The next generation of

OpenGL support in ROOT

Matevz Tadel

Including work from: Alja Mrak-Tadel & Timur Pocheptsov

Contents

1. Introduction — development time-line

2. Elements of the next generation GL support:

.
V.

V.

Generalization of Viewer & Scene class structure
Direct OpenGL object rendering

Secondary / two-level selection

Overlay event-handling

Pad graphics in OpenGL

3. Conclusion

4.9.2007

M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria]

Status @ CHEP-06

Work done by R. Maunder & T. Pocheptsov in ‘05
Based on TVirtualViewer3D API
Use TBuffer3D for all transfer of data to viewer
Impressive features:
[0 Optimized for geometry rendering, support CSG operations
[0 Support clipping / view frustum culling
[0 Support view-dependent level-of-detail

Issues when used for ALICE event-display:
[0 Scene-updates drop all internal state =
Not suitable for frequent refreshes / small changes

[0 Hard to extend for classes that require complex visual
representation (e.g. raw-data)

But this was a known trade-off for using TBuffer3D.
[0 Stand-alone viewer victim of feature pile-up
Difficult to add new features or even extend existing ones.

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria]

Evolution of OpenGL support

Jan-Aug ‘05: explore GL on ALICE Pb-Pb events
60k tracks, 10M TPC hits - too much data - interactivity is the key

Early ‘0O6: prototype of ALICE display using ROOT GUI & GL
Apr ‘06: direct OpenGL rendering for ROOT classes
Aug ‘O6: two-level selection (pick container contents)

Accumulation of issues = reflection break = Manifest:

1. GL becomes the main 3D engine — minimal support for others

1lI. Gradually restructure GL to achieve the following:

Support multi-view displays with shared scenes
Optimize update behavior for dynamic scenes
Display 2D graphics primitives in GL

Include external GL engines in ROOT viewer

Include ROOT scenes in other environments / toolkits

O S

Jul ~07: most of the above done in ROOT 5.16 production release

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 4

New Viewer—Scene diagram

H H e TGLSceneBase

EEEEERRR R Bounding-box & draw visible only
Viewer-list = updates
WLEEEHEBEII-E\

TalViewerBase

—
! I No assumptions about content

Place to plug-in foreign scenes

T ? e TGLScene
TVirtualVlewer3D Containers for logical/physicals shapes
ToLVlewer — TGLScene Cleaned version of old scene
Supports fine-grained updates
Facade, delegates Use this to ‘export’ a ROOT scene
calls to ToLScen ePadl
e TGLScenePad

TGLS&Viewer S TeLScenePad Natural inclusion of pad-contents:
thus we can service old classes!

Notice VirtualViewer3D inheritance.

e TGLScenelnfo: “scene-in-a-viewer”, caches view-dependent information
e TGLViewerBase: minimal; a collection of scenes + render steering
e TGLViewer: adds selection interface & event handling (already ROOT specific!)

e TGLSAViewer: top-level, stand-alone viewer with GUI

This was A LOT of work ... but now it’s done right!

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 5

Eile

= I Files I hacro E:I GLYiewer | GL Wiewer Il | GL wiewer Il

Wiewers

W [_]GL-One

j|Event O
RhoZ 0.010000 O

1derElement
Brrself w RBorChildren

Direct OpenGL rendering — I.

Manually implement class for GL rendering, eg:

1. For class PointSet implement:
class PointSetGL : public TGLObject

{
virtual Bool t SetModel (TObject* obj);

virtual void DirectDraw(TGLRNrCtx& ctx);
};
L In SetModel () check if oby is of the right class and
store It somewhere (data-member in TObjectGL)
The GL object can access data of its creator!

1. DirectDraw() is called by viewer during draw-pass
Here do direct GL calls, change state, draw whatever.
Leave GL in a reasonable state — others depend on it.

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria]

Direct OpenGL rendering — Il.

ALICE ITS | ALICE TPC

475k
Wity)y e

?lf
7

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 8

Direct OpenGL rendering — IllI.

ALICE PMD

Next generation of OpenGL in ROOT [CHEP-07, Victoria]

M. Tadel:

4.9.2007

Direct OpenGL rendering — IV.

How this works:
1. In Paint() fill only Core section of 7Buffer3D:

TObgect* fID, color, transformation matrix

Pass it on to viewer.
2. Viewer scans fID->1IsA() and parent classes searching for

<class-name>GL class.
Only once per class ... cache result in a map.

