
OpenGL support in ROOT

The next generation of

Matevž Tadel

Including work from: Alja Mrak-Tadel & Timur Pocheptsov



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 2

Contents

1. Introduction – development time-line

2. Elements of the next generation GL support:
i. Generalization of Viewer & Scene class structure
ii. Direct OpenGL object rendering
iii. Secondary / two-level selection
iv. Overlay event-handling
v. Pad graphics in OpenGL

3. Conclusion



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 3

Status @ CHEP-06

Work done by R. Maunder & T. Pocheptsov in ‘05
Based on TVirtualViewer3D API
Use TBuffer3D for all transfer of data to viewer

Impressive features:
Optimized for geometry rendering, support CSG operations 
Support clipping / view frustum culling
Support view-dependent level-of-detail

Issues when used for ALICE event-display:
Scene-updates drop all internal state 
Not suitable for frequent refreshes / small changes

Hard to extend for classes that require complex visual 
representation (e.g. raw-data)
But this was a known trade-off for using TBuffer3D.

Stand-alone viewer victim of feature pile-up
Difficult to add new features or even extend existing ones.



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 4

Evolution of OpenGL support
Jan-Aug ‘05: explore GL on ALICE Pb-Pb events

60k tracks, 10M TPC hits too much data interactivity is the key

Early ‘06: prototype of ALICE display using ROOT GUI & GL

Apr ‘06: direct OpenGL rendering for ROOT classes

Aug ‘06: two-level selection (pick container contents)

Accumulation of issues  reflection break  Manifest:

I. GL becomes the main 3D engine – minimal support for others

II. Gradually restructure GL to achieve the following:
1. Support multi-view displays with shared scenes
2. Optimize update behavior for dynamic scenes
3. Display 2D graphics primitives in GL
4. Include external GL engines in ROOT viewer
5. Include ROOT scenes in other environments / toolkits

Jul `07: most of the above done in ROOT 5.16 production release



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 5

New Viewer—Scene diagram

• TGLSceneInfo:   “scene-in-a-viewer”, caches view-dependent information

• TGLViewerBase: minimal; a collection of scenes + render steering

• TGLViewer:        adds selection interface & event handling (already ROOT specific!)

• TGLSAViewer:    top-level, stand-alone viewer with GUI

This was A LOT of work ... but now it’s done right!

•TGLSceneBase
Bounding-box draw visible only
Viewer-list updates
Place to plug-in foreign scenes
No assumptions about content

•TGLScene
Containers for logical/physicals shapes

Cleaned version of old scene
Supports fine-grained updates
Use this to ‘export’ a ROOT scene

•TGLScenePad
Natural inclusion of pad-contents:
thus we can service old classes!

Notice VirtualViewer3D inheritance.



root-viewer-scenes.swf

movie of multiple scenes / viewers




4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 7

Direct OpenGL rendering – I.

Manually implement class for GL rendering, eg:
1. For class PointSet implement:

class PointSetGL : public TGLObject

{

virtual Bool_t SetModel(TObject* obj);

virtual void DirectDraw(TGLRnrCtx& ctx);

};

In SetModel() check if obj is of the right class and 
store it somewhere (data-member in TObjectGL)

The GL object can access data of its creator!

1. DirectDraw() is called by viewer during draw-pass
Here do direct GL calls, change state, draw whatever.
Leave GL in a reasonable state – others depend on it.



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 8

Direct OpenGL rendering – II.

ALICE ITS ALICE TPC



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 9

Direct OpenGL rendering – III.

ALICE PMD



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 10

Direct OpenGL rendering – IV.
How this works:
1. In Paint() fill only Core section of TBuffer3D:

TObject* fID, color, transformation matrix

Pass it on to viewer.

2. Viewer scans fID->IsA() and parent classes searching for 
<class-name>GL class.
Only once per class … cache result in a map.

Benefits:
1. Flexibility – users can draw anything

Not limited to shapes representable by TBuffer3D.
Provide GL-class, everything works with std ROOT!
A lot can be done with a small number of classes.

2. Avoid copying of data twice (into/from buff-3d)
Important for large objects (10M hits in ALICE TPC).



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 11

Two-level selection – I.

Imagine a list of clusters, array of digits, …
One would like to:
a) Treat them as a collection

Select, move, turn on/off, change color, cuts, …

b) Obtain information on individual element
Investigate, select for further manipulation

Each element a viewer-object: waste memory/speed

GL supports bunch-processing commands that can not be 
used in low-level selection mode. Thus use:

Optimized version in drawing / first-pass selection

Special render-path during second-pass (single object!) 



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 12

Two-level selection – II.

click

ALICE TPC Sector
1. First-pass: 3 textured rectangles

Identify object by sector id.
2. Second-pass: ~8000 cells

Identified row / pad.



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 13

Two-level selection – III.

Work is done by the viewer and the GL object:
class TPointSet3D : public TGLObject

{

virtual Bool_t SupportsSecondarySelect();

virtual void ProcessSelection( TGLSelectRecord& rec);

};

1. First-pass – determine closest object
2. Second-pass – render that object with sub-ids

The renderer is informed that we’re in sec-selection

3. Deliver the selection record back to GL object!
It tagged elements and should interpret the ids.
Call function in the master object.
E.g. TPC row/pad data-holder can produce histogram



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 14

Overlay event-handling

Overlay: a set of viewer-objects that are checked for user 
interaction on each mouse-move.

Usage:
1. Interaction with objects & dynamic visualization

1. clipping plane control, object manipulators
2. modify object parameters that influence rendering

2. Implementation of GUI within GL window

class TGLOverlayElement

{

virtual Bool_t MouseEnter(…);

virtual Bool_t Handle(Event_t* event, …); // All events!

virtual void MouseLeave();

virtual void Render(…);

};

http://root.cern.ch/root/htmldoc/ListOfTypes.html#Bool_t
http://root.cern.ch/root/htmldoc/ListOfTypes.html#Bool_t
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:MouseEnter
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:Handle
http://root.cern.ch/root/htmldoc/Event_t.html
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:MouseLeave
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:Render


root-its-scaled.swf

movie of overlay on its scaled modules




4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 16

Pad graphics in GL
Allow mixing of 3D graphics with:

2D and 3D histograms
standard 2D primitives     (not done yet)

Combine specific event-data with statistical info

2D plots in GL done by  T. Pocheptsov
2 & 3D histograms and functions
parametric 2D surfaces



4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 17

Conclusion

We’ve made an OpenGL quantum jump
Modularization, better control on all levels
Overhead-free scene updates

Development for now driven by the needs of ALICE 
event visualization framework
That’s good heavy-ion events are BIG
Interactivity & flexibility

Experiment-independent part of ALICE event-
display will (soon) become a ROOT module

The new functionality will become fully exposed


	OpenGL support in ROOT
	Contents
	Status @ CHEP-06
	Evolution of OpenGL support
	New Viewer—Scene diagram
	Direct OpenGL rendering – I.
	Direct OpenGL rendering – II.
	Direct OpenGL rendering – III.
	Direct OpenGL rendering – IV.
	Two-level selection – I.
	Two-level selection – II.
	Two-level selection – III.
	Overlay event-handling
	Pad graphics in GL
	Conclusion

