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Abstract. In anticipation of data taking, ATLAS has undertaken a program of work to develop 
an explicit state representation of the experiment's complex transient event data model.  This 
effort has provided both an opportunity to consider explicitly the structure, organization, and 
content of the ATLAS persistent event store before writing tens of petabytes of data (replacing 
simple streaming, which uses the persistent store as a core dump of transient memory), and a 
locus for support of event data model evolution, including significant refactoring, beyond the 
automatic schema evolution capabilities of underlying persistence technologies.  ATLAS has 
encountered the need for such non-trivial schema evolution on several occasions already. 

This paper describes the state representation strategy (transient/persistent separation) and its 
implementation, including both the payoffs that ATLAS has seen (significant and sometimes 
surprising space and performance improvements, the extra layer notwithstanding, and 
extremely general schema evolution support) and the costs (additional and relatively pervasive 
additional infrastructure development and maintenance).  The paper further discusses how 
these costs are mitigated, and how ATLAS is able to implement this strategy without losing the 
ability to take advantage of the (improving!) automatic schema evolution capabilities of 
underlying technology layers when appropriate. 

Implications of state representations for direct ROOT browsability, and current strategies for 
associating physics analysis views with such state representations, are also described. 

1.  Introduction 
The work described in this paper was done within the scope of the ATLAS experiment [1] offline 
software framework Athena [2]. One of the important functions of the framework is data management, 
which includes keeping data objects in a transient memory cache and providing storage and retrieval 
of these objects with the help of an independent external persistency technology. Athena allows using 
different persistency solutions simultaneously, but the dominant technology for event data storage is 
currently POOL [3] storage in ROOT [4] file format. 



 
 
 
 
 
 

During the ATLAS software development phase, the problem of schema evolution of the event 
data model (EDM) and the ability to read old data was often deferred as something to be addressed 
when the EDM stabilizes. Much hope was put on the underlying persistency solutions to be able to 
address that issue. However, initial studies performed with POOL and ROOT showed that their ability 
to handle schema evolution was limited to certain cases and did not cover all situations that ATLAS 
foresaw would arise in the lifetime of the experiment. This discovery triggered research in the 
direction of how Athena could handle the issue internally. The most promising approach was to 
introduce a separate persistent state representation for the EDM data objects. 

Shortly after the prototype solution was put in place, it was discovered that the intermediate state 
representation offered much-improved I/O performance. At this time, when discussing the separate 
state representation, the argument for performance improvements is probably as strong as the one for 
supporting schema evolution. 

2.  General issue of Schema Evolution 
The data model of an experiment that will run for many years is bound to undergo many 
modifications. These modifications are commonly referred to as schema evolution. As long as only the 
transient application view changes, there is no noticeable effect. Changes to definitions of classes for 
which data were stored in files, though, introduce incompatibilities between the transient and 
persistent world, to the point where the ability to read old data with the new software is lost. Support 
for schema evolution means introducing mechanisms that prevent that from happening. 

It should be noted that while data model changes can take many forms, including adding or 
removing classes, the changes to a single class are usually made without changing the class name. The 
ability to freely evolve class shapes without the need to change their names and without losing the 
ability to read old data was one of the requirements that arose continually in discussions within the 
ATLAS community. 

2.1.  Object schema handling in POOL and ROOT 
POOL and ROOT use data dictionaries to describe object schema. Every type known to the 
application is described in detail in the dictionary under an entry corresponding to the type name. 
These descriptions are used when writing objects to files – a copy of the dictionary information is 
stored in the file as well. This information is used when reading the object later. When the current 
schema in the dictionary matches the one stored in the file, there is no problem. However, when the 
two schemata are different, some action needs to be taken to transfer the old object data into the new 
schema.    

2.2.  Support for schema evolution in ROOT 
ROOT provides two mechanisms to support schema evolution: 

• Automatic schema evolution 
• Custom streamers 

Automatic schema evolution is a ROOT feature that works automatically, without the need (or 
possibility) of any external action. ROOT tries to match the old schema information stored in the file 
with the new schema in the transient data dictionary as well as it can. The mechanism has a very good 
chance of coping successfully with a range of simple schema modifications – like adding new data 
members to a class. More complicated changes usually lead to unpredictable application behaviour. 

