Introduction The classical one-dimensional Kolmogorov-Smirnov (KS)
test compares two empirical distributions by defining the largest absolute
difference D,,,, between their cumulative probability distribution functions
(CDF) as a measure of disagreement between them. Adapting this test to
more than one dimension is a challenge because there are 29-
independent ways of defining a CDF when d dimensions are involved.

However there are many applications in experimental physics where
comparing two-dimensional data sets is important. For example, monitor-
ing the performance of high-energy physics detectors such as the Compact
Muon Solenoid (CMS)* will involve periodic comparison of collected data to
reference histograms, a task for which machine assistance must be sought.
Data As an example, Fig. 1 shows data obtained from reconstructing sim-
ulated tracks of muon pairs, originating from Z-particle decay, within the
CMS Silicon Tracker sub-detector, using the CMSSW software framework!.
The histograms show the relationship between the reduced x? of the track
fit and the track pseudorapidity n (a function of the track angle from the
normal to the beam-line). The first histogram gives results for perfect
detector alignment, while the second was obtained after introducing small
misalignments to individual detector modules, representative of probable
initial errors?. Subsets of these data are used for comparisons in this work.
Peacock’s Test Peacock? proposed defining a statistic independent of
ordering in two dimensions by finding the largest difference between the
CDFs under any ordering. For n points this means calculating the CDF in
the 4n? quadrants of the plane defined by all pairs of combinations (Xj,Y;) of
the points’ coordinates. A brute-force implementation takes one step of
complexity ®(n?) for each point, for an overall complexity ©(n3). This can
be reduced by using a range-counting tree algorithm to give a time upper
bound of O(n2Ign) and a lower bound Q(n?Ign)*.

Parallel Implementation We have implemented the Peacock test on a
Linux cluster in both the brute-force and range-counting tree variants.
Results for varying sample size and CPU numbers are given in Table 1. All
tests on the same samples yielded identical results, and the speed-up was
linear in the number of CPUs for both methods. As predicted, the methods
scale as n3 and n2?Ign, respectively.

Fasano and Franceschini’s Variation Fasano and Franceschini
introduced a variation®> on Peacock’s test with a greatly reduced lower
bound, using n quadrants centred on the n points in the sample - a brute-
force algorithm for this is presented in Numerical Recipes®. However, a
range-counting algorithm can index the n points in O(nIgn) time, followed
by n two-sided range queries of O(Ign) giving a lower bound of O(n Ign)*.
Results for serial computations of both methods are given in Table 2,
compared with Peacock’s test. Again, performance scales with prediction.

Cooke's Algorithm A reportedly efficient implementation of Peacock’s test
has been introduced by Cooke’. The claim that this test runs in O(nIgn)
has been proven optimistic and differences to Peacock’s test clearly
demonstrated*. Table 3 shows comparisons between the Peacock and
Cooke methods for various data samples. Cooke’s method gives a finite
distance (implying a difference) when identical samples are compared. As
well, when the samples have repetitive data the method shows a greatly
increased running time.

ROOT's Implementation of the 2D-KS Test ROOT® implements a 2D-KS
test for comparison of histogrammed data. This means that it cannot give
a true metric like Peacock’s test. Instead it takes two cumulative 1D sums
over the histogram bins, in rows and columns, and reports the average of
Dphax for the two cases. At finer binnings, these pseudo-CDFs asymptote to
the CDFs of the X and Y coordinates separately (see Table 4), which can
lead to scenarios where markedly different histograms compare as if they
came from the same distribution?.

Conclusion These comparisons show that a proper comparison of 2D data
can be difficult and expensive to achieve. For unbinned data the Fasano
and Franceschini method has a clear advantage over Peacock’s method,
especially when implemented with range-counting trees. If the performance
boost afforded to Peacock’s method by a parallel implementation can also
be carried over to Fasano and Franceschini’s, then high-speed multi-CPU
analyses would be available for datasets of 105 points and more. Cooke'’s
algorithm, while undoubtedly fast, appears to have some problems in living
up to its promise and would need to be evaluated on a case-by-case basis.

