An inconvenient truth: file-level metadata and in-file
metadata caching in the (file-agnogtic) ATLAS event store

David Malon®, Peter van Gemmeren®, Richard Hawkings? and Art hur Schaffer®

'Argonne National Laboratory,

9700 Sauth Cass Averue, Argonne, IL 60439, USA
EuropeanOrganization for NuclearResearch,
CERN CH-1211 Gerrv e 23, Switzerland

3LAL, Univ Pais-Sud, IN2P3CNRS, Orsay, Frarce

E-mail: malon@anl.gov

Abstract. In the ATLAS event store, files are sometimes "an inconvenient truth.” From the
point of view of the ATLAS distributed data management system, files are too smallN datasets
are the units of interest. From the point of view of the ATLAS event store architecture, files
are simply a physical clustering optimization: the units of interest are event collectionsN sets
of events that satisfy common conditions or selection predicatesN and such collections may or
may not have been accumulated into files that contain those events and no others. It is
nonethel ess important to maintain file-level metadata, and to cache metadatain event data files.
When such metadata may or may not be present in files, or when values may have been
updated after files are written and replicated, a clear and transparent model for metadata
retrieval from the file itself or from remote databases is required. In this paper we describe
how ATLAS reconciles its file and non-file paradigms, the machinery for associating metadata
with files and event collections, and the infrastructure for metadata propagation from input to
output for provenance record management and related purposes.

1. Introduction

High erergy physics experimerts have oftenfound it useful to store meiadatain evert datafiles Run
recads provide a caronical examde. It isinstructive, though, to consider the nature of such metadata,
and the relationship of that metadata to the filesinto which they areplaced A number of ambiguities
male elaboration of a definitive taxonomy of such metadata diffi cult, and as such a taxonomy is not
ceriral to a deription of the ATLAS metadata framavork, we will contert ourselves with a
de<cription of various kinds of metadata arising in evert file contexts.

Filesareunits of storage organizaion, not physics constructs, and while experiments endeawor to
organize evert data into filesin a mamer that aligns sersibly with data taking or physics use cages
very little Ofle-levelOmetadata really have ary inherert relationship to files

Same metadata, for example, pertain more properly to evert calecions. The physics metadata
associated with events passing any of a certain set of triggersin a given run would be the same
whether or not those everts had beenwritteninto afile or set of filescontaining no other events. A
list of pointers to those everts within a larger sample would have exacly the same associated
metdata, and an experimertOsmetdata infrasructure should provide a mears to marage such



metadata in a mamer that doesnot depend upon its file use. A trigger configuration may apply to a
run, a geamety verson, to arange of simulation runs, and so on, so that, even when such informaton
is relevart to the events containedin a givenfile, the information pertains inhererily to a set of everts
defined by physicsor data-taking conditions, not by storage organization, a setthatis oftenlargerthan
and sometimesorthogonal to the givenfileOsonterts.

N
N A

Event File

= “Implicit” Collection

Persistent DataObjects
for the Events

In-File MetaData for
collection provenance

~_

Figure 1: Comparing event collections and event data files (“implicit” collections)

Among the varietiesof metadata we consider asin-file cardidatesare:

¥ Metadata inherertly desribing the samge contained in a file (see Figure 1 for
correponderncesbetweenevert collectons and event datafileg. Provenanceinformaion (the
run range and triggersfrom which the sample wasselected, or the query that producedit) isin
this cakegory. Such metadata typically must be propagated to downstream data products, from
raw trigger streamsthrough recamstruction to analysis samgdesbuilt by selecing, combining,
and filtering events from mary runs and possible trigger configurations, and beyondEthrough
eachsuccesive stage in the aralysis chain.

¥ Metadata describing the fileOsonterts and how they were produced The versons of the
software componerts used to write the file, verson and configuration information of the
tecmology used in writing, the number of everts and the processing stage (e.g., evert
summay data) are examples Such metadata might not be propagated to downstream data
products.

¥ Metadata cactedin the file for convenience, to avoid remde lookups and database retrievals.
Trigger configurations are a natural examge. Such data often have an associated interval of
validity (more on this later), and berefit from additional interval-of-validity-based retrieval
machnery above the in-file metadata cacte. Detector status information is another cardidate
for in-file caching, but thereis arisk: detecbr status assessmerts may be updated long after
evert data fileshave beenwritten so in-file information may become stale and out of date.

