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3rd Project - Summary
● Counter

– CLK Clock input

– DIR Up / Down

– EN enable

– RST Reset (synchronous)
will be executed on next clock event

– VAL 16bit wide register for counting value



 

3rd – Project – Solution
● In the skeleton I used switches for everything

– also for clock!

– gives opportunity to see, what happens when



 

FPGA – Implemented Logic
● Almost all logic can be reduced to use ANDs, 

ORs and FlipFlops
● FPGA uses “logic cells” for implementation
● Up to 4 / 6 inputs can go to one cell

MUX
(Switch)

FlipFlop

4 inputs

Clock



 

FPGA – Implemented Logic
● logic cells can be connected within each other
● inputs and content

of LUT is generated
by configuration

→ VIVADO
● FPGA on BASYS3

– 33k logic cells



 

FPGA – input / output
● IO – cells have

– FlipFlops

– Pull – Up / Pull Down 

– Input and Output Driver



 

FPGA – Output Levels
● Slow Signals

– Single ended
● LVCMOS, LVTTL (0 - 3V3)

● Fast Signals
– Differential Signals

● LVDS (CM 1V25 AC 400mV)
sometimes using current
source

Distortions affect only the common mode
Voltage difference is unaffected
Mostly using twisted pairs



 

Talking to many devices
● Address decoder
● selects only one device

3 out of 8
● 2 different types

– one hot ( 1 )

– one cold ( 0 )

● all others inverted
logic level

one famous type:
74 HC 138



 

Logic table of 74HC138

disableddisabled



 

Need of an address decoder?
● Independent:

– outside FPGA

– inside FPGA

● Different logic blocks (chips) have to be 
addressed.
– ensure that only one is active and talks with the 

master

– if multiple devices (slave) are active, may cause 
short circuits and lot of trouble



 

4th – Project
● Address encoder

– if talking to multiple chips, you have to ensure, that 
only one is selected at the same time!

– Two options
● one hot → selected chip 1, others 0
● one cold → selected chip 0, others 1

– Input
● 2 bit (0-3)

– Output
● 4 bit

Hint:
you can use a bus to access elements of a bus

a[b] → will access the bit b of a



 

Output to humans
● There are many ways how an FPGA device 

can communicate with the “operator”
– High energy physik

● mostly remote access → e.g. Network etc.

– Consumer devices
● need graphical menues

– LEDs → easy
– 7-Segment displays → more complex, but still simple
– LCDs → too complex for this course



 

Difference
● Humans use decimal system
● FPGAs and computers use binary system

● Need to convert between different worlds
– 1001 → 9

1st 7 segment lookup table



 

5th - Project
● Heading forwards to display numbers on the 

7-segement display
● Lookup table for 7 segment display

– 7 segments can display 10 values 0 – 9

– depending on the input different outputs have to 
be switched on

● Inputs 4 Bit →sw3 – sw0
● Outputs 8 Bit → 7 Segments



 

5th – Project

one Bus
segments = 'b0000011;
A + B on



 

5th - Project



 

Verilog – CASE
● simple case structure

reg [1:0] address;

case (address)

2'b00 : begin
statement1;

end

2'b01, 2'b10 : statement2;

default : statement3;

endcase either you implement all possible
combination, or you use a default
Otherwise the logic is not fully 
determined.



 

6th - Project
● Problem:

– FPGA uses binary notation

– Human uses decimal notation

– have to split our number into digits
● ones
● tens
● hundrets

Binary Coded Decimal
4 Bit for each digit

use 8 bit input → 0 … 255



 

BCD
● Example:



 

BCD Algorithm

1.If any column (1000's, 100's, 10's, 1's) is 5 or 
greater add 3 to that column

2.Shift all #'s to the left 1 position

3.If 8 shifts are done, it's finished.
Evaluate each column for the BCD values

4.Go to step 1.

http://www.eng.utah.edu/~nmcdonal/Tutorials/BCDTutorial/BCDConversion.html



 

BCD – Pseudo Code



 



 

Verilog – for loop
● define somewhere an integer i

for(i=start; i<=stop; i=i+1) begin

end
● Difference to C/C++ or PCs

– due to synthesis loops runtime is zero

– loops don't need a clock!

– just to make the source code look a bit nicer :-)



 

Verilog - shift
● Multiply and divide by 2

– value << position → shift to left → * 2

– value >> position → shift to right → / 2

● if you shift out of memory, the bit is lost



 

ToDo

4) address decoder
(de-) select one bit of 8 
3 bit input
3 to 8 (one cold)

5) 7 segment lookup table
map 4 input bits to the 7 segments, which
should light up

6) Binary coded decimal
display 4 bits as 0 … 9 on the 7 segments
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