
Raw-data Display and Visual Reconstruction

Validation in ALICE

Matevž Tadel
CERN, Switzerland

E-mail: matevz.tadel@cern.ch

Abstract.
ALICE Event Visualization Environment (AliEVE) is based on ROOT and its GUI, 2D &

3D graphics classes. A small application kernel provides for registration and management of
visualization objects. CINT scripts are used as an extensible mechanism for data extraction,
selection and processing as well as for steering of frequent event-related tasks. AliEVE is
used for event visualization in offline and high-level trigger frameworks. Mechanisms and base-
classes provided for visual representation of raw-data for different detector-types are described.
Common infrastructure for thresholding and color-coding of signal/time information, placement
of detector-modules in various 2D/3D layouts and for user-interaction with displayed data is
presented. Methods for visualization of raw-data on different levels of detail are discussed as they
are expected to play an important role during early detector operation with poorly understood
detector calibration, occupancy and noise-levels. Since September 2006 ALICE applies a regular
visual-scanning procedure to simulated proton-proton data to detect any shortcomings in cluster
finding, tracking and primary & secondary vertex reconstruction. A high-level of interactivity is
required to allow in-depth exploration of event-structure. Navigation back to simulation records
is supported for debugging purposes. Standard 2D projections and transformations are available
for clusters, tracks and simplified detector geometry.

1. Introduction
AliROOT, the offline environment of the ALICE experiment [1], is built on top of the ROOT
framework [2]. The only additional external dependencies of AliROOT are the Monte-Carlo
transport engines Geant3, FLUKA and Geant4 (in order of inclusion). This simplifies not only
the build system and installation but also makes porting to new platforms much more viable.
Event-data is stored in a set of ROOT files, each containing a specific data-type for given sub-
detector (e.g. a file named TPC.Digits.root contains time-projection chamber digits). Internally,
all data is stored in ROOT trees and clones-arrays are used for logical grouping, e.g. to merge
all hits of a given primary particle or all digits of a given detector module.

ALICE computing is visibly marked by the large data-volume of lead–lead events, produced
by around 60 k primary particles entering the sensitive volumes and producing 1.5GBytes of data
during a full simulation/reconstruction pass, including 600 k simulated particles (1.5M actually
tracked), 150M TPC hits, 3.2 M TPC clusters and 16 k reconstructed tracks. The raw-data size
is 80 MBytes and typical size of event-summary data is 4MBytes. The large data-volume has
many consequences also for the visualization framework as versatile selection algorithms must
be provided to limit the displayed data to any particular range or region of interest to the user.



Development of ALICE Event Visualization Environment (AliEVE) started in 2005 with
prototyping of the visualization elements and selection algorithms within the Gled framework
[3]. In 2006 the the first prototype using the ROOT graphical user-interface and 3D graphics
was assembled [4] and since then the system has been growing in scope and versatility. OpenGL
support in ROOT has also been augmented as a part of this development [5].

2. AliEVE architecture
The architecture of AliEVE is heavily influenced by the format and quantity of the input data,
variability of its desired visual representations and by the set of selection and transformation
algorithms that need to be supported on various stages of the data processing. The requirements
for supported input-data types are the following:

(i) detector geometry, all types of simulation & reconstruction data, including reconstructed
physics-objects;

(ii) raw-data and digits;
(iii) high-level trigger events and performance monitoring of trigger-algorithms;
(iv) on-line detector monitoring data.

Due to the mutual incompatibility of the input sources a clear separation must be made between
input-processing, object management and data-display components of the framework. It is also
desirable that the functionality is introduced gradually: simple visualization tasks should only
make use of the basic framework elements while advanced mechanisms must provide enough
flexibility to allow construction of applications with complex internal state and heavily cross-
referenced data-structures.

Structural aspects of the architecture are also determined by a set of implementation
constraints arising from AliROOT development environment and work-flow organization.
Further, restrictions on the manpower allocated for the core development and short required
time-to-delivery,1 forced us to adopt the extreme-programming development practices with
aggressive core API prototyping and a wide spectrum of test cases and demonstration programs.
The main implications for the architectural structure are summarized in the following points.