Custom streamers are a completely different mechanism, relying on the user writing a procedure to 
read an object. They can be used to force ROOT to use a different streamer to read the old data – one 
that would match the old object schema – and then perform a data copy. See [6] for a detailed 
description of the process.  

Custom streamers were initially seen as a good candidate to provide support for schema evolution, 
but at the time they were tested they were working only with data written in ROOT “streamed” mode 
[4]. As most performance improvements noticed came from using the other writing mode, called 



 
 
 
 
 
 

“split” mode, the streamers were considered only a partial solution to be used as backup where 
possible. 

It should be noted that since the original evaluation, ATLAS developers have been engaged in 
implementing improved ROOT streamers that should work with data written in either ROOT mode, 
streamed or split. 

2.3.  Introducing schema evolution support in Athena 
Finding no satisfactory support for schema evolution in the POOL and ROOT persistency layer, we 
attempted to provide it in Athena itself. From previous attempts, we knew that to be successful, the 
solution had to meet two conditions: 

• it should prevent ROOT from trying to perform automatic schema evolution in cases where 
it would fail, and 

• it should maintain old class schemata for backward compatibility.   

2.3.1.  Class schema versioning. The most straightforward way to satisfy the requirements was to 
introduce class schema versioning. That feature is not available in the data dictionaries used by POOL 
and ROOT (neither is it something directly supported by C++), so it had to be implemented “by hand,” 
by introducing a version number in the class name. By convention a class name like Track has its 
persistent state represented by Track_p1 and later by Track_p2 and so on. All versions of the 
class schema are included in the dictionary and kept as long as there is a need for backward 
compatibility with a given version. A new schema version is added when changes to the current class 
exceed ROOT’s ability to do automatic schema matching, thus preventing ROOT failures and 
satisfying the first condition. 

2.3.2.  Persistent state representation. Due to the way ROOT I/O works, in order to be able to read 
an object using its schema version _pN, it had to be written as an object of exactly that type in the first 
place (exceptions to that rule are ROOT custom streamers, but they were not working in all situations, 
as explained earlier). Given the principal requirement that the class on the transient side is always 
called simply Track, for example, and that we need to write it out as Track_pN in order to enable 
schema evolution support, we need to perform conversion and copy all relevant data from Track to 
Track_pN. The need to maintain the conversion functions and a separate class shape for persistency is 
clearly an additional effort for the developers, but the benefits go beyond the schema evolution 
support. The persistent state can be much simpler than its transient counterpart and may be handled 
much better by the persistency layer, leading to surprising performance improvements, described in 
section 5.   

3.  Implementing persistent state representation for ATLAS EDM 

3.1.  Framework for Transient/Persistent data model separation 
A persistent state representation that meets schema evolution requirements described in 2.2.  can be 
implemented in many different ways, as preferred by the developer. However, in order to provide 
guidance, help avoid pitfalls, minimize effort, and maintain uniform code structure, ATLAS has 
developed a standard approach to implementing TP conversion based on the TP separation framework 
[7]. The framework consists of a set of rules regarding class creation, and a collection of support 
classes. These classes define uniform interfaces and attempt to provide as much automatic 
functionality as possible, ideally leaving the developer to implement only the actual 
transient/persistent conversion methods for their types. 

3.2.  Persistent state representation classes 
Persistent state representation classes, or in short persistent classes, need to be defined for every 
transient class that requires schema evolution support. The exact shape of the persistent class is again 



 
 
 
 
 
 

something that the developer needs to decide. In many cases the right shape is not obvious, so it is 
preferable that the person creating the persistent representation be the same one who designed the 
transient class, or at least someone who has a good understanding of it.  
The process of creating the persistent representation usually begins with inspecting all data members 
of the transient class to determine if they need to be persistified. The process is recursive and one 
needs to inspect in turn all base class components, contained objects and objects referenced by 
pointers. Each of these can be treated in different way: 

• Flattening – this is an approach wherein relevant data values are extracted from embedded 
structures and stored all in one object “on the same level.”  It offers considerable flexibility 
where schema evolution is concerned, and good I/O performance (due to simpler data 
model), but may be prohibitive in maintenance if the same object flattened in too many 
places needs to be changed. 