Benefits:

1. Flexibility — users can draw anything
Not limited to shapes representable by TBuffer3D.
Provide GL-class, everything works with std ROOT!
A lot can be done with a small number of classes.

2. Avoid copying of data twice (into/from buff-3d)
Important for large objects (10M hits in ALICE TPC).

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 10

Two-level selection — |I.

Imagine a list of clusters, array of digits, ...
One would like to:

a) Treat them as a collection
Select, move, turn on/off, change color, cuts, ...

b) Obtain information on individual element
Investigate, select for further manipulation

Each element a viewer-object: waste memory/speed

GL supports bunch-processing commands that can not be
used in low-level selection mode. Thus use:

[l Optimized version in drawing / first-pass selection

[l Special render-path during second-pass (single object!)

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 11

Two-level selection — 1.

ALICE TPC Sector

2. Second-pass: —8000 cells
Identified row / pad.

il Edit View Options Inspect Classes

1. First-pass: 3 textured rectangles
Identify object by sector id.

File E I Cl
| Segment 4, Row 28, Pad 53 |

10%

10

|

Segd_Row28_Pad53
Entries 52
Mean 180.2
RMS 167.3

_I L1 1 1 1 1 1 1 | 1
0 50 100 150 200 250

300 350 400 450

Time

4.9.2007

M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria]

12

Two-level selection — 111.

Work is done by the viewer and the GL object:
class TPointSet3D : public TGLObject

{

virtual Bool t SupportsSecondarySelect();
virtual void ProcessSelection(TGLSelectRecord& rec);

}s

1. First-pass — determine closest object

2. Second-pass — render that object with sub-ids
The renderer is informed that we’re in sec-selection

3. Deliver the selection record back to GL object!
It tagged elements and should interpret the ids.

Call function in the master object.
E.g. TPC row/pad - data-holder can produce histogram

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria]

13

Overlay event-handling

Overlay: a set of viewer-objects that are checked for user
Interaction on each mouse-move.

Usage:

1. Interaction with objects & dynamic visualization
1. clipping plane control, object manipulators
2. modify object parameters that influence rendering

2. Implementation of GUI within GL window

class TGLOverlayElement

{

virtual Bool t MouseEnter(..);
virtual Bool t Handle(Event_t* event, .); // All events!
virtual void MouselLeave();

virtual void Render(..);

¥

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 14

http://root.cern.ch/root/htmldoc/ListOfTypes.html#Bool_t
http://root.cern.ch/root/htmldoc/ListOfTypes.html#Bool_t
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:MouseEnter
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:Handle
http://root.cern.ch/root/htmldoc/Event_t.html
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:MouseLeave
http://root.cern.ch/root/htmldoc/TGLOverlayElement.html#TGLOverlayElement:Render

IF_I
V]
Sk
(5
v 15
F:Jﬂﬁﬂﬂ
150017 8

IETR

e

W 4 2/29 » » Zoom: o 1x1

SPD sSBD 55D

e

20

255 256 257
252 253 954
249 950 951

40

60

Pad graphics in GL

Allow mixing of 3D graphics with:

B 2D and 3D histograms

B standard 2D primitives (not done yet)
Combine specific event-data with statistical info

2D plots in GL done by T. Pocheptsov
B 2 & 3D histograms and functions

B parametric 2D surfaces

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 16

Conclusion

[l We’'ve made an OpenGL quantum jump

Modularization, better control on all levels
Overhead-free scene updates

[0 Development for now driven by the needs of ALICE
event visualization framework
That’s good = heavy-ion events are BIG
Interactivity & flexibility

[0 Experiment-independent part of ALICE event-
display will (soon) become a ROOT module

The new functionality will become fully exposed

4.9.2007 M. Tadel: Next generation of OpenGL in ROOT [CHEP-07, Victoria] 17

	OpenGL support in ROOT
	Contents
	Status @ CHEP-06
	Evolution of OpenGL support
	New Viewer—Scene diagram
	Direct OpenGL rendering – I.
	Direct OpenGL rendering – II.
	Direct OpenGL rendering – III.
	Direct OpenGL rendering – IV.
	Two-level selection – I.
	Two-level selection – II.
	Two-level selection – III.
	Overlay event-handling
	Pad graphics in GL
	Conclusion