• Instead of building a monolithic application provide an extensible framework where user-
code can be plugged into practically every level of data-processing.

• ROOT is the only external software dependency. This implies usage of native ROOT GUI
widgets and ROOT interface to OpenGL graphics.

• Adopt the same component philosophy as ROOT: provide a modular, loosely coupled
toolbox of classes with sample, default implementations of the higher-level functionality.
Use CINT scripts for application configuration and for steering of the input-data processing.

• Introduce new elements into the framework as they are needed on all levels of the system,
including ROOT.

It was recognized from the very beginning that a clear separation between the general,
experiment independent part of the framework and the ALICE specific functionality is necessary.
First, it improves the the overall modularity of the system and allows many visualization tasks
to be performed independently of AliROOT.2 Second, this allows other experiments to directly
reuse the stand-alone ROOT-based visualization framework or to use it as a base for more
complex development. The two modules are described in the following sub-sections.

1 The development team consists of two developers, a project-lead & a high-level junior. 20 months were available
for the development after the early-prototype release.
2 All ALICE data is stored in a set of ROOT trees that can be, to some degree, accessed without the source class
definitions. Alternatively, ALICE libraries can be loaded on demand.



2.1. REVE – ROOT Event Visualization Environment
REVE is the experiment independent part of the ALICE visualization environment and depends
only on ROOT. It is currently in the process of becoming a ROOT module and will thus be
released from its cradle within AliROOT. Both ATLAS and CMS have expressed interest in
exploring it as a light-weight, complementary alternative to their visualization frameworks.

The components of REVE can be put into three main categories, based on the role they play
within the framework.

(i) Application core consists of general services exposed to users via an instance of the
Reve::Application class and some global functions of the Reve namespace. Together, they
provide four main functionality units:

- management of object-browsers, 3D scenes and 3D viewers;
- registration of visualization objects;
- event management & navigation;3

- execution environment for CINT scripts.
(ii) Framework base-classes implement the low-level functionality of visualization and GUI

objects that is used by the application core to perform object and state management as
well as to provide a reasonable level of feedback to the user (e.g. object names and titles,
color-marking, object inspection via GUI and command-line interfaces).

(iii) Basic 3D visualization classes serve as initial building blocks for simple visualization
tasks, as base-classes for more advanced visualization classes or simply as examples of
framework usage. The standard HEP visualization classes (geometry, points and tracks)
are discussed in Sec.3 and base-classes for raw-data visualization in Sec.4.
All classes in this category are equipped with accompanying GUI editors and OpenGL
rendering classes. Following the ROOT’s naming convention, the Track class has
accompanying GUI implemented in class TrackEditor and GL renderer in class TrackGL.
For details of this mechanisms see [5] and [6].

A top-level window of REVE as a standalone application is shown in Fig.1.

2.2. AliEVE – ALICE Event Visualization Environment
AliEVE encompasses code that is specific to ALICE and requires the presence of AliROOT
libraries. At the time of writing, it provides access to ALICE data, visualization of raw-data &
detector modules and C++ scripts that produce the visualization objects for all other data-types.

(i) Access to ALICE data. Visualization code accesses data in a random fashion, based
on user input and not on any predetermined pattern as is the case during simulation or
reconstruction. Thus we need to shield the AliROOT event-loading functionality from the
visualization data-consumers to prevent multiple loading of the same data and to simplify
the user interface by covering the most frequent usage patterns. Additionally, it must
support loading of detector geometry, magnetic filed maps, alignment-data and detector-
conditions database.
Parts of the event-navigation could in principle be solved on a general level but its
implementation is currently still kept in AliEVE. It is possible to register a set of commands
that are executed after the loading of a new event.

3 Two default containers for visualization objects are provided: one for global objects (like geometry) that
remain resident during event-navigation and another one for event-based data that needs to be dropped. Due to
the variability of input-data only a very basic infrastructure can be provided for this task.



