HEP grids face IPv6: a readiness study

Matt Crawford Fermilab

IPv6 Promises

More addresses

Better security

_Manageable-routing tables ?

Better QoS

-True mobility - ?

Will IPv6 "happen"?

Evidence for the affirmative:

 If sites are using NAT, effectively IPv4 addresses have already run out.

Evidence for the negative:

 The US government has mandated support for IPv6 on agency networks. NATs (and firewalls) are ruining the internet. Two LHC T-2 centers have requested IPv6 access to FNAL T-1.

China's **CERNET2** is IPv6-only, carrying some v4-over-v6 for transition purposes.

The global BGP routing tables have 230,000 entries, with 400,000 updates/day — seems to be outstripping progress in chips and memory.

But When?

IANA's last block of addresses is estimated to go 19 Mar 2010.

Regional registries' last blocks: 10 Oct 2010 – "10/10/10."

Will IPv4 end then? Of course not.

Readiness Roll-Call

Backbone Networks ... Ready!

Operating Systems ... Ready!

Site Networks ... Partly ready

Site Infrastructure ... Not ready

Application Software ... Partly ready

Site Networks

Common network hardware is fully IPv6-ready.

Your site needs to obtain or prepare:

- Address prefix(es) from network provider(s)
- Addressing plan
- Addressing infrastructure: Static, DHCPv6, and/or auto-configuration, and DNS connection to assignment mechanism.

Site Infrastructure

The biggest problem is security.

(Isn't it always?)

- Border/firewall ACLs.
- Internal network partitioning.
- Scanning, monitoring, logging.
- Address-based application access controls.
- "Host firewalls" ipchains and the like.

Site Infrastructure

Some things are *not* on the critical path to IPv6 deployment:

 Duplicating or porting every infrastructure service – email, printing, file servers.

IPv4 will not go away soon ... perhaps never.

Applications

To write a v4/v6 application in C, forget many of the socket library functions you mastered in 1990. For one example:

```
inet_ntoa() ... out
addr2ascii() ... in
```

Or use java – SDK 1.5 is fully v6-ready, and programs can be ignorant* of IP versions in use.

Address Dependencies

Applications may be IPv4-specific in these ways:

- Configuration and output files, notably ACLs and logs
 - Generalize handle both forms
- Inside the code, manipulating sockaddr_in
 - Generalize handle neither form.
- On the wire, inside application messages
 - This is the tough case

Grid Software

GridFTP works.

GT4 is v6-compatible, with perhaps a residue of small bugs.

Storage systems dCache and BeSTMan, based on java, seem to be v6-ready, up to possible configuration file and ftp PORT/PASV issues.

Storage system DPM, in C, is rife with casts between network address and int.

Deployment Tip

Do not use a different set of host names for the IPv6 addresses — use a single name for each host.

This prevents a great many authentication and connectivity problems.

If you accept this advice, you'll never know how much pain you avoided.