• Mirroring the transient model – in this approach the persistent data model mirrors (to some 
extent) the structure of the transient data model, introducing distinct persistent 
representation classes for the embedded types as well. The advantage of this approach is 
that these classes and converters, once defined, can be used in many places. Creating new 
persistent representations and changing schema of existing ones is then easier. 

The main rule when creating persistent classes is always simplicity. Simple classes are better 
handled by the persistency layers, easier to maintain, and easier to evolve. Pitfalls to avoid while 
creating persistent classes are: 

• Unnecessary methods – the persistent class needs only a default constructor (for POOL); 
• Complicated class definitions – the definitions need to go to the dictionary – overly 

complex definitions can be unwieldy to express there; 
• Polymorphism – all classes should be concrete data structures without virtual methods; 
• Inheritance and embedding – they introduce overhead and the objects should be either 

flattened or replaced by persistent references (persistent references are described in 3.5.  ); 
• Pointers – especially pointers to polymorphic types – can force ROOT to use streamed 

mode for writing, and thereby seriously impact I/O performance. They should be replaced 
by persistent references; 

• Dependencies on other transient types – every direct dependency on a transient (non-TP-
separated) type introduces the danger of being affected by transient data model changes, 
without the possibility of recovery. Ideally all transient type references should be 
eliminated or replaced by persistent equivalents.   

In general, the resulting persistent classes are very small and simple. They rarely require more than 
the implementation (.h) file. In Athena code packaging structure they are located in a separate 
<Package>TPCnv package and they are included in the data dictionary that is created for each such 
package. 

3.3.  Converters between transient and persistent representations 
The TP separation framework performs conversion between transient and persistent representations 
with the help of the TP converters. The decision was taken to keep the persistent representations and 
their converters as disjoint classes in order to achieve full separation of the two data models. Each 
version of the persistent state representation has its own converter, versioned in a similar way as the 
persistent class. A Track class with Track_p1 representation would be by convention accompanied by 
TrackCnv_p1 converter.  

The converters were, by initial design, transient classes so they did not need to be entered in the 
data dictionary, and unlike persistent representation types they could have a very complicated class 
structure. However, the implementation of direct ROOT access described in chapter 6 requires now 
their presence in the dictionary. 

TP converters are implemented by specializing a base converter template provided by the 
framework. The template is parameterized by the transient type TRANS and a given version of the 



 
 
 
 
 
 

persistent representation PERS. The templates define most of the utility methods used when invoking 
the converters – the developer has only to implement the two principal conversion methods: 

• transToPers( const TRANS* t, PERS* p) 
• persToTrans( const PERS*p, TRANS* t) 

These conversion methods work on actual instances of the transient and persistent objects. Creation 
and handling of these objects is done automatically by the framework. 

The task of the transToPers() method is to copy all persistent data members of basic type to the 
persistent object. Data members of complex types can be either flattened, or they can be in turn 
converted by invoking a subsequent TP converter. The invocation is not done using directly the 
transToPers() method defined by the developer, but instead by calling one of the utility methods 
defined by the converter template. That method returns a persistent reference that needs to be stored in 
place of the object. The reason for that is the cascade effect explained below. 

3.4.  Cascade effect of schema evolution in the early TP separation model 
The early approach to TP separation assumed that the transient data model was mirrored almost 
exactly by the persistent data model, with the class names replaced by their versioned persistent types. 
This was leading to situations in which long chains of type dependencies existed on the persistent side, 
wherein one versioned class would contain (or point to) another versioned class and so on. Attempts to 
evolve schema of a class that was at the end of such a chain would by definition require changing its 
name due to introducing a new version. A change of name of that class would in turn constitute a 
schema change for the class one step earlier in the chain, and the effect would propagate throughout 
the entire chain. 

