
Explicit State Representation and the
ATLAS Event Data Model

Theory and Practice

Marcin Nowak (Brookhaven National Laboratory)Marcin Nowak (Brookhaven National Laboratory)
David Malon, Arthur Schaffer, Peter van GDavid Malon, Arthur Schaffer, Peter van Geemmerenmmeren, ,
Scott Snyder, Sebastien Binet, Kyle CranmerScott Snyder, Sebastien Binet, Kyle Cranmer

ATLAS Database, EMB and Core Software groupsATLAS Database, EMB and Core Software groups

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 2

Introduction

The Scope: Athena The Scope: Athena –– ATLAS offline software frameworkATLAS offline software framework

Management of data objects – transient and persistent

Event data persistency based on POOL and ROOT technologies

The Problem: Schema Evolution The Problem: Schema Evolution

Unavoidable for production data

Must be possible without forfeiting the ability to read old data

The Solution: Persistent state representationThe Solution: Persistent state representation

Implementation

Performance implications

Direct access from ROOT

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 3

Schema Evolution
Schema evolution is happening all the timeSchema evolution is happening all the time

Often unnoticed on the application (transient) side
Class names do not change
Data representation is hidden behind interfaces
No ‘memory’ of the previous class shape

Quite visible on the persistent side
Data is more exposed
History of different class shapes, reaching years in the past
Class names still do not change
How can we keep track of the different versions?

Occasional redesigns of large portions of the data modelOccasional redesigns of large portions of the data model

Ideally schema evolution should be supported by the persistency Ideally schema evolution should be supported by the persistency layerlayer
ROOT automatic schema evolution

Works in simple cases, fails in more complicated ones

ROOT custom streamers
Work in streamed mode, do not work in the split mode

No satisfactory solution No satisfactory solution –– maybe ATLAS needs to provide their ownmaybe ATLAS needs to provide their own

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 4

Supporting Schema Evolution in Athena

Starting requirements:Starting requirements:
Preserve old versions of the schema

Maintain a library of conversion methods for reading the old data

Prevent ROOT automatic schema evolution in cases where it would fail

Solution: create a separate, independent persistent data modelSolution: create a separate, independent persistent data model
Typenames in the persistent data model are different from their transient
equivalents

Schema version is part of the persistent typename
All versions are stored in the data dictionary

By introducing new versions we can ensure that persistent classes do not
change beyond the limits of ROOT automatic schema evolution

Data objects need to be written as persistent types
Not possible in ROOT to write one type and read it as another type
Conversion has to happen both when reading and writing

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 5

CompA_p1CompBCompA

The Persistent Data Model

Example of a transient class and its persistent representation:Example of a transient class and its persistent representation:

Class
BaseClass

Embedded

Interface

Class_p1
BaseClass_p1

Embedded_p1

CompB_p1

Tr
an

sie
nt

Pe
rsi

ste
nt

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 6

T/P Converters

T/P Converters provide methods to convert data objects between tT/P Converters provide methods to convert data objects between their heir
transient and persistent representationstransient and persistent representations

One converter per each persistent representation
Old versions provide only persistent->transient conversion for reading

T/P Converters are separate classes from persistent representatiT/P Converters are separate classes from persistent representationsons
Conversion methods need to operate on transient types – better to keep
them apart to maintain data model separation

To make implementation easier, they are created by specialized base
converter template classes

Simple and elegant on transient side, ugly in the data dictionary
Originally T/P converters were strictly transient objects

Now for direct ROOT access they need to be in the data dictionary

Abstract converter API makes handling converters easy even if the object
type is not known

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 7

Chain Effect in Schema Evolution

„„Chain effectChain effect”” is a result of introducing version numbers in the type is a result of introducing version numbers in the type
names of the persistent data model. Changing the version of a tynames of the persistent data model. Changing the version of a type pe
referenced by another object is causing a schema change for the referenced by another object is causing a schema change for the
referencing object, and the effect propagatesreferencing object, and the effect propagates

Element_p1 Element_p2

ElementCollection_p1
std::vector<Element_p1>

ElementCollection_p2
std::vector<Element_p2>

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 8

Typeless Persistent References

To avoid the chain effect, we decided to replace direct C++ typeTo avoid the chain effect, we decided to replace direct C++ type
dependencies in the persistent data model by dependencies in the persistent data model by typelesstypeless persistent persistent
references (references (TPObjRefTPObjRef))

TPObjRef contains only integers that have meaning to the TP converters

The new persistent data model does not any more (in general) contain
pointers, inheritance or embedding

Object components referenced by Object components referenced by TPObjRefTPObjRef are not part of the same are not part of the same
object in the C++ sense, so ROOT will not write them out automatobject in the C++ sense, so ROOT will not write them out automaticallyically

To assure all elemental object components are stored together, they are
gathered in special container objects, called top-level persistent objects

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 9

TopTop--level persistent objects consist of vectors of component objectslevel persistent objects consist of vectors of component objects

TopTop--level objects are managed by toplevel objects are managed by top--level TP converterslevel TP converters
Top-level converters own all TP converters for component objects
They take care of placing objects in the storage vectors

