
FPGA tutorial

Lecture 3
Wednesday 09.09.2015 – 14:00

Jochen Steinmann

3rd Project - Summary
● Counter

– CLK Clock input

– DIR Up / Down

– EN enable

– RST Reset (synchronous)
will be executed on next clock event

– VAL 16bit wide register for counting value

3rd – Project – Solution
● In the skeleton I used switches for everything

– also for clock!

– gives opportunity to see, what happens when

FPGA – Implemented Logic
● Almost all logic can be reduced to use ANDs,

ORs and FlipFlops
● FPGA uses “logic cells” for implementation
● Up to 4 / 6 inputs can go to one cell

MUX
(Switch)

FlipFlop

4 inputs

Clock

FPGA – Implemented Logic
● logic cells can be connected within each other
● inputs and content

of LUT is generated
by configuration

→ VIVADO
● FPGA on BASYS3

– 33k logic cells

FPGA – input / output
● IO – cells have

– FlipFlops

– Pull – Up / Pull Down

– Input and Output Driver

FPGA – Output Levels
● Slow Signals

– Single ended
● LVCMOS, LVTTL (0 - 3V3)

● Fast Signals
– Differential Signals

● LVDS (CM 1V25 AC 400mV)
sometimes using current
source

Distortions affect only the common mode
Voltage difference is unaffected
Mostly using twisted pairs

Talking to many devices
● Address decoder
● selects only one device

3 out of 8
● 2 different types

– one hot (1)

– one cold (0)

● all others inverted
logic level

one famous type:
74 HC 138

Logic table of 74HC138

disableddisabled

Need of an address decoder?
● Independent:

– outside FPGA

– inside FPGA

● Different logic blocks (chips) have to be
addressed.
– ensure that only one is active and talks with the

master

– if multiple devices (slave) are active, may cause
short circuits and lot of trouble

4th – Project
● Address encoder

– if talking to multiple chips, you have to ensure, that
only one is selected at the same time!

– Two options
● one hot → selected chip 1, others 0
● one cold → selected chip 0, others 1

– Input
● 2 bit (0-3)

– Output
● 4 bit

Hint:
you can use a bus to access elements of a bus

a[b] → will access the bit b of a

Output to humans
● There are many ways how an FPGA device

can communicate with the “operator”
– High energy physik

● mostly remote access → e.g. Network etc.

– Consumer devices
● need graphical menues

– LEDs → easy
– 7-Segment displays → more complex, but still simple
– LCDs → too complex for this course

Difference
● Humans use decimal system
● FPGAs and computers use binary system

● Need to convert between different worlds
– 1001 → 9

1st 7 segment lookup table

5th - Project
● Heading forwards to display numbers on the

7-segement display
● Lookup table for 7 segment display

– 7 segments can display 10 values 0 – 9

– depending on the input different outputs have to
be switched on

● Inputs 4 Bit →sw3 – sw0
● Outputs 8 Bit → 7 Segments

5th – Project

one Bus
segments = 'b0000011;
A + B on

5th - Project

Verilog – CASE
● simple case structure

reg [1:0] address;

case (address)

2'b00 : begin
statement1;

end

2'b01, 2'b10 : statement2;

default : statement3;

endcase either you implement all possible
combination, or you use a default
Otherwise the logic is not fully
determined.

6th - Project
● Problem:

– FPGA uses binary notation

– Human uses decimal notation

– have to split our number into digits
● ones
● tens
● hundrets

Binary Coded Decimal
4 Bit for each digit

use 8 bit input → 0 … 255

BCD
● Example:

BCD Algorithm

1.If any column (1000's, 100's, 10's, 1's) is 5 or
greater add 3 to that column

2.Shift all #'s to the left 1 position

3.If 8 shifts are done, it's finished.
Evaluate each column for the BCD values

4.Go to step 1.

http://www.eng.utah.edu/~nmcdonal/Tutorials/BCDTutorial/BCDConversion.html

BCD – Pseudo Code

Verilog – for loop
● define somewhere an integer i

for(i=start; i<=stop; i=i+1) begin

end
● Difference to C/C++ or PCs

– due to synthesis loops runtime is zero

– loops don't need a clock!

– just to make the source code look a bit nicer :-)

Verilog - shift
● Multiply and divide by 2

– value << position → shift to left → * 2

– value >> position → shift to right → / 2

● if you shift out of memory, the bit is lost

ToDo

4) address decoder
(de-) select one bit of 8
3 bit input
3 to 8 (one cold)

5) 7 segment lookup table
map 4 input bits to the 7 segments, which
should light up

6) Binary coded decimal
display 4 bits as 0 … 9 on the 7 segments

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

