ROOT Graphics: Status and Future Plans

Olivier Couet (CERN)

Overview

- Basic Elements of ROOT Graphics.
- 2D Graphics Latest Developments.
- 3D Graphics Latest Developments.
- Multiple Variable Data Set Visualization.
- Spider (Radar) Plots.
- Parallel Coordinates Plots.
- Box (Candle) Plots.
- Conclusion.

Basic Elements (1/5)

- The ROOT graphics is build around the pad concept (class TPad).
- A pad is a linked list of primitives of any type (graphs, histograms, shapes, tracks, etc.). It is a kind of "display list".

- Adding an element into a pad is done by the Draw ()method of each classes.

Basic Elements (2/5)

- A pad is painted by calling sequentially the Paint() method of each object in the list of primitives.

Basic Elements (3/5)

- The list of primitives is also used to pick objects and to interact with them.

2. Pitavixaction:

Aoreealdectdjeast lieetmeplisteoff. primitives the

 (ple, dowitherlfaneobjotartcesibesemadieknedigh the object is considered as picked.

Basic Elements (4/5)

- For each element in the list of primitives, it is possible to access a dedicated ditor allowing to perform specialized actions on the selected object.

Basic Elements (5/5)

Based on this mechanism it is possible to produce all kinds of plots and to interact with them.

The new developments we will present later make a great use of these features.

An Objectoricened

2D Graphics Latest Developments

The next slides present the latest significant 2D graphics' developments (last 18 months):

TASImage/TImage/TImageDump

Exclusion Plots

Pie Charts

Spectrum Painter

The initial version of this class was developed by S.Boser and extended later by M.Demaret.

It creates a polar graph (including error bars).

- TGraphPolar is a TGraphErrors represented in polar coordinates.
- It uses the class TGraphPolargram to draw the polar axis.
- Several settings are available: labeling in PI, label orientation etc...
- Still needs some developments (Editor).

This class was developed in collaboration with G.Volpi.

- It allows to define and draw pie charts.
- Various options to draw a pie chart (flat, 3D effect, label format etc ...)
- Flexible and intuitive way to manipulate the drawing interactively.
- Can also be used to draw TH1 histograms: a TPie can be constructed from a TH1.

Pie with verbose labels
0.60 (11.8 \%) Slice2 0.90 (17.6\%) Slice3

Exclusion Plots

- 11 represents the normal line width ($11>0$).
- ff is the filled area width ($\mathrm{ff}>0$).
- The line width sign defines on which side of the graph the hatches are drawn.
- The fill area attributes are used to draw the hatched zone.

ROOT
 An obletoricemed Data Analypis Framen
 Spectrum Painter

The "Spectrum Painter" is a surface and contour drawing package. It has been developed by Miroslav Morhac several years ago in C and has been transformed in a ROOT class.

It is called by THistpainter: : Paint when drawing a TH2 with the "SPEC" option.

It offers many different drawing options which can be combined together.

It is a complement of the existing "SURF", "CONT" and "LEGO" options.

A complete description of its capabilities is given in the help of:
TSpectrum2Paint::PaintSpectrum()

TASImage/ TImage/ TImageDump

Developments done by V.Onuchin.

- Animated gif files can be generated directly in ROOT. No need for an external tool like gifsicle. (\$RootSYS/tutorials/image/hsumanim.c)

- The tutorial (\$ROOTSYS/tutorials/image/trans_graph.c)

Demonstrates, among others things, how to manipulate images in order to make then transparent.

- Picture output of any formats (gif, png, jpeg, etc...). Can be generated in batch mode. Previously it was only possible with PostScript or PDF formats.

3D Graphics Latest Developments

The 3D Graphics GL developments have been done to have:

1. The possibility to draw graphics produced by GL in a 2D pad (GL-in-Pad).
2. Data set representations using GL.
3. The GL-Viewer (see M.Tadel talk.)

The next slides present the following developments:

GL in Pad: 2D and 3D mixed

TH2, TF2, TH3, TF3 representations

3D Interactions

All the GL-in-Pad developments are done by T.Pocheptsov.

GL in Pad: 2D and 3D Mixed

A TCanvas can contain pads with GL graphics rendering. It is enough to declare the canvas the following way:
TCanvas c("glc","GL pad demo");
or to do:
gStyle->SetCanvasPreferGL(kTRUE);
After this all the new canvas will "prefer GL". It means that:

- Detectors yeometries will be painted in the pad using GL,
- It is possible to paint 3D graphics representations like Lego, Surface, etc ... using GL.
- Other pads are painted using basic 2D.