(ii) Raw-data and detector-module visualization needs to be treated with special care
as it requires direct access to raw-data reading functionality as well as to the specifics of
detector structure and read-out electronics such as module positioning, segmentation and
channel numbering conventions. The most advanced solution is required for TPC, in part
also due to its large data-volume. Other complex detectors (e.g. ITS, TRD, TOF) extend
REVE base-classes for raw-data representation, mostly to provide tools for user-interaction.
For simple detectors with small data-volume and little segmentation (e.g. VZERO, T0),
the visualization is provided by scripts that use REVE classes directly.

(iii) Visualization scripts are CINT macros that perform the actual data extraction, create
and fill the visual representation objects and register them into the application. In a sense,
they provide a bridge between the ALICE data and the visualization structures and relieve
the core application of any knowledge about AliROOT internals (other than event-data
interface). The default demonstration scripts are provided with the AliEVE distribution
and are named by sub-detector and data-type, e.g. tpc digits.C, trd clusters.C, etc.

Every effort is made to keep AliEVE as small and as simple as possible. Most of this is
already achieved by pushing all the general functionality into the REVE base-classes. Another
simplification comes from the usage of CINT scripts for data-extraction steering. By providing a
concise interface for their invocation and exception-throwing methods for obtaining handles into
the ALICE data, their framework induced overhead is reduced to a bare minimum. Further, as
standard ALICE data-containers are returned by these functions, the macros retain the look and
feel of standard AliROOT code. This helps users first to understand the macros and second to
tailor or enhance them for their specific needs without any further complications. A screen-shot
of AliEVE in action is presented in Fig.2.

Figure 1. Standard REVE window showing
an imported 3D-studio model (B. Bellentot).

Figure 2. An ALICE p–p@14TeV event
showing simplified geometry and kinematics.

3. Standard visualization classes
In this category we describe the traditional event-visualization classes of REVE that are present
in practically any event-display program. These programs are typically used by physicists, to
gain insight into the structure of the detector and the topology of events, and by developers
of the experiment software-frameworks for visual debugging of simulation and reconstruction
algorithms. All these classes are also used for visual reconstruction validation of ALICE (Sec.5).



3.1. RenderElement – the visualization base-class
RenderElement is the base-class of all visualization classes in REVE. It provides interfaces
between the objects and the application core, the 3D rendering system and GUI. Each render-
element can have an arbitrary number of children and also holds lists of its parents and GUI
representations so that the update requests can be propagated properly. All elements are
reference counted and by default auto-destructible.

3.2. Geometry
ROOT includes a native geometrical modeler, TGeo, that provides methods for construction
of detector geometries, particle tracking and volume visualization via the TGeoPainter class [7].
REVE supports two methods for geometry visualization: the first one uses TGeo directly and
the second one presents pre-extracted volume-shape tessellations.

3.2.1. Display of full TGeo geometries REVE allows simultaneous display of several
independent geometry sub-trees, possibly belonging to different geometries, via a wrapper-class
GeoTopNodeRnrEl. It encapsulates a reference to geometry-manager and to the top-node to be
displayed as well as the visualization parameters supported by TGeoPainter including the depth
of geometry-tree traversal. During actual painting, the necessary global variables are set-up and
then the control is passed to the TGeoPainter.

The GeoNodeRnrEl class allows further link between TGeo and REVE by providing
representation of children nodes in the REVE object browser. Users can select individually
which nodes to draw, block the descent of the painting algorithms from a given node and change
node and volume colors.

3.2.2. Display of extracted shape-data In event-display applications one is usually not interested
in the details provided by the full geometry description, especially as it includes all the support
structures down to the minute details. Instead, one prefers to see a carefully selected set
of relevant sensitive volumes or even just the envelopes of whole sub-detector systems. Such
selection can be stored as a hierarchy of GeoShapeRnrEl objects that incorporate a TGeoShape

data, its global transformation matrix, color and visibility flags. It can be stored in an
independent ROOT file and typically requires only 1% of the space required for the full geometry.

3.3. Hits & clusters
Hits and clusters can be visualized by using the PointSet class, holding an array of 3D points
that can be rendered with various marker styles and colors. To allow for backward-navigation, a
reference to an external object (via ROOT’s TRef class) can be specified for each point (optionally
a PointSet can own the reference objects and delete them upon its destruction).

For filling of the data one can use a sequential method, specifying coordinates and an external
reference for each point in turn, or use a special TPointSelector class that invokes the full ROOT
machinery for selecting data from TTree’s.

