

Alignment strategy for the CMS tracker

Martin Weber RWTH Aachen on behalf of the CMS collaboration

Victoria, B.C., Canada 5 September 2007

Contents & Introduction: Overall alignment concept

Misalignment

- Estimate misalignment
- Use misalignment scenarios for physics analysis simulation
- Detector assembly and survey
 - Measure modules, substructures, subdetectors, Tracker, everything possible
 - Provide first position estimate and errors
- Hardware based alignment system
 - Laser Alignment System
- Track based alignment
 - Data flow, algorithms, results on simulation
- Provide early alignment
 - Preliminary, not optimal but something that can be used for first analysis.
 - Improve with statistics and understanding of "features".

Time

CMS

CMS Silicon Tracker

Misalignment

Due to assembly precision, B-field, +20°C→ -10°C, CFC dry-out, access

- Updated scenarios for physics studies:
 - 10 pb⁻¹: Hardware alignment, cosmic pre-alignment
 - 100 pb⁻¹: First large data sets available
 - 1 fb⁻¹: Increased statistics, refined detector understanding

Implemented in reconstruction

b-jet efficiency

Assembly knowledge

Survey measurements

- Survey: CMM, Photogrammetry
- Pixel forward panels & half-disk survey
 - Panel assembly precision typ. 50 μm, 1 mrad
 - Survey precision typ. 5 μm z, few μm in plane
- TIB/TID survey
 - 1900-2400 sample points for each layer/disk
 - Information on module level & higher levels

TEC, TOB

- No survey at module levels available
- Higher level data available

Pixel barrel

Partial survey planned

CMS

Survey in software, DB model

Values: TrackerSurveyRecord

- Filled once for each module
- 3 positions, 3 euler angles (global frame)
- Detector ID (32 bit unsigned integer)

Error: TrackerSurveyErrorRcd

- 6x6 covariance matrix (21 numbers stored)
 - With respect to ideal frame of higher level structure
- Structure type (8 bit unsigned int)
- Detector ID (1st daughter of composites)
- Compute survey residuals
- Combination with track based alignment

$$\chi^{2} = \sum_{i,\text{track}} \epsilon_{i,\text{track}}^{T} \mathbf{V}_{i,\text{track}}^{-1} \epsilon_{i,\text{track}} + \sum_{i,\text{survey}} \epsilon_{i,\text{survey}}^{T} \mathbf{V}_{i,\text{survey}}^{-1} \epsilon_{i,\text{survey}}$$

$$\chi_{\text{survey}}^2 = \sum_{i:} \left[\left[\sum_{j=1}^3 \frac{(R_{i,j} - r_j)^2}{\sigma_{Ri,j}^2} \right] + \left[\sum_{j=1}^3 \frac{(\Omega_{i,j} - \omega_j)^2}{\sigma_{\Omega i,j}^2} \right] \right]$$

i: hierarchy

i: hierarchy, j: x,y,z

Laser alignment

Laser Alignment System Overview

Relative measurement TIB vs TOB vs TEC and disks within TEC

Laser alignment system in TEC integration

disc nr.

-0.15

Track based alignment

Calibration & Alignment Data Flow

HIP and Kalman Filter Case studies on MC

- "Local" HIP algorithm
 - invert 6x6 matrices, iterate
- Pixel barrel standalone alignment with 504/750 modules
- 500k $Z\rightarrow\mu\mu$, vertex constraint
- Resolution $\approx 25 \mu m$

CMS NOTE 2006/018

- Kalman Filter Alignment
 - Tunable between "local" and "global"
- Alignment of 44 TIB modules, pixel detector fixed
- 100k single μ , $p_T > 100 \text{ GeV}$
- Poster by E. Widl

