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Abstract.
OpenGL has been promoted to become the main 3D rendering engine of the ROOT

framework. This required a major re-modularization of OpenGL support on all levels, from
basic window-system specific interface to medium-level object-representation and top-level scene
management. This new architecture allows seamless integration of external scene-graph libraries
into the ROOT OpenGL viewer as well as inclusion of ROOT 3D scenes into external GUI and
OpenGL-based 3D-rendering frameworks.

Scene representation was removed from inside of the viewer, allowing scene-data to be shared
among several viewers and providing for a natural implementation of multi-view canvas layouts.
The object-graph traversal infrastructure allows free mixing of 3D and 2D-pad graphics and
makes implementation of ROOT canvas in pure OpenGL possible. Scene-elements representing
ROOT objects trigger automatic instantiation of user-provided rendering-objects based on the
dictionary information and class-naming convention. Additionally, a finer, per-object control
over scene-updates is available to the user, allowing overhead-free maintenance of dynamic 3D
scenes and creation of complex real-time animations. User-input handling was modularized as
well, making it easy to support application-specific scene navigation, selection handling and tool
management.

1. Introduction
ROOT, the object-oriented data-analysis framework[1], has been growing in popularity since
its introduction in 1996 and is today a de-facto standard tool for data-analysis and data-
presentation within the high-energy physics (HEP) community. Together with the growth of its
user community, ROOT also grew in scope and versatility[2]. Today it features, from a viewpoint
of this article, a complete operating-system interface (including multi-threading and networking),
an internal multi-platform graphical user-interface toolkit and an actively developed system for
3D visualization.

OpenGL is a versatile API for developing portable, interactive 2D and 3D graphics
applications. It has an open specification that allows large parts of its primitive-processing
pipeline to be implemented in graphics hardware. OpenGL was introduced in 1992 and since
then slowly gained in popularity as the once expensive graphics processors became more and
more affordable.

The conditions for acceptance of OpenGL into the HEP community were a bit unfortunate. At
the time when OpenGL was becoming widely used, all major HEP centers adopted GNU/Linux
as their primary computing platform. Introduction of hardware-accelerated OpenGL support
into GNU/Linux was at best sporadic and still presents a problem for standard deployment to
user PCs. However, the main stumbling blocks for wide adoption of OpenGL in HEP are mostly



removed and CERN already provides vendor specific graphics-card drivers in its Scientific Linux
CERN 4 package repository. Following these developments, OpenGL is now becoming the main
3D graphics engine of the ROOT framework.

2. Previous work
The first 3D graphics implementation in ROOT was provided by N. Bunčić in 1997. It supported
Geant3 shapes, markers and poly-lines as rendering primitives and two output devices: direct
painting into the standard ROOT graphics-pad and external, stand-alone viewing using the x3d
library.1 In 2000 the first version of ROOT OpenGL viewer, supporting the above primitives,
was written by V. Fine and then extended to incorporate an OpenInventor-compatible library.
Due to portability problems, the OpenInventor support has been removed from the standard
ROOT distribution in 2004, but the work continued within the STAR collaboration.

A major development of OpenGL infrastructure in ROOT was done in 2005 by R. Maunder &
T. Pocheptsov. It was recognized that, unlike traditional 3D engines, OpenGL can benefit greatly
by keeping an internal database of common data for replicated scene elements, especially as
they can be stored on the graphics hardware. This allowed interactive rendering of complicated
detector geometries, at the order of millions of geometric primitives, with interactive refresh-
rates. Furthermore, as all geometric data was stored within the OpenGL engine, it was possible
to manipulate camera position, orientation and field of view, as well as other viewer dependent
elements such as clipping planes, independently and without further access to original objects.

All data transfer from producer objects to the viewer relied on the TVirtualViewer3D API
and used the TBuffer3D structure as the data envelope.2 The benefit of that was that producer
classes specify their 3D representation, but do not care how it is being rendered. However, it
was not possible to cover all the cases with the TBuffer3D and possible graphical representations
were limited to those required for the rendering of detector geometry.

