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IntroductionIntroduction The classical one-dimensional Kolmogorov-Smirnov (KS) 
test compares two empirical distributions by defining the largest absolute 
difference Dmax between their cumulative probability distribution functions 
(CDF) as a measure of disagreement between them. Adapting this test to 
more than one dimension is a challenge because there are 2d-1 
independent ways of defining a CDF when d dimensions are involved.

However there are many applications in experimental physics where 
comparing two-dimensional data sets is important.  For example, monitor-
ing the performance of high-energy physics detectors such as the Compact 
Muon Solenoid (CMS)1 will involve periodic comparison of collected data to 
reference histograms, a task for which machine assistance must be sought.

DataData As an example, Fig. 1 shows data obtained from reconstructing sim-
ulated tracks of muon pairs, originating from Z-particle decay, within the 
CMS Silicon Tracker sub-detector, using the CMSSW software framework1.  
The histograms show the relationship between the reduced χ2 of the track 
fit and the track pseudorapidity η (a function of the track angle from the 
normal to the beam-line).  The first histogram gives results for perfect 
detector alignment, while the second was obtained after introducing small 
misalignments to individual detector modules, representative of probable 
initial errors2.  Subsets of these data are used for comparisons in this work.

Peacock’s TestPeacock’s Test Peacock3 proposed defining a statistic independent of 
ordering in two dimensions by finding the largest difference between the 
CDFs under any ordering.  For n points this means calculating the CDF in 
the 4n2 quadrants of the plane defined by all pairs of combinations (Xi,Yj) of 
the points’ coordinates. A brute-force implementation takes one step of 
complexity ΘΘΘΘ(n2) for each point, for an overall complexity ΘΘΘΘ(n3).  This can 
be reduced by using a range-counting tree algorithm to give a time upper 
bound of O(n2 lgn) and a lower bound ΩΩΩΩ(n2 lgn)4.

Parallel ImplementationParallel Implementation We have implemented the Peacock test on a 
Linux cluster in both the brute-force and range-counting tree variants.  
Results for varying sample size and CPU numbers are given in Table 1.  All 
tests on the same samples yielded identical results, and the speed-up was 
linear in the number of CPUs for both methods.  As predicted, the methods 
scale as n3 and n2 lgn, respectively.

Fasano and Franceschini’s VariationFasano and Franceschini’s Variation Fasano and Franceschini 
introduced a variation5 on Peacock’s test with a greatly reduced lower 
bound, using n quadrants centred on the n points in the sample – a brute-
force algorithm for this is presented in Numerical Recipes6.  However, a 
range-counting algorithm can index the n points in O(n lgn) time, followed 
by n two-sided range queries of O(lgn) giving a lower bound of O(n lgn)4.  
Results for serial computations of both methods are given in Table 2, 
compared with Peacock’s test.  Again, performance scales with prediction.

Cooke’s AlgorithmCooke’s Algorithm A reportedly efficient implementation of Peacock’s test 
has been introduced by Cooke7.  The claim that this test runs in O(n lgn) 
has been proven optimistic and differences to Peacock’s test clearly 
demonstrated4.  Table 3 shows comparisons between the Peacock and 
Cooke methods for various data samples.  Cooke’s method gives a finite 
distance (implying a difference) when identical samples are compared.  As 
well, when the samples have repetitive data the method shows a greatly 
increased running time.

ROOT’s Implementation of the 2DROOT’s Implementation of the 2D--KS TestKS Test ROOT8 implements a 2D-KS 
test for comparison of histogrammed data.  This means that it cannot give 
a true metric like Peacock’s test.  Instead it takes two cumulative 1D sums 
over the histogram bins, in rows and columns, and reports the average of 
Dmax for the two cases.  At finer binnings, these pseudo-CDFs asymptote to 
the CDFs of the X and Y coordinates separately (see Table 4), which can 
lead to scenarios where markedly different histograms compare as if they 
came from the same distribution4.  