The effort to perform such operation was unacceptable to many of the ATLAS package managers, 
and a different solution was requested. The new solution was based upon breaking the type 
dependency chains between object components by introducing typeless persistent references. 

3.5.  Persistent data model without type dependencies 
Removing the C++ type dependencies between constituent object components was achieved by 
replacing all component relationships, including inheritance, embedding and pointer-based 
association, by typeless persistent references. The references consist only of a set of integers that have 
meaning to the TP converters. There is no longer a C++ type tie between the elements of the 
dependency chain, and every link of the chain becomes independent. Changing the schema of one 
class in the chain no longer affects other classes and so the developer is no longer constrained by the 
danger of creating a cascade of changes. 

Breaking down the object structure into separate components had a strong impact on the I/O 
operations. Formerly, POOL/ROOT persistency was taking care of storing all object components by 
recursively traversing object structure, visiting base classes, handling embedded objects, and following 
pointers. After effectively decomposing objects into components, this became no longer possible. The 
TP separation framework needed to take over the responsibility for ensuring that all components are 
written out. 

3.6.  Top-level persistent objects 
To provide a container for all the object components, a new category of persistent object was 
introduced – a top-level persistent object. Top-level persistent objects (TLP objects) contain vectors of 
component objects. Writing out the TLP object automatically ensures that all components are written 
out with it. The relationships between the components are kept in the typeless persistent references, 
which record in which vector and at what index a given component was stored. Placement of 
component objects within the vectors, and later reassembly of the transient objects, is done by the TP 
separation framework automatically. 

Every component type, including base class components (also abstract ones), embedded types, and 
distinct specializations of polymorphic types, has its own storage vector in the TLP object. With a 



 
 
 
 
 
 

complete decomposition of the source object, the component objects would contain only base types 
and persistent references. 

The storage vectors are dynamic, allowing any number of component objects to be stored in them. 
This is an important feature when working with polymorphic types, where some specialization may or 
may not exist in a given data sample. It is also used to support schema evolution. 

3.6.1.  Schema evolution support in top-level objects. Every version of a persistent type has its own 
storage vector in the TLP object. When the TLP object is designed for the first time, all component 
types have one initial version. As the types evolve, new class versions are added together with new 
storage vectors for them. Adding a new data member to the TLP object in this manner is covered by 
ROOT automatic schema evolution, so the TLP object itself does not need to change its name to a new 
version. The same TLP object will support the new and the old data – when reading old data, only the 
vector of the old component type version will be filled out, the vector with the new representation will 
remain empty. When writing, the situation will be reversed – only the vector with the new type version 
will be filled out, and the old one will remain empty. Eventually, when the TLP object accumulates 
too many changes, or possibly when a change being introduced is very extensive, a new version of the 
TLP object itself can be introduced. 

3.7.  TP converters for top-level objects  
TP converters for top-level objects (by association called top-level converters) are a more 
sophisticated version of the elemental TP converters. Their additional functionality is related to the 
task of storing object components into their corresponding storage vectors in TLP objects. To be able 
to do that efficiently, the top-level converters effectively own elemental TP converters for all the 
component types they need to handle. Each elemental TP converter is associated with one storage 
vector every time a new TLP object is created. The converter stores the results of TP conversion 
directly into the storage vector and reads them back from there in the reverse process. 

3.7.1.  TP converters and the cascade effect. It should be mentioned that the cascade effect of 
schema changes was also affecting the TP converters themselves, because they were templates 
parameterized according to the types they were handling. To prevent that from happening, an 
additional converter base class was introduced, parameterized only by the transient type. A pointer to 
that class can be used to reference all versions of TP converters for that transient type. A common API 
was possible because the actual persistent type is not exposed in the API – persistent objects are stored 
in the storage vectors internally. 

3.7.2.  Converting polymorphic types. The fact that the top-level converter knows all elemental TP 
converters allowed an elegant solution to the problem of converting polymorphic objects. When a 
polymorphic object is encountered, the top-level converter can be asked to find the right TP converter 
from the list of all TP converters that it knows about. The selected converter is referenced by a base 
class pointer in a manner similar to that which allowed avoiding the cascade effect – only this time the 
transient type used to parameterize the template is the common base type for the polymorphic objects 
family. 

