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Abstract. Advanced mathematical and statistical computational methods are required by
the LHC experiments to analyzed their data. These methods are provided by the Math work
package of the ROOT project. An overview of the recent developments of this work package is
presented by describing in detail the restructuring of the core mathematical library in a coherent
set of C++ classes and interfaces. The achieved improvements, in terms of performances and
quality, of numerical methods present in ROOT, such as random number generations are shown
as well. New developments in the fitting and minimization packages are reviewed. A new
graphics interface has been developed to drive the fitting process and new classes are going to be
introduced to extend the existing functionality. Furthermore, recent and planned developments
of integrating in the ROOT environment new advanced statistical tools required for the analysis
of the LHC data are presented.

1. Introduction

The ROOT MATH work package is responsible to provide and to support a coherent set of
mathematical and statistical libraries required for simulation, reconstruction and analysis of
high energy physics data. Existing libraries provided by ROOT are in the process of being
re-organized with the aim to avoid duplication, increase modularity and to facilitate support in
the long term. The main library components are the followings and shown in figure 1.

• MathCore: a self-consistent minimal set of mathematical tools and implemented as simple
functions or C++ classes and required for basic HEP numerical computing.

• MathMore: a package incorporating advanced numerical functionality which might be
needed for only specific applications (as opposed to MathCore which addresses the primary
needs of users) and dependent on external libraries like the GNU Scientific Library [1].

• Linear Algebra: vector and matrix classes and their related linear algebra functions. Two
libraries exist: a general matrix package and SMatrix, an optimized package for small and
fixed size matrices.

• Fitting and minimization libraries: classes and libraries implementing various types of
fitting and function minimization methods.

• Statistical libraries: packages providing methods for multi-variate analysis such as
neural networks or decision trees and tools for computing confidence levels and discovery
significances using frequentist or bayesian statistics.



Figure 1. New structure of the ROOT Mathematical Libraries, showing the components already
existing and those which are in the process of being developed.

• Histogram libraries: advanced classes for displaying and analyzing one or multi-
dimensional dimensional data. It provides the histograms and profiles classes for binned
data sets. Multi dimensional un-binned data sets are handled by the tree library.

In the following sections a detailed description is given for some of these components which
have been recently developed and released. A brief description will be given also for those
components that are planned to be introduced in ROOT.

2. MathCore

MathCore provides the basic and most used mathematical functionality. It is an self-consistent
component which can be released as an independent library and used outside of the ROOT
framework. MathCore consists up to now of:

• commonly used special functions like the Gamma, Beta and Error function and the
major statistical distributions, including probability density functions and cumulative
distributions;

• the physics and geometry vector package containing classes for specialized vectors in 3D
and 4D and their operations;

• interfaces classes for functions and numerical algorithms, which can be implemented in
other mathematical library like MathMore.

It is planned to merge in MathCore classes and code currently present in the other ROOT
library, like libCore or libHist. The goal of this restructuring is to remove duplications, improve
the overall modularity of ROOT and as well the quality of the implementations in terms of CPU
performances and numerical accuracy. The components scheduled to be merged and already
existing in ROOT are:

• classes for random number generation (TRandom classes);



• additional mathematical functions provided currently in the existing TMath namespace;

• classes implementing basic numerical algorithms such as numerical integrations which are
currently provided by the TF1 class.

A more detailed description of the recent developments in MathCore is given in the following
subsections. The physics vector package, which is currently used by the LHC experiments, has
been presented in the previous CHEP conference [2] and it will not be described here.

2.1. Mathematical Function

The most used special functions, like the error function, gamma, beta, including the incomplete
(regularized) ones, are included in the MathCore library. In the latest ROOT release (5.17.04),
the implementations for these functions has been improved, by using code imported from the
Cephes [5] library. These new implementations are accurate at the required double numerical
precision level and they are more efficient in term of CPU time than the previous ones
implemented using GSL. In addition they can be used within the terms of the ROOT license.
For example, the evaluation of the incomplete gamma function, which is used extensively in
HEP for estimating the Chi2 probability, results more accurate than the TMath implementation
by running comparison tests with the Mathematica package (see figure 2. It is also more efficient
than both the GSL and the TMath implementation.
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Figure 2. Absolute and relative difference in the values obtained by the Incomplete (regularized)
gamma function between Mathematica and the new MathCore implementation (blue), TMath
implementation (red) and GSL implementation (magenta).