CMS NOTE 2006/022

Millepede II

Full Tracker Alignment in MC

- Optimal "global" algorithm
 - V. Blobel
 - All correlations taken into account
- Startup conditions
- 100 pb⁻¹ data
 - 0.5 million Z→µµ
 - Cosmics
 - Structure survey
- Turnaround time
 - few h preparation
 - < 2 h solving time
 - ~ 1 day
- Talk by M. Stoye

hep-ex/0208021 CMS NOTE 2006/022 CERN Thesis 2007-049

Summary

Summary: CMS tracker alignment strategy

- Employ different data sets for optimal constraints of weak modes
 - Cosmic muons (no beam, B=0T, B=4T)
 - beam halo muons (single beam)
 - minimum bias, J/psi and Upsilon (early data taking)
 - $Z\rightarrow\mu\mu$, $W\rightarrow\mu\nu$ (with increasing statistics)
- Combine survey, LAS, tracks
 - Choose optimal combination (varies with time)
 - Studies starting / ongoing

Illustration of χ^2 invariant deformations

Backup

Assembly knowledge

Assembly knowledge

XMeas. - XNom. Sili1

- Wide variety of measurements
 - → Some examples shown
 - Gantry robot used for module production
 - Coordinate measurement machine (CMM)
 - Photogrammetry
- Example from module production
 - Sensors are mounted with a robot on modules with a precision ≤ 10 μm

TEC photogrammetry

- Both Tracker Endcaps are surveyed with photogrammetry
 - measurement precision ≤ 50 μm

TEC structure assembly precision: $\sigma_{xy} \approx 50 \ \mu m$ $\sigma_z \approx 150 \ \mu m$ \rightarrow very precise!

CMS Magnet Test and Cosmic Challenge: Survey helps!

MTCC tracker setup

- 3 TOB rods
- Modules on TIB layer 3 and 4
- 2 TEC petals (not shown)

Survey results implemented by hand

Better residual distribution (centered, smaller width)

Work in progress

Black: Before survey

Red: Survey constraints used

Misalignment

Misalignment – Impact on Physics

Assembly uncertainty

 Estimated accuracy of sensor positioning (used for misalignment scenarios)

TOB	$\Delta [\mu m]$
Sensor vs. Module Module vs. Rod Rod vs. Cylinder Cylinder vs. Cylinder	± 10 ± 100 $\pm 100 - 500$ $\pm 100 - 500$
TIB Sensor vs. Module	± 10
Module vs. Rod Rod vs. Cylinder Cylinder vs. Cylinder	± 200 ± 200 $\pm 100 - 500$
TEC	
Sensor vs. Module Module vs. Petal Petal vs. Disc Disc vs. Disc	± 10 $\pm 50 - 100$ $\pm 100 - 200$ $\pm 100 - 500$

TPB	$\Delta [\mu m]$
sensor within barrel module	± 30 in 2D
module within ladder	± 100 in 3D
ladder within one half-layer	± 50 in 3D
half-layer within half-barrel	± 100 in 3D
half-barrel within TPB	± 300 in 3D
TPB within SiTK	\pm 250 in x and y
	± 500 in z
TPE	
sensor within disk blade	± 25 in 2D
disk blade within half-disk	± 50 in 3D
sensor within half-disk (after optical survey)	\pm 25 in 3D
half-disk within disks-half-service-cylinder	\pm 50 in 3D
disks-half-service-cylinder within TPE	\pm 300 in 3D
TPE within SiTK	± 500 in 3D
TID	
Sensor within TID module	± 5 in 2D
module within ring	\pm 100 in 2D, 250 in 3D
ring within disk	± 300
disk within the TID	± 400
TID within TIB	± 500

Misalignment scenario input

• Misalignment scenario input (from CMS Physics TDR, volume 2)

Table 6.18: Mounting precisions (in μ m) used in the misalignment simulation.

	Pixel		Silicon Strip			
			Inner	Outer	Inner	
	Barrel	Endcap	Barrel	Barrel	Disk	Endcap
First Data Taking Scenario						
Modules	13	2.5	200	100	100	50
Ladders/Rods/Rings/Petals	5	5	200	100	300	100
Long Term Scenario						
Modules	13	2.5	20	10	10	5
Ladders/Rods/Rings/Petals	5	5	20	10	30	10

CMS

Impact of survey measurements

- Use survey data for initial track reconstruction
 - Precision roughly $\sim 100\text{--}500~\mu\text{m}$. Measurements existing but database format to be negotiated
- Measurements that are performed for each object
 - will directly be used as a correction of the object position → alignment!
 - Example: Rod precision pin positions, Sensor position on modules
- Measurements that are performed on a sample basis (as cross-check)

- Will be used as "Alignment Position Error" to increase track reconstruction efficiency

Track based alignment

Alignment is...