4.  Role of AthenaPool converters in schema evolution 
The Athena framework manages data objects at a certain level of granularity – each object is a 

separate entity with internal structure opaque to the framework. Such objects can be part of more 
complex data structures, but at that moment they lose their independence. Also, collections of objects 
(i.e., containers), even though they are a special case in some respects, are treated as a single entity 
when it comes to I/O operations. The general design of the framework assumes that the relationships 
between the objects are expressed in terms of smart pointers (links) instead of direct C++ constructs 
like pointers. This allows maintaining the relationship through the persistency phase and prevents 



 
 
 
 
 
 

POOL and ROOT from pulling in the entire data store by following pointers when writing a single 
object. 

Following the Gaudi [5] architecture, on which Athena is based, each of the object types that the 
framework can manage has a Gaudi-style I/O converter associated with it. The converters that Athena 
is using for the POOL storage technology are called AthenaPool converters. By default they are 
generated automatically and simply pass the object to the underlying POOL layer, returning a POOL 
Token. The converters also allow customizations and in principle any kind of transformation can be 
performed before writing the object out and after reading it back. 

Tokens contain all information necessary to later retrieve objects from the persistent storage – 
including object type. Tokens of all the objects that were written out as part of the same event are 
gathered together in a DataHeader object. 

4.1.  Using Transient/Persistent conversion in Athena 
The TP separation framework is mostly a standalone set of object transformation procedures – it does 
not depend upon external packages. To function in the Athena environment it needs to be correctly 
integrated.  The most obvious place to accomplish this is in AthenaPool converters, which exist at the 
connection point between Athena transient object cache and the persistency layer. 

A given AthenaPool converter is invoked for every object being written out or read back. It 
provides hooks that can be used by the developer to transform the input object to any type that is 
suitable for storage. 

The TP separation framework was designed so that the single object passed to AthenaPool 
converter is treated as top-level object and converted into its top-level persistent representation. Each 
AthenaPool converter is associated with one top-level TP converter that is doing the transformation. 
The transient top-level object can be simple or complex (e.g. a multi-level container) – it does not 
affect the 1-to-1 relationship between AthenaPool converters or the way the TP conversion is done. 

4.2.  Supporting schema evolution in AthenaPool converters 
AthenaPool converters work only with the top-level TP converters, so they are unaffected by schema 
evolution that does not require changes to the top-level TP converter version. For writing, AthenaPool 
is always using the newest version of the top-level TP converter. Reading old data on the other hand 
may require using older converter versions. 

The essential part of the reading process is finding out which version of the persistent object is 
being read. The converter can get the information from the POOL Token string, which is the identifier 
of the object. The Token contains the class GUID (a unique identifier assigned by the developer when 
introducing the object to the data dictionary). Based upon the GUID, an object of the correct type is 
retrieved from POOL and the correct TP converter is used to produce the transient representation. 

4.3.  The special case of DataHeader schema evolution 
The DataHeader in AthenaPool, among other responsibilities, serves as the Event entry point and 
stores the persistent address of all DataObjects in the form of Token strings. The DataHeader, just like 
the other DataObjects, is TP separated to allow schema evolution and optimize I/O performance. Here 
too, we use different class names (with '_p<N>) and POOL GUIDs to indicate the version. 

Reading DataHeaders is different from accessing other DataObjects, because we begin without 
Tokens pointing to them. Instead, to ensure that the entry point to the Event can be found easily, the 
DataHeaders are stored in a POOL object collection in a POOL container with a well-known constant 
name ("POOLContainer_DataHeader"). The POOL collection iterator is used to create POOL tokens 
for all objects in the collection.  Only from that point we can follow the standard reading procedure, 
detecting the actual version of the object by checking the class GUID in the Token. 