These developments introduced many impressive features into the scene rendering pipeline
that further increased the rendering speed and improved the user experience:

• view-frustum culling reduces the number of primitives rendered during each render-pass
by skipping the primitives lying outside the viewing volume;

• view-dependent level-of-detail allows the primitives to be rendered at a lower precision
as their screen-size diminishes, thus reducing the polygon-count processed on each render-
pass;

• support for composite shapes by using the constructive solid geometry to perform
boolean operations on primitive shapes;

• user-specified clipping objects allow users to remove part of a scene on one side of a
plane or inside of a box.

The detailed status of ROOT OpenGL at the beginning of 2006 is presented in [3]. All this
functionality has been retained, and even augmented, during the latest developments.

3. Overview of the new developments
The above OpenGL infrastructure was used to prototype the ALICE Event Visualization
Framework (AliEVE) in early 2006 [4]. The large data-content of ALICE lead–lead events poses
a big challenge on the visualization framework as it is imperative to be able to select and modify
collections of event-data, like tracks, hits or clusters, that match certain criteria. Additionally,

1 x3d viewer, written by M. Spychalla in 1992. Unrelated to X3D, the ISO standard for real-time 3D computer
graphics, the successor of VRML.
2 At the same time, the TBuffer3D transfer mechanism was also ported to pad and x3d viewers.



to display raw-data and digits for a selection of detector modules and signal ranges, a specific
graphic representation with the ability to provide both fast rendering and backward-navigation
to the original data is needed.

As the existing OpenGL infrastructure in ROOT was designed mostly to support viewing of
static geometry with many replicas of original geometric volumes, we encountered three main
performance and flexibility issues that needed to be addressed.

(i) Viewer–scene entanglement. Viewer was using a single scene as a container to store all
objects and the only way to interact with a scene was via the viewer itself. Additionally,
scene was aware of the viewer and used its API to manage object selection and settings of
the clipping object. Thus one viewer could only display a single scene and each scene was
tightly bound to a given viewer.
In an event-display application one aspires to be able to combine several independent
scenes (e.g. geometry-scene, track-scene, cluster-scene) in an arbitrary arrangement of
independent viewers, each of them showing a different collection of scenes with different
viewing parameters. To achieve this goal the whole class architecture of the viewer and
scene had to be revisited and carefully restructured, including steering of the rendering
process and selection management. This is described in Sec.4.

(ii) Scene-updates drop all internal state. As the only way to access and change scene-
data was via the viewer API, it was not possible to apply modifications to scene objects or
to add or remove a sub-collection of objects. Instead, the whole scene-data was dropped on
each update and all data reloaded.
This introduced a large overhead for event-display applications where it is frequent to change
visibility or markup of a relatively small number of selected objects. The restructuring of
scene–viewer relationship allowed as to also address this issue. An API for fine-grained
updates of scene-elements was added to the scene class.

(iii) Restriction on format and structure of supported primitives. The previous viewer
architecture was using TBuffer3D to transfer all tessellation data from original object to
its visual representation.3 While this allowed complete decoupling of the tessellation
producer from the viewer, it also limited available visual representations of an object. This
became particularly restricting for visualization of raw-data. To overcome this limitation
we extended the viewer-side to be able to instantiate a special rendering object, based on
the dictionary information of the producer class, that performs direct OpenGL calls during
the rendering of the scene. For details see Sec.5.
Additionally, there was no infrastructure for deeper inspection of the rendered objects. For
example, if you had a collection of clusters it was impossible to select one of them, it was
always the whole collection that got selected. Finer granularity would have been possible by
instantiating one render-object per collection element but this would have lead to waste of
resources as the overhead of the infrastructure is about 512 bytes per object. The solution
to this problem was to extend the direct-rendering infrastructure with a virtual interface
for performing a two-level selection as described in Sec.6.

To generalize the existing infrastructure for object and clipping-plane manipulation we
introduced a viewer-specific list of overlay elements that allow direct, low-overhead user-
interaction with the viewer elements and implementation of GUI widgets within the OpenGL
window (see Sec.7).