Estimation of

- Sensitive detector position, orientation (6 parameters)
- + ... module bending ... magnetic field ... material budget ...
- Different approaches considered (time / method)
 - Assembly knowledge (Muon, pixel, strip) NOW
 - Knowledge of ideal geometry, assembly precision, CMM + photogrammetry
 - Hardware alignment (Muon: MA, strip: LAS) PRE-COLL
 - Laser, LED, CCD, proximity & tilt sensors
 - Track based alignment (Muon, pixel, strip) COLLISION
 - $Z \rightarrow \mu\mu$ as single muons, $Z \rightarrow \mu\mu$ with mass constraint, Cosmics, beam halo, ...
- Different databases, measured objects, precision, correlations...
 - Combining measurements will help in the beginning

Introduction to track based alignment

Linear least-squares (LLS): Application of Gauss-Markov Theorem

- Gives best linear unbiased estimators (BLUE) of parameters (best = minimal MSE)
- Measurement function $\vec{f}(\vec{p})$ (where \vec{f} are the hit coordinates, 1D, 2D,, 6D)
- Depending on unknown parameters \vec{p} (track parameters, alignment parameters)

- Linearize function
$$\vec{f}(\vec{p}) = \vec{f}(\vec{p}_0) + A(\vec{p} - \vec{p}_0) + O((\vec{p} - \vec{p}_0)^2)$$
, $A = \frac{\partial \vec{f}}{\partial \vec{p}_{\vec{p} = \vec{p}_0}}$

– Write a χ^2 -function, minimize difference between prediction \vec{f} and measurement \vec{m} :

$$\chi^{2} = (\vec{f}(\vec{p}_{0}) + A(\vec{p} - \vec{p}_{0}) - \vec{m})W(\vec{f}(\vec{p}) + A(\vec{p} - \vec{p}_{0}) - \vec{m}), \quad V = cov(\vec{f} - \vec{m}), \quad W = V^{-1}$$

- Minimize by computing $\frac{\partial \chi^2}{\partial \vec{p}} = 0$
- In a clever algorithm, track parameters are not fitted $\rightarrow A^T W A$ has size NxN (N = Number of alignment parameters)
- Brute force solution: Inversion or Diagonalization

$$\tilde{\vec{p}} = \vec{p}_0 + \left(A^T W A \right)^{-1} A^T W \left(\vec{m} - \vec{f} \left(\vec{p}_0 \right) \right)$$

Kalman Filter Alignment

A Kalman filter is a global <u>iterative</u> LLS-Estimator

- Iterative: Process track after track. Update parameters and covariance for each track. Measurements here: all hit positions in one track n~O(20)
- Global: Update **all** parameters in each step
- In the beginning alignment uncertainties are large, therefore $W = (V' + AEA^T)^{-1}$ (V' is the hit error matrix, and E is the covariance matrix of the parameters)
- Computing $\frac{\partial \chi^2}{\partial \vec{p}} = 0$ one gets the solution
 - For the parameters: $\tilde{\vec{p}} = \vec{p}_0 + \left(A^T W A\right)^{-1} A^T W \left(\vec{m} \vec{f} (\vec{p}_0)\right)$
 - For their covariance: $\tilde{E} = E E A W A^T E$
 - The new, updated parameters are used for the next iteration (next track)
- Only recently proposed (J. Phys. G: Nucl. Part. Phys. 29 (2003) 561)
 - R. Frühwirth, T. Todorov and M. Winkler
 - Advantages: No large matrix inversion needed, Parameters can be easily refined (just add tracks to get a new alignment, no rerunning of previous data necessary)
 - Disadvantages: Needs some bookkeeping to avoid using full covariance matrix,
 Never tried before, thus refined understanding of algorithm needed