Tellingly, mary kinds of metadata most clearly associated with a file (size and checksum, for
examge) are not known until after the file has been written, and camot be straightforwardly be
written inside the file, or are mutable (e.g., ownership and access rights) and should not be recaded
theren.

We expect that metadata inhererily describing the fileOgroduction and the samge it contains are
naturally stored within the file. For the potentially wide range of metadata that may be cactedin the
file for convenience, our guidelinesfor inclusion are based upon frequercy of aces and mutahility:
data that are neeced by most clierts, that are neeced at multiple stages of amalysis, and that are



unlikely to have changed since the file waswritten are the stronged cardidatesfor inclusion in anin-
file metadata cacle.

2. A simplified view of the metadata output model

The ATLAS output model [1] is constrained by strictures imposed by the Athena/Gaudi control
framework. In this framework, writing occurs via anoutput stream(OaitstreanO)that is invoked once
when the framework is initialized (via an initialize() method), once during each iteration of the
primary evert loop (via an execue() method), and once at the end of event loop procesing (via a
finalize()) method). The outstream is configured by listing the objects to be written (the Otem listQ
and the trarsient store in which they resde, and by associating a specifi c pergstence tecmology, along
with any configuration details appropriate to that technology (the output file namein the case of file
I/0O, for example).

Figure 2: Overview of the file-level metadata framework



Figure 2 illustrates the framework for writing and readng file-level metadata. The opportunitiesto
write metadata objects to a file occur most naturally, therefae, at the standard outstreaminvocaton
times For the metadata use casescurrertly supportedby ATLAS, it suffi cesto write metadata objects
at finalizaion. More as/nchronous writing may be accomplished by use of the control frameworkOs
incident services

Metadata objects typicaly resde in a trarsient metadata store specifically instartiated to house
them. They camot, in gereral redde in the transient event store, becatse that store is routinely
clearedat the end of each event loop iteraton, and most metadata objects have a longer lifetime or
range of validity, or accunulate data for arange of procesedevens.

The item list approach makes output metadata extersibleN anyone can creat an additional
metadata objectand add it to the output itemlist.

3. Shadow streams

ATLAS writes evert data and metadata into the same file by instartiating a Ofadow streamN an
additional output streamthat mirrors the configuration of the event output stream(file name, efc.), but
with a diff erert item list coming from a differert trarsiert store, ard a Qwrite on finalizeGrather than a
Owite after each evertOpolicy. A job thatwritesN evert data streamsmight therefae have 2N total
outstreams ATLAS provides configuration tools that can make the creation and configuration of
shadow streamsall but transparert to users.

Qutstreans are lightweight objects. In gereral, one could associate multiple metadata streams with
asingle evert data output stream Such a strategy might be emgoyed, for examge, to write a variety
of metadata objects with different granularitiesand write control constraints.

4. In-file data organization

Wherever an Athena job writesthe objects in anitemlist to perdstert storage, it also writesa Odhta
headerOobjectN an object that tracks the trarsient namesof those objects and the perdstert locaions
at which they have beenstored For event data, the data heacder servesasa primary evernt ertry point.
(It doesmoreN it also tracks the pergstert locations of the data heacersof the upstreaminput everts,
for examdeN but the details are beyond the scope of this paper) The data header serves a similar
purpose for metadata objects.

Because a data heackr is, by dedgn, indifferert to the varieties of data to which it might point,
event data heacersand metadata data heacersareindistinguishable by type. For this rea®n, care must
be taken to separae them in file-based technologies that orgarize data by type. In POOL/ROQOT,
ATLAS creaesa container for metadata objects that is separat and clearly distinguished from event
data containers under the configuration control of the shadow stream.

5. M etadata accumulation

Same varietiesof metadata are accumulated by instrumertation of the output evernt stream. Statistics
of various kinds are natural examples The ATLAS I/O framework provides an extersible
infragructure, including output streamtools and a means to regster them for invocaton either before
and/or after each write() operation, to allow accumulation of such metadata. A metadata objectof this
kind might accumulate valuesvia the pre- or post-write calls, and regster the accumulator objectin
the transiert metadata store, for evertual writing with other metadata objects upon finalization.



Attaching such a metadata accumulator to a specific outstreamasatool rather thanimplemerting it
asanalgorithm invokedfor every iteraion of the evert loop eagscallecion of informaton specific to
the given evert data streamN an importart distinction for jobs that write everts to one (or more) of
mary possible output streams.