Additional special functions, such as Bessel functions or Legendre polynomials are included
instead in the MathMore library. The naming used for all the special functions is the one
proposed as next extension of the C++ Standard Library [4].

Commonly used statistical distribution functions such as normal, χ2, Cauchy, etc.., are
provided in a coherent naming scheme. For each statistical function, the probability density
function, with suffix _pdf, (for example normal_pdf for the normal distribution), the cumulative
distribution function with suffix _cdf, the complement of the cdf with suffix _cdf_c, the quantile
function (inverse of the cdf), with suffix _quantile, and the inverse of the complement of the
cdf, with suffix _quantile_c are available. For a complete list of the available mathematical
functions in ROOT see the user guide [3].



2.2. Function interfaces and Functors

For user convenience and for decoupling the algorithm implementations from the function
definition, abstract interfaces for function evaluation in one or multi-dimensions have been
introduced. They are used by all the major numerical algorithms, such as integration, derivation
or minimization. Dedicated interfaces are present as well for functions providing analytical
derivatives, since some numerical algorithms can profit from that capability. Parametric function
interfaces are instead used for fitting and data modeling.

In order to avoid the user to implement by hand the required function interface to pass to
a numerical algorithm, adapter classes and functors are available to wrap any C++ callable
object with the right signature. In this way, it is very convenient for the users to create
the concrete classes from any function objects, implementing the one or multi-dimensional
function interfaces required by the numerical algorithm. For example, classes implementing
one-dimensional functions can be created from global C functions like double f(double x) ,
C++ classes implementing the double operator()(double x) or any member function of a
class returning a double and taking a double as argument. This approach is very powerful,
giving the user the possibility to customize the function objects using its constructor, and as
well very easy to use.

The existing TF1 class in ROOT has also been extended with the possibility to be created
using a functor class with a parametric function signature (double F (double * x, double *

p)). Therefore, a TF1 class can be now created using references to non-global objects, which
was not possible before.

2.3. Numerical Algorithms

Various numerical algorithms such as derivation, adaptive and non-adaptive integration,
interpolation, minimization and root finders are available currently in ROOT in the TF1 class
of the Hist library and in MathMore. Those in MathMore are implemented using the GNU
Scientific Library (GSL) [1] and complement those in the class TF1.

In order to have a common entry point for the user, interfaces classes for these numerical
algorithms are being developed. These interfaces are then implemented by derived classes, which
can be present in other ROOT libraries and can be loaded automatically using the ROOT plug-
in manager. The implementations present in the TF1 class are being moved in some of these
derived classes.

Figure 3. Interfaces and implementation classes for multi-dimensional numerical integration

For example in the case of multi-dimensional numerical integration, an implementation based
on the adaptive quadrature algorithm is present in MathCore (class IntegratorMultiDim) and
the GSL based Monte Carlo integration methods (available via the class GSLMCIntegrator) are
in MathMore (see figure 3). The user interacts with a common class, which at construction time
instantiates the corresponding implementation class. Using the plug-in manager we ensure then
that MathCore is independent at compile time from other ROOT libraries.



New numerical algorithms which have been recently added in Mathmore and implemented
using GSL are :

• Monte Carlo integration methods based on VEGAS, MISER or PLAIN;

• multi-dimensional minimization methods using conjugate gradient algorithms;

• non-linear least square fitting using the Levenberg-Marquardt solver;

• simulated annealing for minimization of non-smooth functions.

Fast Fourier Transforms are as well provided in ROOT via an interface to the FFTW [6] package.
The class class TVirtualFFTW defines the interface and it is implemented by classes of the ROOT
FFTW library.

2.4. Random Numbers

In ROOT pseudo-random numbers can be generated using the TRandom classes. A base class
provides the methods for generating uniform and non-uniform numbers (according to specific
distributions), while the derived classes, TRandom1, TRandom2 and TRandom3 implement pseudo-
random number generators. These classes have been recently improved by replacing some
obsolete generators. The following pseudo-random number generators are currently available
in ROOT:

• Mersenne and Twister generator [7] implemented in the class TRandom3. This is the default
generator in ROOT and the recommended one for its very good random proprieties and
its speed. It can also be seeded automatically with a 128 bit UUID number in order to
generate independent streams of random numbers which can be used in parallel jobs.