Top-Level Storage Objects

CompA_p1

CompBCompA

Class
BaseClass

Embedded

Interface
Class_p1

BaseClass_p1

Embedded_p1

CompB_p1

Tr
an

sie
nt

Pe
rsi

ste
nt

Class_tlp1 (ClassCollection_tlp1)

re
f

pt
r

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 10

Schema Evolution with Top-Level Objects

Automatic schema

evolution – no changes

CompA_p1

Class_p1

BaseClass_p1

Embedded_p1

CompB_p1

Class_tlp1
re

f

CompA_p1

Class_p1

BaseClass_p1

Embedded_p1

CompB_p1

Class_tlp1

re
f

Embedded_p2

CompB_p2

CompA_p5

Class_p3

BaseClass_p2

Embedded_p3

CompB_p2

Class_tlp2

re
f

New versions of the

component objects

New version of the

Top-level object

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 11

T/P Separation and AthenaPool Converters

The T/P separation framework is inserted between Athena and the The T/P separation framework is inserted between Athena and the
POOL persistency layer at the level of AthenaPool convertersPOOL persistency layer at the level of AthenaPool converters

Each StoreGate object type has an AthenaPool converter
The converters are used for writing to and reading from POOL

By default they are generated automatically by CMT and they do no
conversion

AthenaPool converters can be customised

A custom AthenaPool converter is needed to use T/P separationA custom AthenaPool converter is needed to use T/P separation
Custom AthenaPool converter should own instances all versions of the top-
level T/P converters for a given StoreGate object type

The newest version is always used when writing

After writing an object, AthenaPool converter returns POOL Token
All Tokens are stored as strings in the Event DataHeader

When reading, the correct version of a top-level TP converter is determined
using type information from the Token

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 12

Complete Persistency Stack in AthenaPool

StoreGate

AthenaPool Converter

POOL

ROOT file

Top-Level TP Converter

Elemental TP Converters

Original persistency layers in Athena
Persistency layers in Athena with T/P separation

AthenaROOTAccess

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 13

Performance

Improving I/O performance was not the original goalImproving I/O performance was not the original goal
Main focus was on schema evolution support

The solution was only supposed not to seriously degrade performance
Conversion between transient and persistent state had to introduce additional
CPU load

The first prototype based on the tracking data model showed:The first prototype based on the tracking data model showed:
Decrease in disk space usage by about 25%, caused mainly by:

Simpler data model (but not by much)
Better control over what data is written out

Slight improvement in I/O performance – the time spent in data conversion
was recuperated by:

Less time spent in ROOT due to somewhat simpler data model
Smaller file size

Performance requirement was met

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 14

Performance with Top-Level Objects

The new persistent state representation (with topThe new persistent state representation (with top--level objects, level objects, typelesstypeless
references and object decomposition) improved read performance breferences and object decomposition) improved read performance by a y a
surprising factorsurprising factor

The Tracking data read speed improved 4 times

Various packages read speed improved up to 10 times

Winner: LArRawChannel data - 20 times faster
DataVector with 183’000 small elements (~20 bytes each)

File size reduction remained in the 20%File size reduction remained in the 20%--40% region40% region

We believe the reason for performance improvement is the differeWe believe the reason for performance improvement is the difference in nce in
ROOT streamed and split writing modeROOT streamed and split writing mode

Streamed mode writes type information for every object and sub-object
Requires more processing per object

Removing pointers from ATLAS persistent data model allows ROOT writing
in the split mode

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 15

Direct Access From ROOT

End users may want to work with data files directly from ROOTEnd users may want to work with data files directly from ROOT
Without the Athena framework overhead
But using the transient classes, not the persistent state representations

AthenaROOTAccessAthenaROOTAccess
Package enabling automatic use of T/P converters without Athena
Creates a proxy TTree with branches corresponding to the transient
schema

The tree contains branches of special new type: TBranchTPConvert
Friend of the original TTree with persistent data

Accessing the ‘transient’ TTree automatically triggers reading from the
‘persistent’ TTree and T/P conversion

Standard tools like TTree::Draw() work as well
The end-user is entirely insulated from the persistent representations

Locating the correct T/P converters is done via the data dictionary
T/P converters must be entered into the dictionary now

6 September 20076 September 2007Marcin Nowak, Brookhaven Natl. Lab. CHEP 20Marcin Nowak, Brookhaven Natl. Lab. CHEP 2007, Victoria, Canada07, Victoria, Canada 16

Conclusions

T/P separation is being widely adopted in ATLAS EDMT/P separation is being widely adopted in ATLAS EDM
Persistent classes are being added in Athena release 13

With the goal to have the entire EDM T/P separated in release 14

Explicit persistent state representation of data objects allows Explicit persistent state representation of data objects allows support for support for
schema evolution and dramatically improves read performanceschema evolution and dramatically improves read performance

ATLAS expects to be able to achieve 10-15MB/s read speed

Creating persistent classes by hand resulted in optimized and beCreating persistent classes by hand resulted in optimized and better thought tter thought
through data modelthrough data model

Reduced file size

Quite a few old errors found and fixed

The extra effort required from the developers is hopefully justified

The effects of explicit state representation on ATLAS ability toThe effects of explicit state representation on ATLAS ability to evolve EDM evolve EDM
while maintaining backward compatibility will be visible in the while maintaining backward compatibility will be visible in the futurefuture

Time will tell

	Explicit State Representation and the ATLAS Event Data Model��Theory and Practice
	Introduction
	Schema Evolution
	Supporting Schema Evolution in Athena
	The Persistent Data Model
	T/P Converters
	Chain Effect in Schema Evolution
	Typeless Persistent References
	Top-Level Storage Objects
	Schema Evolution with Top-Level Objects
	T/P Separation and AthenaPool Converters
	Complete Persistency Stack in AthenaPool
	Performance
	Performance with Top-Level Objects
	Direct Access From ROOT
	Conclusions