ConclusionConclusion These comparisons show that a proper comparison of 2D data 
can be difficult and expensive to achieve.  For unbinned data the Fasano 
and Franceschini method has a clear advantage over Peacock’s method, 
especially when implemented with range-counting trees. If the performance 
boost afforded to Peacock’s method by a parallel implementation can also 
be carried over to Fasano and Franceschini’s, then high-speed multi-CPU 
analyses would be available for datasets of 105 points and more.  Cooke’s 
algorithm, while undoubtedly fast, appears to have some problems in living 
up to its promise and would need to be evaluated on a case-by-case basis.

On the other hand, when comparisons need to be made on already 
histogrammed data, there is currently no substitute for the ROOT 2D-KS 
test, despite its shortcomings.  It especially wins out on speed when normal 
binning ranges are used.  An alternative test within the ROOT framework is 
under development, and we hope to provide this test in the near future.

AcknowledgementsAcknowledgements We would like to thank the CMS Tracker community 
and CMSSW developers for providing the tools used to produce the data 
sets. This work has been funded by the Science and Technology Facilities 
Council, UK.

1) CMS Physics TDR: Volume I (PTDR1), Detector Performace and Software. http://cmsdoc.cern.ch/cms/cpt/tdr/-
ptdr1_final_colour.pdf

2) L Barbone, N De Filippis, O Buchmueller, FP Schilling, T Speer and P Vanlaer, Nucl. Instr. and Meth. A 566, 49 
(2006).

3) JA Peacock, Mon. Not. R. Astron. Soc. 202, 615 (1983).
4) RHC Lopes, I Reid and PR Hobson, http://bura.brunel.ac.uk/bitstream/2438/1166/1/acat2007.pdf.
5) G Fasano and A Franceschini, Mon. Not. R. Astron. Soc. 225, 155 (1987).
6) WH Press, SA Teukolsky, WT Vetterling and BP Flannery, Numerical Recipes in C.  Cambridge Univ. Press, 2002.
7) A Cooke, http://www.acooke.org/jara/muac/algorithm.html.
8) See http://root.cern.ch.

[http://people.brunel.ac.uk/~eesridr/CHEP_2DKS.ppt]

Figure 1.  2D data used in this study; reduced χ2 of track fit 
vs. pseudorapidity η for reconstructed muon-pair tracks in the 
CMS Silicon Tracker. a) Ideal detector geometry. b) Small 
“short-term scenario” misalignments of the detector modules.  
(Below: view of a quadrant of the Tracker, showing how η
varies with track angle from the normal to the z axis.)
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Table 3. Comparisons between data sub-samples using the Cooke and Peacock methods.  Samples: 
aeta8 – 256 tracks from aligned distribution; meta9 – 512 tracks from misaligned distribution; r7m4 
– 128 repeats of 16 misaligned tracks; r8m4 – 256 repeats of 16 misaligned tracks; r9m4 – 512 
repeats of 16 misaligned tracks; aeta13 – 8192 aligned tracks; meta13 – 8192 misaligned tracks.   
C; Ubuntu; 2.0 GHz AMD Athlon XP.

Table 4. The ROOT 2D-KS comparison test applied to 8192-track samples of data (aeta13 and 
meta13 from Table 3).  The maximum differences in the two pseudo-CDFs obtained by scanning the 
histogram bins in two directions are shown; all tests were consistent with the samples’ being from 
different populations.  Results from the discrete 1D-KS test using the RPy stastistics package on the 
χ2 and η data separately are also given. (Right: the two pairs of pseudo-CDFs in the 50x50 case.)  
ROOT 5.13 and RPy libraries called from python; Scientific Linux CERN 3.08; 2.8 GHz Intel Pentium D.

Table 1. Parallel inplementations of the brute-force and range-counting tree algorithms of Peacock’s 
2D-KS test (see text). MPI C; Suse 9.3 64-bit cluster; 1.8 GHz AMD Opteron 265 worker nodes.
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Table 2. Serial inplementations of the brute-force (BF) and range-counting tree (RCT) algorithms of 
Peacock’s 2D-KS test, and Fasano and Franceschini’s variation. C; Ubuntu; 2.0 GHz AMD Athlon XP.


