The Performance of the Geant4 Standard EM Package for LHC and Other Applications

J. Apostolakis, A. Bagulya, S. Elles, V. Ivanchenko, O. Kadri, M. Maire, L. Urban

CHEP'07, 2-7 September, Victoria BC, Canada

Outline

Recent upgrades for Geant4 saturdard EM

- EM physics and navigation
- Updates provided with g4 8.3
- Updates provided with g4 9.0
- Recent validation results
 - Electron transport
 - Heavy particle transport
 - LHC-type calorimeter response
- CPU performance
- Summary

EM physics and Geant4 navigation

- Geant4 7.1p01 have been used in production for ATLAS, CMS, LHCb and other experiments
- Since then multiples scattering models was significantly upgraded
 - reduced dependence of detector response on production cuts for sampling calorimeters
- Sub-cutoff option restored simulation with lower cuts in vicinity of geometry boundary
- Upgrades require access to geometry information from physics model to get
 - safety radius
 - distance to the next boundary

Redesign of interfaces to navigator/transportation

Updates provided with Geant4 8.3

- **G4SafetyHelper** was introduced
- Single Coulomb scattering mode near geometry boundaries inside G4UrbanMscModel
 - do not use for simulation with strong magnetic field
- Multiple scattering angular distribution improved
 - both central part and tail
- G4hMultipleScattering process for heavy particles
 - the same model with options for faster computations
- Necessary protections were introduced to remove production job fail

Sampling of fluctuations in Geant4 8.3

- We cannot use Landau distribution which assumes no δ-rays production
 - Model of fluctuations is cut and material dependent (L.Urban, NIM A362(1995) 416)
- The model was improved for small steps or gas

Updates provided with Geant4 9.0

Updated G4SafetyHelper

- multiple scattering model
- sampling of sub-cutoff option
- Provided alternative to continues multiple scattering G4CoulombScattering process
 - single scattering
- Optimized general interfaces for EM processes to be more fast

Infrastructure updated

- Renamed Physics Lists optional builders
- Renamed EM standard components in examples
- Renamed methods of G4EmProcessOptions
- New UI commands
- Removed 52-type processes

Multiple scattering options

G4MscStepLimitType

- Minimal equivalent to the algorithm of Geant4 7.1 and earlier releases (QGSP_EMV Physics Lists)
- UseSafety the current default, uses geometrical safety (QGSP and QGSP_EMX Physics Lists)

OGSP_EMX includes sub-cutoff option

- UseDistanceToBoundary the most advanced, recommended for accurate computations in the cases, where no magnetic field is set
- Multiple scattering options configurable via UI

Validation of MeV electron transport using Standard EM packages

Motivation: A significant part of LHC calorimeter response due to e⁻ with energy below 1 MeV

Fano Cavity test of e- transport

- I MeV gamma beam in water with cavity of water-gas
- The absolute prediction of the dose deposition inside the cavity
- Significant deviation for EMV Physics List

Sandia test for multi-layer configurations

EMV shows significant deviation from the data

Single scattering model overestimates dose deposition in the last layer and provide slightly longer distribution in dense media

Similar test versus other MC codes

(L. Ferrer et al., Cancer Biotherapy & Radiopharmaceutical, 22 (2007))

1,6 1,4 1,2 1 0,8 Berger DPKs Geant4 standard Geant4 Low Energy 0,6 Geant4 Penelope 0,4 0,2 0 0,2 0,4 0,6 0,8 1,2 1,4 -0,2

DPKs 1 MeV

Validation on heavy particle transport using Standard EM packages

Proton and ion stopping in water (QBBC Physics List)

A.Bagulya et al., 11th Geant4 workshop, Lisbon, 2006

- The data for medical proton and carbon-ion beams in water are well reproduced by the Standard package
- Binary Cascade is used for sampling of inelastic interactions
- QElastic model is used for sampling of elastic scattering

Geant4 EM Standard

Geant4 simulation and data for signal in a vertex detector

LHC-type Calorimeter Responses

Regular tests of ATLAS barrel, ATLAS HEC, CMS, LHCb simplified calorimeters

Calorimeter tests ATLAS barrel type

- Practically no difference between 8.3 and 9.0
- EMV results are the same as for 7.1p01
- Sub-cutoff option (EMX) was optimized

Pb/Scintillator sampling calorimeter (NIM A262 (1987) 229; NIM A274 (1989) 134)

- **Two configurations:**
 - 5 mm Pb/5 mm Scintillator
 - 10 mm Pb/ 2.5 mm Scintillator
- Default Geant4 (QGSP) within experimental uncertainty
 - At 50 GeV a special cut was applied for data analysis to reduce leakage
- QGSP_EMV version provides biased results
 - Less precise for small sampling fraction

CPU performance

Visible energy and CPU performance

CPU optimization for Geant4 9.0

- The review and optimization of interfaces have been performed
 - G4VEmModel
 - G4VEnergyLossProcess
 - G4VEmProcess
 - G4VMultipleScattering
 - Modifications were provided for all derived classes
- Reduction of usage of virtual methods
- Reuse stl vectors reduced calls to new and delete for intermediate vectors
- Minor optimization of G4UrbanMscModel code

CPU benchmark

Electromagnetic physics

- EM-1 : 10 GeV e- in matrix 5x5 of PbWO4 crystals (CMS-type); cut = 0.7 mm, 1000 events.
- EM-2 : 10 GeV e- in ATLAS barrel type sampling calorimeter; cut = 0.7 mm, 1000 events.
- EM-3 : 10 GeV e- in ATLAS barrel type sampling calorimeter; cut = 0.02 mm, 100 events.

All numbers with Geant4 CERN afs installation for SLC3 and shared libraries

Release	QGSP			QGSP EMV		
	EM-1	EM-2	EM-3	EM-1	EM-2	EM-3
5.2.p02	1.03	0.99	1.59			
6.2.p02	0.89	0.98	0.97			
7.1.p01	1.00	1.00	1.00			
8.0.p01	1.33	2.24	2.26			
8.1.p01	1.37	2.43	2.01	1.06	1.08	1.07
8.2.p01	1.27	2.03	1.73	1.03	1.09	1.06
8.2.ref02	1.29	2.14	1.79	1.03	1.08	1.06
8.2.ref03	1.28	2.08	1.78	1.04	1.04	1.05

CPU benchmark upgrade

Static build on dedicated SLC4 PC

- no libraries from afs
- SLC3 to SLC4 migration slightly change ratio between CPU of different tests

	EM1	EM2	EM3	EM1_EMV	EM2_EMV	EM3_EMV
8.3 SLC4	1.33	2.30	1.84	1.0	1.0	1.0
9.0	1.21	2.05	1.65	0.92	0.93	0.94
9.0ref01	1.17	2.07	1.66	0.91	0.92	0.91

Possible further CPU improvements:

- more efficient computation of safety
- more efficient sub-cutoff sampling
- reducing of number of steps

Geant4 EM Standard

Summary

- With Geant4 8.3 and 9.0 EM standard is capable to provide results on level of accuracy ~2 %
 - EMV Phys List is kept to be the same as default physics of Geant4 7.1p01
- 0.7 mm cut is the today default
 - Lower cuts not needed for LHC calorimeters!
 - Lower cuts may be useful for tracking detectors
- Sub-cutoff option (EMX) provides stable results up to cut 10 mm
 - CPU performance of sub-cutoff needs to be upgraded
- There is a visible speed up for Geant4 9.0