The PointSetArray class implements an interactive 3D-histogram by encompassing an array
of PointSets’s and providing a special filling method that allows a user to ascribe an additional
value to each point, like deposited charge for a hit or sum of signals for a cluster. After that the
user can interactively select the range of that value and thus control which subsets are actually
displayed. Currently a single additional parameter is supported.



3.4. Trajectories, particles & tracks
The Track class can be used to represent particle trajectories and supports extrapolation and
interpolation in a constant magnetic field.4 An arbitrary number of control-points can be
specified along the track, to mark one of: a) position/momentum reference, b) daughter creation
point, or c) decay point. General track rendering parameters (e.g. maximum extrapolation
radius and z-coordinate, required precision, etc) are stored in a separate class TrackRnrStyle.
Usually all tracks from a given data-source reference the same render-style object thus allowing
the general parameters to be edited for all of them simultaneously.

Tracks can be put into a hierarchical structure (as required for display of kinematics) or
combined to represent composite reconstructed physics objects like V0’s, kinks and resonances.
A collection of tracks can be put into a TrackList object that provides control over common
track rendering parameters and interactive selection of displayed momentum ranges.

4. Raw-data visualization
Visualization of raw-data is, in comparison to hits or clusters, complicated by the implicit digit
positioning based on the module and channel number. Further, a signal value must always be
shown in some fashion, usually by color or size of the digit’s visual representation. In this section
the REVE base-classes for raw-data presentation are discussed first. Special sub-sections are
devoted to a more specific solutions used for display of TPC and ITS raw-data.

4.1. REVE base-classes
4.1.1. Support classes The support classes encapsulate functionality that is shared among
several visualization classes and further, by several instances of a given visualization class,
implying that they must be referenced via pointers from the visualization objects. These objets
are reference-counted with automatic destruction, thus relieving the framework and the user of
any management issues.

RGBAPalette class provides mapping of signal values to colors from a given palette. GUI is
provided for manipulation of minimum / maximum values to be displayed and different display
options are available for display of under- and over-flow bins. The palette can be imported from
ROOT or specified manually.

FrameBox class can be used to render frames of specified dimensions and color around a set of
modules of the same type. 2D and 3D frames with wire-frame or solid rendering are supported.

4.1.2. Raw-data presentation classes All raw-data presentation classes are in fact containers
for individual electronic-channel representations and usually one object is used to represent
one detector module. A transformation matrix (class ZTans) can be assigned to each object
allowing the digit positions to be given in the local coordinate system. Further, by changing the
position of a set of modules, they can be arranged in arbitrary layouts, not necessarily following
their realistic placement in the detector. Pointers to RGBAPalette and FrameBox classes are used
frequently.

QuadSet is the most widely used class for raw-data visualization in ALICE (used by, among
others, ITS, TRD and TOF). It contains a set of rectangles, lines or hexagons (see Fig.3). For
memory and rendering-speed optimization reasons, a user can specify the type of elements in a
very precise way that allows almost any parameter to be held constant for the whole collection
(e.g. z-coordinate, rectangle width and height, etc). For each element a signal value can be
provided and is automatically mapped into a color via an RGBAPalette object. Additionally, an
external object reference (a TRef) can be provided for each element.

4 Support for arbitrary magnetic field is in preparation.



Figure 3. Examples of ALICE raw-data display using QuadSet class: silicon-strip detector
(left), photon-multiplicity detector (middle) and VZERO (right).

BoxSet provides a similar service but the basic elements are 3-dimensional box-like objects
defined by 8 vertices so that the variation in box-size further supplements the signal–color
information. This class can be used for display of calorimeter towers and is used internally by
the 3D TPC visualization.

4.2. Time projection chamber
75% of ALICE raw-data volume is taken by the TPC data, amounting to 60 MBytes for a central
lead–lead event. The TPC is segmented in 36 sectors, each consisting of about 8,000 pads with
450 10-bit time-channels. The requirements for the TPC visualization include the ability to
display statistical information for all pads of a given sector within the specified time-range as
well as to present the pad data by expanding the time coordinate into the third dimension.
Further, each pad (for 2D) and each digit (3D) needs to be selectable individually.