PostScript files generated from such "mixed" canvases are a combination of gl2ps output (for the GL parts) and TPostScript output (for the 2D part).

TH2, TF2, TH3, TF3 Representations

It was already possible to display TH2, TH3, TF2, TF3 using combination of options like "SURF", "LEGO", "POL", "CYL", etc .

The same options are available in "GL-mode". It is enough to add the option "gl" in the list of
 options, and to draw in a canvas which "prefer gl" Example:
h2->Draw("gl surf1 cyl");

Parametric Functions

A parametric surface is defined by three functions:
$S(u, v):\{x(u, v), y(u, v), z(u, v)\}$.
Example, a conchoid:
TGLParametricEquation p1("Conchoid",
"1.2^u*(1+cos(v))*cos(u)",
"1. $2^{\wedge} u^{*}(1+\cos (v))$ *sin(u)",
"1.2^u*sin(v)-1.5*1.2^u",

0., 6*TMath::Pi(), 0., TMath::TwoPi());

Parametric surfaces can be drawn using a GL-pad

An Objent-oriemed

Iso-Surfaces

It is possible to paint a TH3 histogram using iso-surfaces (iso-3D contours).
It can be seen as a "3D contour plots".
Like for the 2D contour plots, it is possible to define the iso-surfaces either automatically (some equidistant surfaces between vmin and vmax) or with user defined values.

```
void iso()
{
        gStyle->SetCanvasPreferGL(true);
        TH3C * volume = new TH3C("V","V",
                        20,-20,20, 20,-20,20, 20,-20,20);
        TCanvas * canvas = new TCanvas("C","C",600,600);
        float x,y,z;
        for(x=-20;x<20;x+=1)
            for(y=-20;y<20;y+=1)
            for(z=-20;z<20;z+=1)
                if((x*x+y*y+z*z)<200)
                    volume->Fill(x,y,z,1);
        canvas->Draw();
        volume->Draw("gliso");
}
```


3D Interactions

"glsurf1" and dynamic slicing animated demo for TF2.

"glbox1" and dynamic slicing animated demo for TH3.

ROOT
 An Objear-oriened
 TGLText/ TGLAxis

- TGLAxis uses TGLText which is based on the domain public library FTGL.
- FTGL allows to render freetype text in 3D using OpenGL.

An Objer-orienened

Multiple Variables Visualization

Because there was no way to visualize more than 4 variables of a ROOT tree, three new visualization techniques have implement last summer.
This work has been done with B.Dalla Piazza.

Scanning with Spider plot.

Parallel Coordinates plots.

Spider Plots (1/2)

- Spider plots (sometimes called a "web-plots" or "radar plots") are used to compare series of data points (events). They use the human ability to spot asymmetry.
- Variables are represented on individual axes displayed along a circle.
- For each variable the minimum value sits on the circle's center, and the maximum on the circle's radius.
- Spider plots are not suitable for an accurate reading from the graph since, by it's nature, it can be difficult to read out very detailed values, but gives quickly a global view of an event in order to compare it with the others.

Spider (Radar) Plots (2/2)

Parallel Coordinates Plots (1/13)

- The multidimensional system of Parallel Coordinates Plots (||-Coord) is a common way of studying and visualizing multivariate data sets. They were proposed by in A.Inselberg in 1981 as a new way to represent multidimensional information.
- In traditional Cartesian coordinates, axes are mutually perpendicular. In Parallel coordinates, all axes are parallel which allows to represent data in much more than 3 dimensions.
- A point in n-dimensional space is represented as a polyline with vertices on the parallel axes. The position of the vertex on the i-th axis corresponds to the i-th coordinate of the point.
- To show a set of points in ||-Coord, a set of parallel lines is drawn, typically vertical and equally spaced.

An Objear-oriened
 Parallel Coordinates Plots (2/13)

Parallel Coordinates Plots (3/13)

- I|-Coord plots are a widely used technique to display and explore multi-dimensional data.
- It is good at: spotting irregular events, see the data trend, finding correlations and clusters.
- Its main weakness: the cluttering of the output. But there are techniques to bypass it.

This summer, we have implemented ||-Coord plots in ROOT as a new plotting option "PARA" in the TTree: : Draw() method.