Back to the χ^2 :

$$\chi^2 = (\vec{f}(\vec{p}_0) + A(\vec{p} - \vec{p}_0) - \vec{m}) W(\vec{f}(\vec{p}) + A(\vec{p} - \vec{p}_0) - \vec{m}), \quad V = cov(\vec{m}), \quad W = V^{-1})$$

 $\chi^2 = (\vec{f}(\vec{p}_0) + A(\vec{p} - \vec{p}_0) - \vec{m}) W(\vec{f}(\vec{p}) + A(\vec{p} - \vec{p}_0) - \vec{m}), \quad V = cov(\vec{m}), \quad W = V^{-1}$ • Solution of $\frac{\partial \chi^2}{\partial \vec{p}} = 0$ as another matrix equation:

$$\left(A^{T} W A\right) \left(\vec{p} - \vec{p}_{0}\right) = A^{T} W \left(\vec{m} - \vec{f} \left(\vec{p}_{0}\right)\right)$$

- Assume W diagonal (uncorrelated measurements) with entries $w_i = 1/\sigma_i^2$
 - Define $C = \sum_{i=1}^{n} w_i A_i A_i^T$, $\Delta \vec{p} = (\vec{p} \vec{p}_0)$, $\vec{b} = A^T W (\vec{m} \vec{f} (\vec{p}_0))$ and we obtain $C\,\Delta\,\vec{p}\!=\!\vec{b}$, which can be solved by matrix inversion: $\Delta\,\vec{p}\!=\!C^{^{-1}}\vec{b}$
 - Since the matrix C is of size n x n with $n\sim100.000$ (CMS), even clever algorithms as Millepede (V.Blobel, C.Kleinwort, Proceedings of the Conference on: Advanced Statistical Techniques in Particle Physics, University of Durham, UK March 18th-22nd, 2002) do fail.
- Difference between Kalman Filter and Matrix inversion:
 - For iterative treatment (KF) the matrix inversion of $C = A^T W A$ where C is a n x n matrix (n \approx 100.000) can be drastically compacted to size m x m where m \approx 20 is the number of measured parameters in each track!
 - Possible since in $A = \frac{\partial \vec{f}}{\partial f}$ most measurements are zero (A extremely sparse!)

Strip tracker: Algorithmic challenge

- Estimate ~6 parameters per strip tracker module
 - CMS strip tracker is built of 15148 modules \rightarrow alignment parameter covariance matrix E or matrix to be inverted $A^T W A$ are sized (15148*6)^2 = 90888^2
 - Store E or A^TWA in memory (~32 GB for double precision → sparse storage)
- Experience from ATLAS (COM-INDET-2004-011)
 - Matrix inversion and Diagonalization algorithms break down at ~50000 parameters due to CPU time limitation and floating point precision:

Strip tracker:

The challenge of constraints

- Certain transformations leave χ² unchanged ("weak modes")
 - Simplest: Layer rotation $a \sim R$
 - Distorts p_T spectrum and inv.
 Mass → impact on physics!
 - A lot more higher modes...
 - High global correlation observed by using single tracks without any constraint
- Use constraints (under study)
 - Laser Alignment System
 - Z→µµ with Z mass (helps)
 - Cosmics (helps a lot in the barrel)
 - Beam halo (useful for endcaps)
 - Implement global & survey constraints in χ²
- Best use of all available data!

Alignment of barrels, layers, rods:

Z→µµ with mass constraint, cosmics, survey information.

