, S,. W. Snoeys et al. NIM A718 (2013) 288-291 Havranek, Hemperek, Krüger, NW et al. JINST 10 (2015) 02, P02013

- (D)MAPS like configuration but w/ depleted bulk
- small collection node
- long drift path

=> smaller C, more trapping

- deep n and deep p wells
- large collection node
- short drift path
- => larger C, less trapping

P-substrate

(high ohmic > $1k\Omega$ cm)

- 100 µm

20

Current approaches (a classification)

Ο +U

(medium R, 100 Ω cm, depleted)

X-ray photon

- **FD-SOI**
- OKI/LAPIS/KEK Y. Arai et al.
- issues

/p+

Kolanoski, Wermes 2015

would be nice

- back gate effect
- radiation issues due to BOX
- cures invented in recent years
- but not suited for LHC pp
- HV-SOI (thick film)
- Hemperek, Kishishita, Krüger, NW doi:10.1016/j.nima.2015.02.052
- a promising alternative
- doped, non-depleted P- and N-wells prevent back gate effect and increase the radiation tolerance

3D integration ...

... various CMOS layers

3D integration promises

- higher granularity (smaller pixel size)
- lower power
- large active over total area ratio
- dedicated technology for each functional layer
- but: complex fabrication \rightarrow yield is an issue

CMOS vias first ...

Tezzaron/Chartered 0.13 um Process Large reticule (25.76 mm x 30.26 mm) 12 inch wafers

vias: 1.6 x 1.6 x 10 μ m³, 3.2 μ m pitch missing bonds: < 0.1 ppm

Wafer-Level Stacking

Next, Stack a Second Wafer (thin)

universität**bonn**

3D integration ... vias last

- aims to get through the chip silicon
- can connect to other tier
- can use backside as distribution layer

HITOCC: SOURCE_SCAN 2

FE-I3 operated through TSVs (²⁴¹Am)

Module "SC1" Hit Occupancy (of cluster seeds) mod 0 bin 0 chip 0 200 ^∧ •240 120 150 100 80 100 60 source scan 40 FE-I3 50 20 0 8 10 12 14 16 2 6 0 4 Column

M. Barbero, T. Fritzsch, L. Gonella, F. Hügging et al., JINST 7 (2012) P08008

N. Wermes, BND-School-2015

Semiconductor micro pattern detector development is at the forefront of technological advances

- They are the working horse choice for present and future tracking detectors
- There is a large momentum in R&D and building of new detectors for the LHC upgrade
- R&D profits from modern micro technologies and their rapid progress
- Pixels/strips have applications in HEP and X-ray imaging (synchrotron light, medical ... not discussed

Further Reading

- G. Lutz, "Semiconductor Radiation Detectors", Springer Berlin-Heidelberg-New York, 1999.
- Rossi, Fischer, Rohe, Wermes,
 "Pixel Detectors: From Fundamentals to Applications",
 Springer Berlin-Heidelberg-New York, 2006, (ISBN 3-540-283324)
- ATLAS Pixel Detector, Technical Design Report, CERN/LHCC/98-13 (1998)
 CMS Tracker Technical Design Report, CERN/LHCC/98-6 (1998)
 ALICE Inner Tracker System, Technical Design Report, CERN/LHCC/99-12 (1999)
- N. Wermes, "Pixel Detectors for Charged Particles" Published in Nucl.Instrum.Meth. A604 (2009) 370-379, e-Print Archive: physics/0811.4577
- Kolanoski, H. and Wermes, N.
 Teilchendetektoren Grundlagen und Anwendungen, Spektrum-Verlag, (2016) in print

Teilchendetektoren

Grundlagen und Anwendungen

🙆 Springer Spektrum