A sector was chosen as the basic visualization unit. To be able to respond to time-range and
threshold changes in real-time a special data-storage class TPCSectorData had to be developed.

TPCSectorViz is the base class for concrete 2D and 3D sector-visualization classes. It contains
controls over threshold / saturation settings for signal-to-color mapping and over the displayed
time-range.

TPCSector2D controls the display of statistical signal values projected to the read-out plane.
In addition to the base-class controls, it allows selection of the pad-data calculation algorithm
which is currently limited to maximum and average value of signals in the specified time-range.
Further, it controls the feedback provided upon user’s selection of an individual pad. This can
be a detailed printout or display of a 1D (signal vs time) or 2D (signal vs pad vs time) histogram.

TPCSector3D class provides a complete view and represents each digit by a box or a point in
3D space. Users can select the signal-range fraction at which the digit is rendered as a point,
thus allowing them to peek inside of the digit clusters produced by a track (typical pad-row
cluster sizes are 3 time-bins × 3 pads).

All classes are equipped with GUI editors. TPCSector2D and 3D have custom OpenGL
rendering classes supporting two-level selection. Examples are shown in Fig.4.

4.3. Inner silicon-tracker and intermediate-level raw-data inspection
During the early detector operation it is desirable to have an efficient way of browsing through
sub-detector systems and make a fast survey of the recorded raw-data. This can reveal
general shortcomings in the operation of detectors, read-out electronics or the DAQ event-
building system and complements the high-level inspection provided by the statistical monitoring
information. However, when displaying digits of fine-grained, highly-modular detectors, such as
silicon trackers, one encounters two common problems:



Figure 4. GUI controls and OpenGL display of TPC raw-data: TPCSector2D (left) and
TPCSector3D (right).

- when modules are placed on their real 3D positions, they overlap each other and prevent
simultaneous inspection of different layers;

- individual digits are too small to be visible, even at high magnification.

To overcome these issues two techniques have been employed in the ITSModuleStepper class
that is used for intermediate-level inspection of inner-detector digits.

(i) 2D multi-paged arrangement allows the user to simultaneously view as many modules
as allowed by the screen-size and required viewing precision. They are put in a matrix
layout with number of rows and columns being configurable at run-time. This naturally
organizes the module collection in pages that can be traversed in random order. During
initialization, a selection can be made based on module type (pixel, drift or strip detectors)
and location (layer-id or ranges of ϕ and η).

(ii) Digit scaling solves the problem of small size of individual digits by merging neighbouring
digits into a single visual element. The signal-value assigned to this representant is a
statistical quantity calculated for the whole group, such as the average, root-mean-square,
occupancy, minimum or maximum value. Several group sizes are supported (e.g. 2×2, 8×4,
32×8, etc) depending on, and varying with, the module-type segmentation.

To further streamline the inspection procedure all controls can be integrated into the OpenGL
display as overlay elements, thus grouping all user-controls within a single interaction window.
The comparison of before and after user-interface are shown in Fig.5.

5. Visual reconstruction validation
During the evolution of the experiment software it is important to constantly monitor its
performance and reproducibility of physics results compared to older versions. Statistical tools
are usually used for the high-level validation where significant shortcomings can be spotted and
fixed. But with the approach of the first physics-runs it becomes increasingly important to shift
the focus onto the event-level and to account for any discrepancy that might be found, down to
the level of individual tracks and clusters.

To facilitate this task, a tool for visual scanning of events has been incorporated into AliEVE.
In default configuration it provides a detailed view of standard reconstructed objects: primary
vertex, tracks and clusters. When dealing with simulated events full backward-navigation to



Figure 5. Comparison of ITS raw-data rendered: a) with realistic module positioning and
digit-scale (left); and b) by using the ITSModuleStepper with 2D-page arrangement and digit
scaling (right).

the simulation data is available. It can be imported as a whole or, alternatively, activated on a
per-track basis.

