

An inconvenient truth: file-level metadata and in-file
metadata caching in the (file-agnostic) ATLAS event store

David Malon1, Peter van Gemmeren1, Richard Hawkings2 and Art hur Schaffer3

1Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439, USA
2European Organization for Nuclear Research,
CERN CH-1211 Gen•ve 23, Switzerland
3LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France

E-mail: malon@anl.gov

Abstract. In the ATLAS event store, files are sometimes "an inconvenient truth." From the
point of view of the ATLAS distributed data management system, f iles are too smallÑ datasets
are the units of interest. From the point of view of the ATLAS event store architecture, files
are simply a physical clustering optimization: the units of interest are event collectionsÑ sets
of events that satisfy common conditions or selection predicatesÑ and such collections may or
may not have been accumulated into files that contain those events and no others. I t is
nonetheless important to maintain file-level metadata, and to cache metadata in event data files.
When such metadata may or may not be present in files, or when values may have been
updated after files are written and replicated, a clear and transparent model for metadata
retrieval from the file itself or from remote databases is required. In this paper we describe
how ATLAS reconciles its f ile and non-file paradigms, the machinery for associating metadata
with f iles and event collections, and the infrastructure for metadata propagation from input to
output for provenance record management and related purposes.

1. Introduction
High energy physics experiments have often found it useful to store metadata in event data fi les. Run
records provide a canonical example. It is instructive, though, to consider the nature of such metadata,
and the relationship of that metadata to the fi les into which they are placed. A number of ambiguities
make elaboration of a definitive taxonomy of such metadata diffi cult, and as such a taxonomy is not
central to a description of the ATLAS metadata framework, we will content ourselves with a
description of various kinds of metadata arising in event fi le contexts.

Files are units of storage organization, not physics constructs, and while experiments endeavor to
organize event data into fi les in a manner that aligns sensibly with data taking or physics use cases,
very little Òfile-levelÓ metadata really have any inherent relationship to fi les.

Some metadata, for example, pertain more properly to event collections. The physics metadata
associated with events passing any of a certain set of triggers in a given run would be the same
whether or not those events had been written into a fi le or set of fi les containing no other events. A
list of pointers to those events within a larger sample would have exactly the same associated
metadata, and an experimentÕs metadata infrastructure should provide a means to manage such

metadata in a manner that does not depend upon its fi le use. A trigger configuration may apply to a
run, a geometry version, to a range of simulation runs, and so on, so that, even when such information
is relevant to the events contained in a given fi le, the information pertains inherently to a set of events
defined by physics or data-taking conditions, not by storage organization, a set that is often larger than
and sometimes orthogonal to the given fi leÕs contents.

Figure 1: Comparing event collections and event data files (“implicit” collections)

Among the varieties of metadata we consider as in-fi le candidates are:

¥ Metadata inherently describing the sample contained in a fi le (see Figure 1 for

correspondences between event collections and event data fi les). Provenance information (the
run range and triggers from which the sample was selected, or the query that produced it) is in
this category. Such metadata typically must be propagated to downstream data products, from
raw trigger streams through reconstruction to analysis samples built by selecting, combining,
and fi ltering events from many runs and possible trigger configurations, and beyondÐthrough
each successive stage in the analysis chain.

¥ Metadata describing the fi leÕs contents and how they were produced. The versions of the
software components used to write the fi le, version and configuration information of the
technology used in writing, the number of events and the processing stage (e.g., event
summary data) are examples. Such metadata might not be propagated to downstream data
products.

¥ Metadata cached in the fi le for convenience, to avoid remote lookups and database retrievals.
Trigger configurations are a natural example. Such data often have an associated interval of
validity (more on this later), and benefit from additional interval-of-validity-based retrieval
machinery above the in-fi le metadata cache. Detector status information is another candidate
for in-fi le caching, but there is a risk: detector status assessments may be updated long after
event data fi les have been written, so in-fi le information may become stale and out of date.

Tellingly, many kinds of metadata most clearly associated with a fi le (size and checksum, for

example) are not known until after the fi le has been written, and cannot be straightforwardly be
written inside the fi le, or are mutable (e.g., ownership and access rights) and should not be recorded
therein.