Using a single POOL container to store DataHeaders restricts us to have only one version of 
persistent representation per file (i.e., we cannot append DataHeader_p<N> to a file with 



 
 
 
 
 
 

DataHeader_p<N-1>). That restriction is not present for other DataObjects. So far the limitation has 
not posed any particular problems. 

It should be mentioned that when following links between Events (by using back navigation [9]) 
the DataHeader will be accessed by a Token like all other DataObjects. That allows creation of cross-
file connections between Events with different versions of DataHeader representations. 

5.  Performance 
The original intention behind introducing a separate persistent state representation for DataObjects 
was primarily to add support for schema evolution. The main concern about the performance was that 
it should not seriously degrade – after all, the TP separation layer introduced additional conversion 
algorithms and memory allocations and copying, and we were not aware of any particular performance 
benefits we could obtain by doing that.  

The results from the first prototypes, which were not using object decomposition (just straight data 
model mirroring), were already encouraging: the file size was reduced by up to 25% in some cases and 
the gains in performance from working with smaller files was covering the extra CPU usage required 
to do the TP conversion. However, it was only after introducing object decomposition and the use of 
top-level objects with vectors of simple structures contained by value that we noted surprising 
performance improvements. 

5.1.  Observed performance improvements 
The I/O performance improvements strongly depend upon the transient data model structure. Simple 
data with large objects were already handled well by the persistency layer, so relative improvements 
were not large. Complex objects with pointers and small component parts profited most from the 
different state representation. 

The TP separation of the ATLAS tracking data model improved the read speed by a factor of 4 
over the reading of the directly written (not TP-separated) transient data model. In other places reading 
speed improvements up to 10 times were observed.  

The biggest improvement achieved thus far was a factor 20 increase in reading speed of 
LArRawChannel data consisting of very large number (~183,000) of small objects (~20 bytes) 
referenced by pointers from a DataVector container. 

The general tendency is that performance improvements were greatest in situations where the 
initial performance was poor. The changes led to more uniform reading speed across different parts of 
the data model. In absolute values we have achieved the desired read speed, on the order of 10MB/s. 

The reduction in disk size remains typically between 20% and 40%. This is attributed mainly to 
reducing ROOT overheads related to type information, and improved buffer compression resulting 
from using simpler data structures. 

5.2.  ROOT writing modes 
 The reasons for such drastic improvements lay in the different ROOT writing modes. The streamed 
writing mode stores objects sequentially, recursively inspecting the object structure and introducing 
type information overhead on a per-object basis. In the split mode object attributes are treated like 
elements of a column-wise ntuple, and the type information is not replicated. 

The overhead information present in the streamed format does not lead to much bigger data files, 
because it can be efficiently compressed. However the compression and the effort of processing the 
type information for every object is responsible for this mode being so much slower (at least this is the 
current understanding of the process in ATLAS). 

ROOT is forced into streamed writing mode by the presence of pointers and polymorphic types in 
the data model. By eliminating these features from our persistent state representation, we enabled the 
possibility of using the much more efficient split writing mode. 



 
 
 
 
 
 

5.3.  Object pools in the TP converters 
The additional cost of the memory allocations in the TP separation framework can consume about 

10% to 20% of the CPU time needed to read in the objects. Since the transient model is a pointer 
model based on objects allocated on the heap, we have developed an “object pool” wherein objects 
can be allocated once per job and never deleted, if necessary reused event by event.  

The use of object pools can be enabled on a per-converter basis, allowing focus on the most 
promising packages. 

6.  Accessing persistent state representation objects directly from ROOT 
For purposes of end user physics analysis, it is convenient to be able to access event data directly 

with ROOT (without the Athena framework).  It is of course possible to read the persistent form of the 
data from within ROOT - this simply requires loading the dictionaries for the persistent data classes 
(as well as a small amount of code to work around various ROOT deficiencies).  However, one would 
really like to be able to work with the transient form of the data, without being exposed to the 
persistent representations with their potentially changing versioned class names. As an additional 
requirement, the transient data objects should also be usable with the built-in ROOT tools such as 
TTree::Draw.  