On the other hand, when comparisons need to be made on already
histogrammed data, there is currently no substitute for the ROOT 2D-KS
test, despite its shortcomings. It especially wins out on speed when normal
binning ranges are used. An alternative test within the ROOT framework is
under development, and we hope to provide this test in the near future.
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Figure 1. 2D data used in this study; reduced x2 of track fit
vs. pseudorapidity n for reconstructed muon-pair tracks in the
CMS Silicon Tracker. a) Ideal detector geometry. b) Small
“short-term scenario” misalignments of the detector modules.
(Below: view of a quadrant of the Tracker, showing how n o
varies with track angle from the normal to the z axis.) o
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Sample Size | CPUs | Brute Force D,,, | t (s) |Range-Count Dp,,, | t(s)

8 0.075195 2399 0.075195 127

4096 16 0.075195 1203 0.075195 63.2
32 0.075195 601

64 0.075195 16.0

8 0.078320 4699 0.078320 214

5120 16 0.078320 2349 0.078320 106

32 0.078320 1175 0.078320 53.5

8 0.084147 8117 0.084147 327

6144 16 0.084147 4060 0.084147 166

32 0.084147 2029 0.084147 82.0

64 0.084147 41.1

8 0.086356 12872 0.086356 463

7168 16 0.086356 6445 0.086356 235

32 0.086356 3223 0.086356 117

64 0.086356 58.8

8 0.083374 19232 0.083374 650

8192 16 0.083374 9615 0.083374 322

32 0.083374 4810 0.083374 162

64 0.083374 82.2

Table 1. Parallel inplementations of the brute-force and range-counting tree algorithms of Peacock’s
2D-KS test (see text). MPI C; Suse 9.3 64-bit cluster; 1.8 GHz AMD Opteron 265 worker nodes.

Sample Peacock Fasano and Franceschini
Size | BFDp. | t(s) |RCTDpa | t(s) | BFDpa | t(s) |RCT D] t(s)
1024 [0.096680 110 0.096680 55 0.094747 0.15 0.094747 0.04
2048 0.084961 969 0.084961 180 0.081055 0.60 0.081055 0.13
3072 |0.072591 7357 |0.072591 502 0.069824 1.38 0.069824 0.24
4096 0.075195| 19143 |0.075195 1130 0.073364 2.46 0.073364 0.38
5120 |0.078320| 37591 |0.078320 1970 [0.075684 3.84 0.075684 0.52
6144 |0.084147 | 64887 |0.084147 2613 |0.082601 5.53 0.082601 0.67
7168 |0.086356 | 103208 |0.086356 3758 |0.085658 8.51 0.085658 0.83
8192 0.083374 | 153833 |0.083374 5144 0.082520 11.7 0.082520 1.11

65536 0.075539 840 0.075539 20.1

131072 0.074738 1318 0.074738 52.4

Table 2. Serial inplementations of the brute-force (BF) and range-counting tree (RCT) algorithms of
Peacock’s 2D-KS test, and Fasano and Franceschini’s variation. C; Ubuntu; 2.0 GHz AMD Athlon XP.

Samples Size | Cooke Dpyyay t (s) Peacock Doy |t (S)
aeta8 vs. aeta8 256 0.031250 0.0 0.0 0.06
meta9 vs. meta 9| 512 0.015625 0.0 0.0 0.29
r7m4 vs. r7m4 2048 0.066406 0.43 0.0 12.41
r8m4 vs. r8m4 | 4096 0.077637 1875 0.0 1023
r9m4 vs. r9m4 | 8192 | 0.061890 5.41 0.0 5259
aetal3 vs. metal3| 8192 0.083374 0.17 0.083374 5259

Table 3. Comparisons between data sub-samples using the Cooke and Peacock methods. Samples:
aeta8 - 256 tracks from aligned distribution; meta9 - 512 tracks from misaligned distribution; r7m4
— 128 repeats of 16 misaligned tracks; r8m4 - 256 repeats of 16 misaligned tracks; rom4 - 512
repeats of 16 misaligned tracks; aetal3 - 8192 aligned tracks; metal3 - 8192 misaligned tracks.

C; Ubuntu; 2.0 GHz AMD Athlon XP.

Histogram Size | D..(x?) Dmax(n) t (s) ‘E - ! ‘g !
25 x 25 0.078755 | 0.009555 | <0.01
50 x 50 0.082351 | 0.007044 | <0.01 | * "
100 x 100 0.085978 | 0.005911 | <0.01 | e o1
200 x 200 0.083166 | 0.005745 0.01 | .. o
500 x 500 0.083219 | 0.006118 0.09 | . "
1000 x 1000 | 0.084688 | 0.005947 0.36
RPy 1D-KS [ 0.081797 | 0.006348 0.46 i

Table 4. The ROOT 2D-KS comparison test applied to 8192-track samples of data (aetal3 and
metal3 from Table 3). The maximum differences in the two pseudo-CDFs obtained by scanning the
histogram bins in two directions are shown; all tests were consistent with the samples’ being from
different populations. Results from the discrete 1D-KS test using the RPy stastistics package on the
x2 and n data separately are also given. (Right: the two pairs of pseudo-CDFs in the 50x50 case.)
ROOT 5.13 and RPy libraries called from python; Scientific Linux CERN 3.08; 2.8 GHz Intel Pentium D.
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