An Objen-Oriened Parallel Coordinates Plots (4/13)

This "pseudo C++" code produces the data set we'll use to show the ||-Coord usage.

```
void parallel_example() {
    TNtuple *nt = new Tn+tuple("nt","Demo ntuple","x:y:z:u:v:w:a:b:c");
    for (Int_t i=0; i<3000; i++) {
```



```
    }
}
```

9 variables: $x, y, z, u, v, w, a, b, c$.
$3000 * 8=24000$ events.
Three sets of random points distributed on spheres: s1, s2, s3
Random values (noise): rnd

The variables $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are almost completely random. \mathbf{a} and \mathbf{c} are correlated via the $1^{\text {st }}$ and $3^{\text {rd }}$ coordinates of the $3^{\text {rd }}$ "sphere".

Parallel Coordinates Plots (5/13)

x:a:y:b:z:u:c:v:w

 pexpinestotted Wiinles color palette.

The spanacebetextelpetbarandedis a parameter which can be あdjulisisdginaonderato lget the best repultsented as bar chart

The clusters (in this case the "spheres") now appear clearly! But still the clusters are not visible...

The image cluttering is very high !

Parallel Coordinates Plots (6/13)

The order in which the axis are displayed is very important to show clusters:

x:a:y:b:z:u:c:v:w

The axis can be moved interactively. All the clusters we have introduced in the data set are now clearly visible.

The correlation between u, v, w after $\mathrm{x}, \mathrm{y}, \mathrm{z}$ is clear also.

Parallel Coordinates Plots (7/13)

To pursue further the data set exploration one can use selections.

An Objea-Oriened

Parallel Coordinates Plots (8/13)

Several selections can be defined:

Each selection has its own color.

Thanks to the multiple selections this zone with crossing clusters is now understandable.

Parallel Coordinates Plots ${ }_{(9 / 13)}$

Selections allow to make precise events choices.
x:a:y:b:z:u:c:v:w

This single selection displayed with an appropriate dots-spacing shows clearly a cluster.

Displayed with solid lines the cluttering shows up again.

Adding a range clears the picture.
A third range allows to show one single event outside the cluster. It would have been hard to see it with dots-spacing.

A final adjustment selects precisely the cluster on 6 variables.

Parallel Coordinates Plots (10/13)

Selections can be saved as TEntryList and applied to the original tree .

An other technique has been implemented in order to show clusters when the picture is cluttered. A weight is assigned to each event.
The weight value is computed as: weight $=\sum_{i=1}^{n} b_{i}$
Where b_{i} is the content of bin crossed by the event on the $i^{i t h}$ axis. n is the number of axis. The events having the bigger weight are those belonging to clusters. Then, it is possible to paint only the events having a weight above a given level and the clusters appear.

Parallel Coordinates Plots (12/13)

- With few events, displaying as smooth curves helps to differentiate events:

It is difficult to decide which lines are going together.

Displaying with smooth curves makes it clear.

ROOT

Parallel Coordinates Plots ${ }_{(13 / 13)}$

The Graphical User Interface is very important to manipulate the ||-Coord plots:

An Objectoriened Box Plots (1/3)

- A Box Plot (also known as a "box-and whisker" plot or "candle stick" plot) is a convenient way to describe graphically a data distribution (D) with only the five numbers. It was invented in 1977 by John Tukey.
- The five numbers are:

1. The minimum value of the distribution \boldsymbol{D} (Min).
2. The lower quartile (Q1): 25% of the data points in D are less than Q 1 .
3. The median (M): 50\% of the data points in D are less than M.
4. The upper quartile (Q3): 75\% of the data points in D are less than Q3.
5. The maximum value of the distribution \boldsymbol{D} (Max).

For a distribution \boldsymbol{D}, the values Min, Q1, M, Q3, Max are represented the following way:

Very often the mean value of the distribution \boldsymbol{D} is also represented.

In ROOT Box Plots (Candle Plots) can be produced from a TTree using the "candle" option in TTree: : Draw() :
x:a:y:b:z:u:c:v:w
Example: tree->Draw("px:cos(

w

Conclusion

Important new developments have been made in 2D and 3D graphics during the past 18 months. More are needed:
-2D Graphics: The list of developments planed is quite long.

- OpenGL 3D graphics: The future developments will be in the integration of the 2D and 3D graphics in the GL context to benefit 3D graphics acceleration.
- Multiple variable data set Visualization:
- ||-Coord:
- To show the cluster and fight the cluttering several techniques are available. Like the transparency and shading. We should explore this tracks in the future. Right now we have implemented simple techniques which show good result already.
- Find clusters automatically.
- Sort axis automatically.
- Investigate other techniques than ||-Coord.