Example from Strip Tracker: The challenge of reconstruction

- If it gets to high precision everything matters:
 - Verified ideal detector geometry description (position/orientation)
 - Verified material budget (more detailed description in new CMSSW geometry)
 - TEC Sensor topology (wrongly assumed trapezoidal instead of radial topology)
 - Module strip layout (wrong values in current CMSSW)
 - Two sensor module layout (sensor mask did not take into account 100 µm gap between sensors)
 - The Great Unknown (something we have neglected or not thougt about)

Test and integration setups

Experience from test setups and integration

- Many data available
- Corrections to software module layout, orientation (local axis), ...
- Alignment efforts ongoing

TEC integration, 400 modules

Cosmic Rack alignment: Test Beam data

- Reconstruction of tracks
- Determination of residuals
 - "manual alignment": shift detector positions until residuals minimized
- Usually starting point of alignment
 - track fit does not take alignment into account → bias

Use unbiased fitter → CMS PTDR

	manual	HIP-1D	Millepede	HIP-2D		-
	$x [\mu m]$	$x [\mu m]$	$x [\mu m]$	$x [\mu m]$	$\gamma [{ m mrad}]$	-
Rod 2						-
Detector 3	-105	-105 ± 2	-101 ± 4	-114 ± 6	-0.12 ± 0.08	
Detector 4	363	380 ± 7	$379 {\pm} 17$	356 ± 13	-0.37 ± 0.18	
Rod 3						_
Detector 3	-454	-466 ± 2	-457 ± 4	-466 ± 6	-0.00 ± 0.08	
Detector 4	-99	-61 ± 7	-96 ± 15	-77 ± 13	-0.26 ± 0.19	-
Rod 4						_
Detector 3	-935	-946 ± 2	-938 ± 6	-954 ± 4	-0.11 ± 0.06	
Detector 4	-579	-541 ± 6	-544 ± 16	-532 ± 9	$0.22 {\pm} 0.14$	
Rod 5						_
Detector 3	-457	-470 ± 2	-467 ± 4	-479 ± 4	-0.13 ± 0.05	
Detector 4	-141	-80 ± 7	-91 ± 17	-67 ± 9	$0.27{\pm}0.15$	
mean track χ^2	1.75	1.72	1.73	1	.69	

Laser alignment

LAS goals and concepts

- External alignment (for joint Tracker+Muon system track fit)
 - ≤ 150 µm measurement of Muon System position w.r.t. Tracker
 - ≤ 30 µrad measurement of Muon System orientation w.r.t. Tracker
- Internal alignment:
 - ≤ 100 µm measurement of sub-detector relative positions for track pattern recognition (between TIB and TEC, between TOB and TEC)
 - \leq 50 µm for 50% of TEC petals \rightarrow 70 µm for 50% of TEC modules
 - ≤ 10 µm monitoring of relative sub-detector position stability for track parameter reconstruction

TEC Alignment sensors and modules

Main concepts

- Use Tracker silicon sensors and Tracker DAQ
- No external reference structures necessary
- No precise positioning of LAS beams required (redundancy)

Module design

- 420 Ring 4 + 140 Ring 6 B sensors produced by HPK
- 10 mm hole in aluminum backside coating
- All sensors with anti-reflective coating
 - Transmission 14-20% (R4) and 13-18% (R6) (at λ=1075 nm)
 - Reflectivity <= 6%
 - Reduced interference effects

Transmission, Reflection and Absorption

λ CnmD

λ [nm]

Fibers and beam splitters

Laser diode:

- Qphotonics
- $\lambda = 1075\pm4$ nm (near infrared)
- spectral width $\Delta \lambda = 2$ nm,

Fibers

- from Corning, cabling by Ericsson
- non-magnetic radiation-hard FC connectors

Cables

- All 15 km fibers/cables in Aachen
- 50 cables terminated

Beam Splitters

- 40 beam splitters (BS) type TEC produced in Islamabad
- now in Aachen,
- 32 with cables connected

Alignment tubes / mirrors

- 16 alignment tubes in total (8 for z>0 and 8 for z<0)
 - 6 mirrors in each tube: 3 for TIB, 3 for TOB
- Prototype tube from Pakistan measured
 - Mirror reflectivity 5%, accuracy of deflected beam 3 mrad
- Alignment tubes production progress
 - Manufactured in Aachen workshop (Aluminum)
 - All tubes are ready, two tubes have been sent to Pakistan for mirror assembly
 - First assembled production tube is about to be sent to Aachen for measurements
 - Remaining tubes scheduled for February