3 Some specific shapes like spheres and cylinders are supported natively by the viewer, so just the shape-
parameters are actually transferred.



4. Restructuring of scene and viewer class structure
There were three main requirements guiding the restructuring of the viewer and scene classes.

(i) Each scene must be an independent entity, regardless of how many viewers are displaying
it. At the same time each scene must maintain a single display-list element for each visual
as well as retain the ability to cache per-viewer information of visible objects.

(ii) Scenes must support fine grained updates, like refreshing, adding or removing of a single
scene-element, without dropping neither scene-state nor the data cached within the OpenGL
engine.

(iii) It must be possible to include external rendering or scene-graph libraries into the ROOT
rendering pipeline.

(iv) Conversely, ROOT scenes must be made as independent as possible from the rest of the
viewer infrastructure to make it possible to include them into external rendering frameworks.

In the first step of the reimplementation the elementary parts of scene and viewer classes were
decoupled from the original code and put into base-classes TGLSceneBase and TGLViewerBase.
After that, the remaining code was cleaned-up and API for fine-grained scene updates was
added. In the last step the infrastructure that supported the TVirtualViewer3D API was moved
into a separate class TGLScenePad. The overall structure of the new classes is shown in Fig.1.

Figure 1. UML diagram of the
viewer and scene classes. The
TGLSceneInfo class allows many-to-
many relationship between viewer
and scene classes while retaining
the specific, per-scene object caches
to be optimized for particular
scene-type.

4.1. Scene classes
TGLSceneBase contains virtual interfaces used by viewers, the most important ones being
rendering methods and query for the scene’s bounding-box allowing proper initialization of
viewing-parameters and some high-level optimizations. Additionally, a list of viewers that
contain the given scene is maintained so that scene changes can be propagated to the viewers
for update registration.

There is no provision for element containers and no assumptions, other than the bounding-
box extent, are made about the content. By sub-classing TGLSceneBase it is possible to plug
arbitrary complex scenes, including scenes produced by external high-level rendering libraries
or frameworks, into the ROOT viewer.

TGLScene is, in its essence, a container for ROOT’s native representation of rendering
elements, logical and physical shapes. It is a cleaned-up version of the old scene implementation
and also supports fine-grained object updates.

To export a ROOT scene into a foreign rendering system, one would have to wrap this class
according to the requirements of the said framework. To fully use view-dependent rendering



optimizations of the ROOT scenes, one should also provide viewing parameters via the render-
context class, as described in Sec.4.4.

TGLScenePad contains the specific interface used by standard ROOT graphics classes. First,
it implements the VirtualViewer3D interface and thus naturally services the traditional method
of element registration. Second, it can take a ROOT TPad as an argument and autonomously
iterate through its contents.4

4.2. TGLSceneInfo and sub-classes
The old scene implementation contained view-specific list of visible elements that, in certain
conditions, improved the rendering speed. Additionally, it held a set of scene-rendering
parameters, most relevant being clipping planes, required level-of-detail and rendering style
(solid, wire-frame or outline). These can not be kept neither in scene, nor in viewer as they
pertain to a scene being shown in a viewer. The TGLSceneInfo class provides a solution to this
problem and assembles view-dependant scene parameters into a single structure.

More specific scene classes might require a more elaborate view-dependant information and
thus it is left to the scene itself to create an appropriate scene-info structure by overriding a
virtual function TGLSceneInfo* TGLSceneBase::CreateSceneInfo(TGLViewerBase* view).

4.3. Viewer classes
TGLViewerBase is a minimal abstraction of the old viewer containing a collection of scenes,
virtual interface for render-steering and camera information.

TGLViewer extends the basic viewer with interfaces for event-handling, selection management
(including two-level selction) and overlay event-handling. This class is already ROOT specific
as it processes standard GUI events and uses the signal-slot mechanism to notifiy the
encompassing application. For backward-compatibility the TGLViewer class still implements the
TVirtualViewer3D interface. The implementation is really just a facade and all calls are actually
handled by the appropriate instance of the TGLScenePad class.