• RanLux generator [8] provided via the class TRandom1.

• Tausworhte generator [9] from L’Ecuyer implemented in the class TRandom2. This generator
is fast and has the advantage to use only 3 words of 32 bits for its state.

The CPU time results for generating a pseudo-random number using the ROOT generators are
shown in table 2.4.

Random Number Generator Intel 32 Intel 64

MT (TRandom3) 22 ns 9 ns
TausWorthe (TRandom2) 17 ns 6 ns
RanLux (TRandom1) 120 ns 98 ns

Table 1. CPU time for generating one pseudo-random number on a Linux PC with the 32 or 64
bit architecture running CERN Scientific Linux 4 and using the GNU gcc version 3.4 compiler

The base class TRandom provides also a Linear Congruential Generator. This generator has
a state of only 32 bits (one single word) and therefore a very short period ( 231) and should not
be used in any statistical application.

TRandom implements as well methods for generating random numbers according to specific
distributions. Recently a new faster algorithm for generating normal distributed random
numbers, based on the acceptance-complement ratio method (ACR) [10], has been added to
ROOT. This algorithm is much faster than the traditional Box-Muller (polar) method used
previously, which was requiring the evaluation of mathematical functions like sqrt or log. For
example, on a 64 Intel Linux box running ROOT compiled with gcc 3.4, the time for generating
one random gaussian number has been decreased from 183 to 42 ns.

The latest releases of ROOT (from version 5.14) contain in addition an interface to
UNU.RAN [11], a software package for generating non-uniform pseudo-random numbers.



UNU.RAN provides universal (also called automatic or black-box) algorithms that can generate
random numbers from large classes of continuous (in one or multi-dimensions), discrete
distributions, empirical distributions (like histograms) and also from practically all standard
distributions. Efficient methods based on Markov-Chain Monte Carlo are as well provided for
multi-dimensional distributions.

3. SMatrix Package

ROOT contains a general matrix package (TMatrix classes) for describing matrices and vectors
and their linear algebra operations in arbitrary dimensions and of various types and a dedicated
package SMatrix for fixed and small size matrices. SMatrix is based on C++ expression
templates to achieve an high level optimization and minimize memory allocation in matrix
operations. It is based on a package developed for HeraB [12] and it has been already presented
in the CHEP06 conference [2]. Generic SMatrix and SVector classes describe matrix and vector
of arbitrary dimensions and type. The classes are templated on the scalar type and on the
dimension, like number of rows and columns for a matrix. The matrix classes have in addition
as template parameter, the storage representation. This extra parameter differentiates general
and symmetric matrices.
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Figure 4. Comparison in matrix operation between SMatrix, TMatrix and HepMatrix from
CLHEP, for general squared and symmetric matrices of various dimensions obtained on a
Linux Intel x86 64 bit processor running Scientific Linux SLC4. This architecture is the main
component of the current CERN cluster and yields the best relative performances for SMatrix.
See table 3 for results on other architectures.

SMatrix is used by the LHC experiments in their reconstructions for representing fixed size
matrices such as covariance matrices obtained in track fits. The package is designed for small size



matrices, when maximum performances are achieved by avoiding temporaries with expression
templates, and by having the functions inline. The disadvantages of this approach are large code
size and long compilation time, which both increase when the matrices get bigger in size. It is
therefore not recommended to use SMatrix for matrix (and vector) dimensions larger than 10.

Figure 4 shows the performances of SMatrix, comparing with TMatrix and CLHEP. Table 3
shows the performances of the three packages on different platform for a benchmark application,
the Kalman filter update equation. CPU times are reported for matrix dimensions typically
used in the track fit (5x5 and 5x2), and inclusive processing time for smaller and larger matrix
sizes. These tests demonstrate the advantage of using SMatrix for fixed small sizes. Large
improvements by using SMatrix instead of CLHEP have been observed as well by the LHC
experiments.