6. M etadata propagation

Sevweral kinds of metadata should be propagated from input to output. Provenance metadata (e.g., the
range of runs and triggers from which the sample was seleced needed for evertual cross secion
calculation) area standard use case, but thereare others. If one cactestrigger configurations asin-file
metadata, for examge, thendownstrean data products may also needthose confi gurations.

While copying metadata objects from input filesor cdlecions to output might be straightforward
in some cases in others type-specific operaions might be appropriate. For trigger configurations, for
exampde, a setlike container might suffi ce, ensuring removal of duplicaieswhen everts from multiple
input filessharea trigger configuration. In the case of run or {run, luminosity block} ranges slightly
more complicated range mergers are required (Note: a luminosity block is, loosely, a contiguous
time interval within a run during which the integated deadime and prescale-corrected luminosity
may be determined) The ATLAS metadata framework supports metadata propagation and extersible
inclusion of type-specific metadatatoolsin the following mamer.

The framework provides a metadata service (OMetaDataSwO) with which metadata tools may
regster in order to be initialized and added to the list of listerers for Okegin input fileOinciderts.
When an input file is opered, the MetaDataS\c retrieves the metadata data header and, from it, the
addresses of ary in-file metadata objects, making them availabe for retrieval in a trarsient input
metdata store. When a Olegn input fileQincidert is fired by the EvertSelecior upon opering a new
input file, the metadata tools are therely able to read their input metadata objects, proces them or
merge them asnecesary with any metadata retrieved from earier input files and recad the reallting,
possibly exterded, metadata objecs in the (output) metadata store for later writing. (An Gerd input
fileGincidert is also thrown after processing the lag evert in aninput file, to alert arny subscribers that
the current conterts of the input metadata store are about to be clearedand regdaced with new data
from the next file)

7. Interval-of-validity-basedretrieval

The precedng sectons have de<ribed the badc infradructure used by ATLAS to support in-file
metadata. Many kinds of data, though, have a natural interval of validity (10V), and an interval-of-
validity-based retrieval infragructure is widely used in ATLAS for consistent refrieval from
conditions, calibration, and geomety databases A geamety verson might have an interval of
validity thatis arange of runs, atrigger configuration might have aninterval of validity thatisasingle
run, calibrations or Level 1 Trigger presales might have an interval of validity that is (possibly
discreized to) a range of luminosity blocks with in arun. ATLAS uses a temporal IOV database
together with an interval-of-validity service within the Athena control framework to determine and
load the correct verson of arequeded data type corresponding to a given evertOgimegampor {run,
luminosity block} numbers The archtecture supports separaion of temporal database functionality
from payload maragemertN the time-varying conditions, calibrations, or configurations may or may
not resde in the same database that maragesthe interval of validity and vergon information.



Read Event Data

\/
Reconstruction /
Analysis
Provide Proxy Information
for Conditions Data

A\
Read Conditions Data ﬁ F

Figure 3: Using in-file metadata to robustly cache IOV data

ATLAS has exterded its IOV-based retrieval infragructure to support in-file metadata
tramsparertly, including in-file cacling of interval of validity and verson informaiton (i.e, not just in-
file caching of 10V-maraged payload). From the point of view of the applicaion, there is no
difference between retrieval of I0OV-basd data from the evert file or from a remde database or
exterral file. In a standard configuration, a datum that camot be found in the file is retrieved from a
remde source as a fallback, though one may instead configure a job so that the remde source has
primacy.

8. Conclusion

ATLAS hassuccessfully developed a framework for in-file hosting of metadata in support of a varied
and extersible range of information types and use cases along with tools for intelligent metadata
propagation and interval-of-validity-based retrieval. The volume and variety of metadata using this
infragructure is growing; indeed the next challenge may be controlling the volume of metadata, using
the adudicaiing principlesde<ribedin this paper.

9. References

[1] D. Malon, P. van Gemmeren, A. Schaffer, Sailing the Petabyte Sea: Navigational Infragructure
in the ATLAS Event Store Computing in High Energy and Nuclear Physics (CHEP-2006) 1
312-315

[2] D.Costarzoetal, Metadatafor ATLAS, ATL-COM-GEN-2007-001, 04 April 2007

Acknowledgments
Argonne National Laboratory's work was supported by the U.S. Departiment of Energy, Office of

Sciernce, Offi ce of Badc Energy Sciences under contract DE-AC02-06CH11357.



Notice: The publisher by acceging the maruscript for publicaion acknowledges that the United
States Governmert retains a non-exclusive, paid-up, irrevocale, world-wide licerse to publish or
reproduce the published form of this maruscript, or allow others to do so, for United States
Governmert purposes