TGLSAViewer is a top-level, stand-alone viewer with concrete graphical user-interface that was
already present in the old implementation. Remodularization of its structure, allowing further
reuse of GUI elements, was performed.

4.4. Rendering and OpenGL context classes
TGLRnrCtx class is a covering structure allowing general render-parameters to be passed from
a viewer to scenes and further down into rendering functions of visual elements. It contains
references to the current viewer, scene-info and scene objects, camera information, selction
mode, active clipping planes, required level of detail and rendering style. This allows specific
rendering code to access all information that can be relevant for rendering, e.g. coordinate axes
require camera information for proper rendering of tick-marks and labels.

TGLContext class is an encapsulation of a low-level, system-dependent handle into the internal
OpenGL structure containing full state of a specific rendering device, including definitions of
display-lists and texture-objects. OpenGL allows sharing of these resources among several
windows, which is exactly what we need to provide for sharing of scene object-data among several
viewers. Additional class TGLContextIdentity is used to facilitate management of concurrent GL
contexts.
4 This also allows for inclusion of 2D graphics elements and the necessary extensions are in development.



5. Direct OpenGL rendering
The idea behind direct OpenGL rendering is to allow users to directly inject OpenGL code
into the scene rendering pipeline. This is achieved by sub-classing of the TGLObject class and
implementing two virtual functions. For example, imagine we have a ROOT class TPointSet

and we want to provide a special rendering of its data. We have to implement a TPointSetGL

class (name of the original class post-fixed with GL) with the following functions:

class TPointSetGL : public TGLObject
{
virtual Bool_t SetModel(TObject* obj);
virtual void DirectDraw(TGLRnrCtx& ctx);

};

The TPointSet::Paint() function now only fills the core sections of the TBuffer3D structure:
pointer to itself, transformation matrix and default color of the object. The scene infrastructure
automatically searches the class dictionary for a GL-postfixed version of the original class’ name.5

When a match is found, the GL-object is instantiated and the SetModel() function is called to
pass the original object to the renderer.

The DirectDraw() function is called during each render-pass and now the GL object can
directly access the data of its creator and call arbitrary OpenGL functions. If one modifies
the OpenGL state variables, they should be restored to their previous values. Examples of
direct-rendering classes used for raw-data visualization in ALICE are shown in Fig.2.

Figure 2. Examples of raw-data rendering in ALICE Event Visualization Environment using
the direct-rendering infrastructure: inner tracking system (left), time projection chamber
(middle) and photon-multiplicity detector (right).

Besides removing all the restrictions on the visual representation of ROOT objects, the
described mechanism also avoids copying of data from the data-object into the TBuffer3D and
from it to the renderer (and then, once more, into the graphics-card memory). This is important
for large objects especially if they need to be updated frequently.

Our experience with direct-rendering shows, that a lot of flexibility can be achieved with a
small number of rendering-classes. For example, in AliEVE a single rendering class is used for
raw-data rendering of nine different sub-detectors.

6. Two-level selection
Two-level selection provides a framework-wide solution for interaction with sub-elements of
rendering objects. Imagine a collection of clusters, where one wants to interact both with the

5 If this fails, all base-classes are searched as well. Afterwards the corresponding TClass pointers are stored into
a map so that the relatively expensive dictionary look-up can be avoided.



collection as a whole (to move or delete it, to change palette mapping or cuts, etc.) as well as
to be able to obtain detailed information about an individual cluster.

OpenGL provides a mechanism for tagging of visual representations and a special selection
mode, which returns the tags of objects that intersect given screen area, usually a small square
around the mouse position. This is used by the ROOT GL viewer to perform object selection
and manipulation on the level of rendering objects.

When rendering a large collection of objects one uses, for performance reasons, a set of
special GL commands that allow many graphics primitives to be rendered with a single function
call. In this mode, however, it is not possible to tag each sub-element. To maintain maximum
performance and still be able to perform detailed selections, we perform such operations in two
steps.