Architecture and Linux Intel Mac OSX Intel Linux Intel Windows Intel
compiler x86-64 gcc 3.4 x86-64 gcc 4.0 x86-32 gcc 3.2 x86-32 VS 7.1

Matrix sizes N1 = 5, N2 = 2

SMatrix 0.37 µs 0.55 µs 0.80 µs 0.58 µs
TMatrix 0.98 µs 0.98 µs 1.46 µs 1.30 µs
CLHEP matrix 3.13 µs 4.88 µs 5.62 µs -

Matrix sizes 2 ≤ N1 ≤ 6, 2 ≤ N2 ≤ 6

SMatrix 23.4 µs 27.4 µs 40.4 µs 29.4 µs
TMatrix 53.1 µs 33.1 µs 64.5 µs 48.7 µs
CLHEP matrix 104.1 µs 133. µs 169.2 µs -

Matrix sizes 6 < N1 ≤ 10, 6 ≤ N2 ≤ 8

SMatrix 163 µs 162 µs 308 µs 182 µs
TMatrix 305 µs 175 µs 354 µs 338 µs
CLHEP matrix 466 µs 544 µs 864 µs -

Table 2. CPU time results for running the Kalman benchmark test (update of the covariance
matrix) on various machines and compilers and for different matrix sizes. For the case 2 ≤ N1,N2
≤ 6 and 6 < N1,N2 ≤ 10,8 the time is the inclusive results of all the 25 and 38 combinations.
The Windows CLHEP results are not given, since the CLHEP Window library was compiled
without optimization flags.

4. Fitting and Minimization

Fitting in ROOT is possible directly via the Fit(..) methods of the data object classes like
histograms (classes TH1, TH2, TH3), graphs (classes TGraph, TGraphErrors, TGraphAsymmErrors
and TGraph2D) and trees (class TTree). Fit methods such as least-square or binned and un-
binned likelihood are supported.

An interface class, TVirtualFitter exists to perform more sophisticated fits and to interface
the minimization packages, like Minuit [13], Fumili [14] or Minuit2 [15], the new objected oriented
version of Minuit. In the case of linear fits, a dedicated class TLinearFitter, exists to solve the
resulting linear system.

An extension to the linear fitter (robust fitter) for removing bad observations, outliers, based
on the approximate Fast Least Trimmed Squares (LTS) regression algorithm for large data
sets [16] exists as well. More complex fits can be performed by using the RooFit package [17],
which is now distributed within ROOT. Fits can be controlled by using the ROOT Graphics User
Interface (GUI), which has been re-designed recently and improved by adding new functionalities.



4.1. The Fit Panel

The new fit panel Graphical User Interface (GUI) became a part of the ROOT version 5.14. Its
goal is to provide a more user friendly way for fitting directly binned and unbinned ROOT data
sets (histograms, trees, graphs) with various options: least square, likelihood fits, linear and
robust fits, etc. It allows an easy selection of a data set, built-in function, fit method and model.
The fit panel is a modeless dialog, when opened, it does not prevent users from interacting with
other windows. When the fit panel is active, users can select an object for fitting in the usual
way for selecting an object in the ROOT canvas, i.e. by left-mouse click on it. If the selected
object is suitable for fitting, the fit panel is connected with this object and users can perform
fits by setting different options, parameters values, etc. The fit panel can be activated via the
context menu of any ROOT object suitable for fitting. For example, after a right mouse click
on a histogram it will pop up the context menu and the fit panel can be shown by selecting
the menu entry Fit Panel. Furthermore, the fit panel implementation includes methods, which
allow users to embed this interface in their applications.

By design, the user interface is separated in two tabs: General and Minimization (see figure 5).
The General tab provides user interface elements for setting the fit function, fit method and
different options for fitting. The combo box Predefined contains by default a list of predefined
functions in ROOT containing several polynomials, gaussian, Landau, and exponential functions.
The user-defined fit functions are recognized and included in this list. Also, users are free to
enter the function expression into the text entry field below the Predefined combo box.

Figure 5. The General tab (left) and the Set Parameter dialog (right) of the fit panel. Several
functions for different parameters values are plotted together with the result of the fit. The
function parameters can be changed and viewed immediatly using the dialog slider.