To allow a more detailed view of the vertex region and better inspection of cluster-track
associations, 2D projections and fish-eye transformations have been implemented in REVE
(following the work of H. Drevermann for the ALEPH event-display [8]). The basic visualization
classes have been extended to support arbitrary projections, the most relevant being: a)
GeoShapeRnrEl – simplified geometry; b) PointSet – clusters and hits; and c) Track – simulated
& reconstructed tracks and also compound objects like kinks and V0’s.

The implementation of the tool is simple and easily extendible. It consists of a single dedicated
class TrackCounter, providing graphical user-interface for common operations and management
of track collections, and two macro functions. The first one is an initialization script creating
the necessary objects (track-counter and projector) and setting up the event navigation. The
second one is executed for each new event and loads the relevant event-data into the visualization
objects. By modifying these two functions the tool can be configured and extended to suit more
specific requirements. Examples of the running application are shown in Fig.6.

The visual scanning procedure has been carried out on regular intervals (every 3 months)
since September 2006. Several issues with primary vertex reconstruction, track finding and also
simulation itself have been identified and corrected. During the first physics runs this tool will
also be used for manual track selection on an initial p–p data-sample to cross-check primary-track
multiplicity, pT and η distributions against those produced by the standard reconstruction.

6. Conclusion
ALICE event visualization environment uses a modular application core with visualization and
GUI base-classes that are independent of the experiment software framework. Only specific
issues are addressed in the AliROOT-dependent part of code. CINT scripts are used extensively,
both for framework control and for initialization of visualization objects. By modifying,
extending or combining these scripts users gain a large degree of flexibility that would be difficult
to provide otherwise.

During the last year, significant development efforts have been focused on providing adequate
support for detector commissioning and early detector operation. Several common solutions have
been identified and implemented for the display of raw-data. Using this infrastructure, raw-



Figure 6. Examples of ALICE event-scanning interface for a p–p@900GeV event. Left: radial
fish-eye projection with TrackCounter GUI. Right: %-z fish-eye with projection-control GUI.
Central red, green and blue layers are the envelopes of the inner-tracker sub-detectors.

data visualization has been implemented for all major sub-detectors of ALICE. Complementary,
framework-elements and tools allowing detailed inspection of reconstructed events have been
developed to aid during the detailed validation of the full offline software chain.

REVE, the experiment-independent part of the visualization framework, is planned to be
included in the ROOT distribution before its next production release, v5-18/00. It is hoped
that other experiments will recognize the benefits of the common visualization infrastructure,
try to use it in their environments and provide constructive feedback.

Acknowledgments
The author would like to thank Alja Mrak–Tadel for the painstaking work on the project as well
as for her understanding and support, to Bertrand Bellenot for help with ROOT GUI and to
René Brun for constantly reminding me about the users’ needs and expectations.

References
[1] See ALICE offline project web-page: http://aliceinfo.cern.ch/Offline/.
[2] Brun R and Rademakers F 1997 Nucl. Inst. & Meth. in Phys. Res. A 389 pp 81-86. See also http:

//root.cern.ch/.
[3] Tadel M 2005 Gled – an Implementation of a Hierarchic Server–Client Model, (Advances in Computation:

Theory and Practice vol 16) ed Pan Y and Yang L (New York: Nova Science Publishers) pp 21–37.
See also http://www.gled.org/

[4] Tadel M and Mrak-Tadel A 2007 XV Int. Conf. on Comp. in High Energy and Nucl. Phys. 2006 1 (Mumbai:
Macmillan) pp 398–401.

[5] Tadel M 2007 The New Generation of OpenGL Support in ROOT (these proceedings).
[6] Antcheva I, Brun R, Hof C and Rademakers F 2006 Nucl. Inst. & Meth. in Phys. Res. 1 559 pp 17–21.
[7] Brun R, Gheata A and Gheata M 2003 A geometrical modeller for HEP XIII Int. Conf. on Comp. in High

Energy and Nucl. Phys. 2003 THMT001 arXiv:physics/0306151. See also Root Users Guide pp 299–350.
[8] Drevermann H, Kuhn D and Nilsson B 1995 Event Display: Can We See What We Want to See? Presented at

CERN School of Computing ’95, Arles, France. http://ipt.web.cern.ch/IPT/Papers/CSC95/EDisplay/