We expect that metadata inherently describing the fi leÕs production and the sample it contains are

naturally stored within the fi le. For the potentially wide range of metadata that may be cached in the
fi le for convenience, our guidelines for inclusion are based upon frequency of access and mutability:
data that are needed by most clients, that are needed at multiple stages of analysis, and that are

unlikely to have changed since the fi le was written are the strongest candidates for inclusion in an in-
fi le metadata cache.

2. A simplifi ed view of the metadata output model
The ATLAS output model [1] is constrained by strictures imposed by the Athena/Gaudi control
framework. In this framework, writing occurs via an output stream (ÒoutstreamÓ) that is invoked once
when the framework is initialized (via an initialize() method), once during each iteration of the
primary event loop (via an execute() method), and once at the end of event loop processing (via a
finalize()) method). The outstream is configured by listing the objects to be written (the Òitem listÓ)
and the transient store in which they reside, and by associating a specifi c persistence technology, along
with any configuration details appropriate to that technology (the output fi le name in the case of fi le
I/O, for example).

Figure 2: Overview of the file-level metadata framework

Figure 2 illustrates the framework for writing and reading fi le-level metadata. The opportunities to
write metadata objects to a fi le occur most naturally, therefore, at the standard outstream invocation
times. For the metadata use cases currently supported by ATLAS, it suffi ces to write metadata objects
at finalization. More asynchronous writing may be accomplished by use of the control frameworkÕs
incident services.

Metadata objects typically reside in a transient metadata store specifi cally instantiated to house

them. They cannot, in general, reside in the transient event store, because that store is routinely
cleared at the end of each event loop iteration, and most metadata objects have a longer lifetime or
range of validity, or accumulate data for a range of processed events.

The item list approach makes output metadata extensibleÑ anyone can create an additional

metadata object and add it to the output item list.

3. Shadow streams
ATLAS writes event data and metadata into the same fi le by instantiating a Òshadow streamÓÑ an
additional output stream that mirrors the configuration of the event output stream (fi le name, etc.), but
with a diff erent item list coming from a diff erent transient store, and a Òwrite on finalizeÓ rather than a
Òwrite after each eventÓ policy. A job that writes N event data streams might therefore have 2N total
outstreams. ATLAS provides configuration tools that can make the creation and configuration of
shadow streams all but transparent to users.

Outstreams are lightweight objects. In general, one could associate multiple metadata streams with
a single event data output stream. Such a strategy might be employed, for example, to write a variety
of metadata objects with different granularities and write control constraints.

4. In-fi le data organization
Whenever an Athena job writes the objects in an item list to persistent storage, it also writes a Òdata
headerÓ objectÑ an object that tracks the transient names of those objects and the persistent locations
at which they have been stored. For event data, the data header serves as a primary event entry point.
(It does moreÑ it also tracks the persistent locations of the data headers of the upstream input events,
for exampleÑ but the details are beyond the scope of this paper.) The data header serves a similar
purpose for metadata objects.

Because a data header is, by design, indifferent to the varieties of data to which it might point,
event data headers and metadata data headers are indistinguishable by type. For this reason, care must
be taken to separate them in fi le-based technologies that organize data by type. In POOL/ROOT,
ATLAS creates a container for metadata objects that is separate and clearly distinguished from event
data containers, under the configuration control of the shadow stream.

5. Metadata accumulation
Some varieties of metadata are accumulated by instrumentation of the output event stream. Statistics
of various kinds are natural examples. The ATLAS I/O framework provides an extensible
infrastructure, including output stream tools and a means to register them for invocation either before
and/or after each write() operation, to allow accumulation of such metadata. A metadata object of this
kind might accumulate values via the pre- or post-write calls, and register the accumulator object in
the transient metadata store, for eventual writing with other metadata objects upon finalization.

Attaching such a metadata accumulator to a specifi c outstream as a tool rather than implementing it
as an algorithm invoked for every iteration of the event loop eases collection of information specifi c to
the given event data streamÑ an important distinction for jobs that write events to one (or more) of
many possible output streams.