The parameters settings are very flexible and allow users control via the dialog that shows



up if the button Set Parametersis clicked (see Fig 5). Users can set the initial parameter values
or they can change the values after the fitting and having observed the result. In addition, they
interactively can fix parameters or set boundary limits.

The combo box Method provides fit model choices depending on the data set. For example
for histograms, the Chi-square or binned likelihood methods are provided. In case of linear fits,
the check button Linear Fit sets the use of the linear fitter to find directly the solution without
using a numerical minimization method

The Minimization tab offers an easy choice of minimization methods and possibility for
specifying the minimization parameters such as error definition, maximum tolerance, the
maximum number of iterations, and print options. It allows users to select different minimizers
as Minuit, Fumili, Minuit2, and Fumili2.

The fit panel interface is flexible and allows extensions. It is planned to include developments
related to the advanced draw options (including contours and confidence levels), more built-
in fit functions, possibilities for fitting, via the GUI, ROOT trees using un-binned maximum
likelihood fits, fitting multi-graphs, multi-histograms and support of user-defined fit methods.
In long term extensions are planned for building complex models (add, multiply and convolute)
and to interface to PDF classes of the RooFit toolkit [17].

4.2. Developments of ROOT Fitting Extensions

It is planned to improve the existing ROOT fitting classes, by extending the functionality of the
TVirtualFitter class, by providing support for fits running on parallel architectures, various
fitting and minimization methods and easier integration with RooFit.

The new ROOT fitting extensions will consist of new separate classes for the fitting and
minimization process. The role of the fitter class is, given the data and a model function, to
build the appropriate objective function to be minimized via the minimizer class. The fitter
drives as well the minimization process, by setting all the required control parameters. With
this design, it is possible to use with the same fitting class different minimization algorithms,
which can then be part in various libraries and instantiated via the plug-in manager.

Another important characteristics of this extension, is the de-coupling between the data
source and the fitter class. In this way the same fitter class can be re-used on many different
types of data sets, not only on ROOT data objects like the histogram classes. Furthermore, the
results of the fit are represented within a separate object which can be stored and retrieved. The
minimal function interfaces defined in MathCore are then used for the fitting (model) function
and for the minimization (objective) function. It will then be possible to use different function
classes, such as TF1 or RooPdf classes defined in RooFit. Another important capabilities will be
the support for parallel fits using multiple threads for time consuming tasks in order to achieve
optimal scalable performances on multi-core CPU’s.

4.3. New Statistical Tools

For multi-variate analysis and signal-background discrimination a new package, TMVA [18],
has been integrated recently in ROOT. It provides various algorithms, like automatic cuts
optimizations, likelihood estimators, neural networks and boosted decision trees with common
interfaces to use all these multi-variate methods easily together.

A new package is also currently being developed to extend and improve the functionality
of estimating confidence levels to satisfy the LHC requirements and focusing in particular
on estimating discovery significances. It will both include frequentists and bayesian methods
and it will be based on the RooFit data modeling framework [19]. Tools for easy statistical
combinations of results will be as well provided by this new package.

Improvements in the comparison of histograms have been recently introduced by using a new
algorithm for the chi2 test. The new algorithms [20] provides the possibility to compare as well



weighted histograms, histograms with different scales and produces also normalized residuals.
It is planned to introduce new tools for density estimation and smoothing for multi-

dimensional functions and cluster analysis algorithms. An effort will be spent also on
reorganizing the existing statistical tools by grouping them in a common library and remove
duplications. The priority will be however in developing the statistical tools required by the
LHC experiments to analyze their data.

5. Conclusions

ROOT contains already a large variety of mathematical and statistical functionality required
for the analysis of LHC data. An effort is on-going to consolidate the existing libraries by
improving the algorithms, by making them easier to use and by increasing their modularity to
gain in long term maintainability. The needs and the feedback received from users working on
data analysis and reconstruction of the experiment data are as well taken into account in this
consolidation process. Many of the tools currently present in ROOT have been developed by
various contributors from the high energy physics community. It is therefore important to ensure
a continuation of these user contributions and to provide an easy way for the users to plug-in
their developed tools. In addition, this consolidation effort should aim to remove duplications
and provide implementations which are considered standard by the community.
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