(i) The first-pass selection and on-screen rendering are done with the optimized, bulk-
processing commands. The result of the first-pass selection is a single object.

(ii) During the second-pass this single object is rendered along a special code-path where each
sub-element is appropriately tagged.

Thus we retain performance and flexibility at the expense of writing two rendering code segments
for each container object that needs to provide introspection into its elements.

To use this functionality, one needs to implement two more virtual functions of the TGLObject

class:

class TPointSet3D : public TGLObject
{
virtual Bool_t SupportsSecondarySelect() { return kTRUE; }
virtual void ProcessSelection(TGLSelectRecord& rec);

};

The first one simply states that this class supports two-level selection. The second one is called
by the viewer after the secondary selection is finished and the result needs to be processed. It is
a natural obligation of the rendering-class to demangle the selection-record as it is the only one
knowing how the sub-elements were tagged. From here, further calls to functions in the original,
data-holding object can be made.

As an example consider a 2D representation of an ALICE TPC sector where a color-coded
rectangle is displayed for each pad. In optimized mode, the whole sector is rendered as three
textured rectangles, spending about 20 calls to OpenGL. In the second-pass of the selection
it is rendered as 8,000 rectangles, costing us approximately 7*8,000 OpenGL calls.6 After the
secondary hit is registered the TPCSector2D::PadSelected(row, pad) function is called in the
original object. Depending on its mode, it prints out the pad details or displays a signal versus
time histogram of the pad or of the entire pad-row.

7. Overlay event management
While restructuring the implementation of object and clipping-plane manipulators it turned out
that the cleanest way to separate them from the viewer is to provide a general infrastructure for
handling of GUI events within a GL window and deliver them to specific objects that perform
arbitrary actions based on this input. Thus, overlay is a set of objects, registered to a specific
viewer, that are able to render themselves and handle GUI events. Viewer plays a role similar
to the X11 server: it detects which element is currently under the mouse pointer and forwards
to it all events that it receives.

To use it, one has to sub-class the TGLOverlayElement class:

6 Six for rectangle rendering, one for pad-tag registration.



class TGLOverlayElement
{
virtual Bool_t MouseEnter(TGLOvlSelectRecord& selRec);
virtual Bool_t Handle(TGLRnrCtx& rnrCtx, TGLOvlSelectRecord& selRec, Event_t* event);
virtual void MouseLeave();
virtual void Render(TGLRnrCtx& rnrCtx) = 0;
};

MouseEnter() and MouseLeave() functions should be reimplemented if the overlay element has
some inactive parts. After the element returns true to the MouseEnter() offer, Handle() will be
called on every event (including keyboard events) received by the viewer, until the mouse leaves
the said element. The Render() function can make any OpenGL calls and should use selection-
tagging commands to describe its sub-elements. Overlay elements are not limited to flat 2D
representations and can also use existing scene-elements to calculate position, orientation and
scale of their visual representations.

This allows inclusion of arbitrary, user-provided interaction objects which can respond
dynamically to the user-input and change the state of scene-objects, of the viewer or of the
application itself. Further, one can also implement OpenGL widgets, like buttons or scroll-bars.

8. Conclusion
We have presented the major advancements in the OpenGL support within the ROOT framework
introduced in the last year. The existing implementation has been modularized and extended,
allowing users to exert more control on all levels of the infrastructure as well as to reuse the
provided functionality in variety of contexts. The developments were mostly driven by the needs
of the ALICE collaboration which requires, due to large data-size of lead–lead events, a flexible
and fully interactive visualization environment. The code described in this article is available in
ROOT since v5-16/00.

Additionally, the experiment-independent part of ALICE Event Visualization Framework is
planned to be included in the ROOT distribution before the next production release, v5-18/00.
This will expose the new functionality to users of all levels and we believe that user-feedback will
allow us to further enrich the framework with all the elements interesting for the high-energy
physics community.
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