The persistent data are stored using the ROOT TTree data structure. This can be thought of as a 
two-dimensional table, the rows of which are separate entries, and the columns of which are 
represented by TBranch objects. The TBranch objects are owned by the TTree; each one corresponds 
to a stored data object (or a piece of one). The TBranch class provides an interface that the standard 
ROOT tools use; several derived classes exist to support different ways in which the storage is 
organized.  A TBranch maintains a memory buffer that holds the data object that it is managing; the 
method TBranch::GetEntry is used to seek to a given entry in the branch and read the object into the 
buffer.  

To provide automatic TP conversion within ROOT, we introduced a new, Atlas-specific, class 
derived from TBranch: TBranchTPConvert.  The memory buffer in this branch holds an instance of 
the transient data object.  The branch also holds a reference to the branch of the persistent data object, 
as well as a reference to the transient-persistent converter. The GetEntry method of 
TBranchTPConvert is thus implemented by first forwarding the call to the persistent branch, then 
calling the conversion method of the TP converter to copy from the memory buffer of the persistent 
branch to that of the transient branch. All the TBranchTPConvert instances for a given tree are 
collected together into a new TTree, the ``transient'' tree.  The original, “persistent,” tree is made a 
friend of the transient tree.  This means that a GetEntry call on the transient tree is automatically 
forwarded to the persistent tree, and that a branch lookup in the transient tree will search both the 
transient and persistent trees.  In this way, the user need only deal with a single tree, and can use either 
the persistent or the transient data objects. Because TBranchTPConvert supplies the required TBranch 
interface (it actually derives from TBranchObject), all the built-in ROOT tools transparently work on 
the transient data.  

A function is provided to automatically build the transient tree and its branches from the list of data 
objects contained in the DataHeader. A method is needed to find the transient class corresponding to a 
given persistent class, as well as the correct TP converter.  Converter lookup is made possible by 
introducing a base TP converter template of the form T_TPCnv<T, P>, where T and P are the transient 
and persistent classes. Thus, given the name of the persistent class, one can find both the converter and 
the corresponding transient class by inspecting the list of available TP converters.  

Special treatment is required to handle the object pools used by some of the transient-persistent 
converters, as the lifetimes of objects in separate branches are independent.  The object pool was 
converted to use an arena-based memory allocator.  In the offline reconstruction code, there is a single 
arena, used by all the object pools.  However, for access from ROOT, a separate arena is associated 
with each transient branch.  In this way, the object lifetimes may be managed independently. Further 



 
 
 
 
 
 

special handling is needed to handle references between transient objects.  These references are 
represented as a string key, which is resolved using information in the DataHeader. 

Direct ROOT access to persistent state objects is implemented in the AthenaROOTAccess [8] 
package. 

7.  Conclusions 
At the time of writing, the idea of separate persistent state representation for event data is widely 
accepted in the ATLAS offline software development community. It is considered the solution for 
schema evolution support from Athena release 14 onwards. In release 13 the event data model is 
already almost fully TP separated. Some classes already had their schema changed in the meantime, 
and the ability to read old data was tested. At the same time we are observing spectacular reading 
performance improvements. The overall performance that we expect to be able to achieve is 10-15 
MB/sec for typical 2007 CPUs. 

Implementation of the secondary data model and TP converters is undoubtedly an extra effort, so a 
lot of thought was devoted to minimize the amount of code that needs to be written and to make it easy 
to maintain. Additionally, the time spent on the analysis of the data model is not wasted – the analysis 
forces developers to think more carefully about the data they are writing out, instead of simply 
dumping the transient object state. Many errors were discovered during that phase, which also resulted 
in decreasing the disk size and improving performance. 

As an important side effect of the schema evolution studies, ATLAS has been able to utilize the 
much more efficient ROOT split writing mode to a much greater extent, and is now in a position to 
take full advantage of that feature. 

Lastly, the persistent state representations are handled internally by Athena without exposing them 
to the end user. With the introduction of the ROOT access mechanism, this is also true for analysis 
directly from ROOT. Therefore one of the important requirements, that the solution to schema 
evolution (or data persistency in general) does not influence or require modifications on the transient 
side, was met. 
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