6. Metadata propagation
Several kinds of metadata should be propagated from input to output. Provenance metadata (e.g., the
range of runs and triggers from which the sample was selected, needed for eventual cross section
calculation) are a standard use case, but there are others. If one caches trigger configurations as in-fi le
metadata, for example, then downstream data products may also need those configurations.

While copying metadata objects from input fi les or collections to output might be straightforward
in some cases, in others, type-specifi c operations might be appropriate. For trigger configurations, for
example, a set-like container might suffi ce, ensuring removal of duplicates when events from multiple
input fi les share a trigger configuration. In the case of run or { run, luminosity block} ranges, slightly
more complicated range mergers are required. (Note: a luminosity block is, loosely, a contiguous
time interval within a run during which the integrated deadtime- and prescale-corrected luminosity
may be determined.) The ATLAS metadata framework supports metadata propagation and extensible
inclusion of type-specifi c metadata tools in the following manner.

The framework provides a metadata service (ÒMetaDataSvcÓ) with which metadata tools may

register in order to be initialized and added to the list of listeners for Òbegin input fi leÓ incidents.
When an input fi le is opened, the MetaDataSvc retrieves the metadata data header and, from it, the
addresses of any in-fi le metadata objects, making them available for retrieval in a transient input
metadata store. When a Òbegin input fi leÓ incident is fi red by the EventSelector upon opening a new
input fi le, the metadata tools are thereby able to read their input metadata objects, process them or
merge them as necessary with any metadata retrieved from earlier input fi les, and record the resulting,
possibly extended, metadata objects in the (output) metadata store for later writing. (An Òend input
fi leÓ incident is also thrown after processing the last event in an input fi le, to alert any subscribers that
the current contents of the input metadata store are about to be cleared and replaced with new data
from the next fi le.)

7. Interval-of-validity-based retrieval
The preceding sections have described the basic infrastructure used by ATLAS to support in-fi le
metadata. Many kinds of data, though, have a natural interval of validity (IOV), and an interval-of-
validity-based retrieval infrastructure is widely used in ATLAS for consistent retrieval from
conditions, calibration, and geometry databases. A geometry version might have an interval of
validity that is a range of runs, a trigger configuration might have an interval of validity that is a single
run, calibrations or Level 1 Trigger prescales might have an interval of validity that is (possibly
discretized to) a range of luminosity blocks with in a run. ATLAS uses a temporal IOV database
together with an interval-of-validity service within the Athena control framework to determine and
load the correct version of a requested data type corresponding to a given eventÕs timestamp or { run,
luminosity block} numbers. The architecture supports separation of temporal database functionality
from payload managementÑ the time-varying conditions, calibrations, or configurations may or may
not reside in the same database that manages the interval of validity and version information.

Figure 3: Using in-file metadata to robustly cache IOV data

ATLAS has extended its IOV-based retrieval infrastructure to support in-fi le metadata

transparently, including in-fi le caching of interval of validity and version information (i.e., not just in-
fi le caching of IOV-managed payload). From the point of view of the application, there is no
difference between retrieval of IOV-based data from the event fi le or from a remote database or
external fi le. In a standard configuration, a datum that cannot be found in the fi le is retrieved from a
remote source as a fallback, though one may instead configure a job so that the remote source has
primacy.

8. Conclusion
ATLAS has successfully developed a framework for in-fi le hosting of metadata in support of a varied
and extensible range of information types and use cases, along with tools for intelligent metadata
propagation and interval-of-validity-based retrieval. The volume and variety of metadata using this
infrastructure is growing; indeed, the next challenge may be controlling the volume of metadata, using
the adjudicating principles described in this paper.

9. References
[1] D. Malon, P. van Gemmeren, A. Schaffer, Sailing the Petabyte Sea: Navigational Infrastructure

in the ATLAS Event Store Computing in High Energy and Nuclear Physics (CHEP-2006) 1
312-315

[2] D. Costanzo et al, Metadata for ATLAS, ATL-COM-GEN-2007-001, 04 April 2007

Acknowledgments
Argonne National Laboratory's work was supported by the U.S. Department of Energy, Offi ce of
Science, Offi ce of Basic Energy Sciences, under contract DE-AC02-06CH11357.

Notice: The publisher by accepting the manuscript for publication acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for United States
Government purposes.

