Event reconstruction algorithms for the ATLAS trigger

Teresa Fonseca Martín (CERN) on behalf of the ATLAS TDAQ group

CHEP 3 Sept 2007

The ATLAS Trigger System

Region of Interest (RoI)

- L1 indicates the geographical location of candidate objects (η,ϕ)
- L2 only access data from a detector subregion around (η,φ): "Region of Interest" (RoI)
- Reduces L2 network bandwith
 - Reduces L2/EF processing time

How trigger menu is built

Trigger objects

- •Electron/Photon
- •Tau
- •Jets
- •Muon
- •B-Physics
- •Missing E_T
- b-tagging
- •Minimum bias

"Trigger selection software for Beauty physics in ATLAS" D. Emeliyanov Monday 18:10

"The configuration system of the ATLAS trigger" J. Stelzer Thursday 15:20

- Different threshold values in selection cuts can be applied.
 - Ex:
 - e15 electron $E_T > 15 GeV$
 - e15i: isolated e $E_T > 15 GeV$
 - e60: electron $E_T > 60 GeV$
- Different objects combined:
 - Ex: e15i+Missing E_T

Trigger objects defined in so-called slice (sequence of algoritms)

FEX algorithms: create EDM objectsHypothesis alg.: apply selection cuts

- L2: specific trigger algorithms
- EF: use of offline tools as possible

eγ L2

T2CaloEgamma:

- Performs calorimeter cluster reconstrunction.
- Full detector granularity
- Shower shape variables to discriminate electron/photon of jets
 IDSCAN:
 - zFinder: Reconstruction of the zposition of the primary pp collision
 - hitFilter & groupCleaner: The main pattern recognition step
 - trackFitter: final track fit and removal of outliers

SiTrack:

- Space point sorting
- Track seeds formation
- Primary vertex reconstruction
- Track extension

ey Event Filter

TrigCaloRec:

- Performs calorimeter cluster reconstruction
- Wraps-up offline tools
- Involved also in the tau and jet slices

EFID:

- Based on offline tools in a seeded mode
- Involved in the tau, b-physics, btagging and muon slices also

TrigEgammaRec

- Reconstructs the EDM egamma object
- Wraps-up offline tools
- Combines Inner Detector and Calorimeter information
- Includes bremstrahlung correction

$\mathsf{E}_{\mathsf{T}}/p_{\mathsf{T}}$ without brem recovery

with brem recovery

Examples of electron slice performance studies

- Study trigger efficiency dependencies on individual cuts and E_T, η and φ.
- Compare electrons from single electron and from Z→ee, + pile-up effects

All results shown in this talk Correspond to full simulation of the detector

Example of L2 selection optimization

- Scan selection cuts thresholds
- For a given rate maximum trigger efficiency

Level-2 jet trigger

Implementation and Performance of the ATLAS Second Level Jet Trigger

P. Conde Muíño, Poster

Level-1 Rol is passed to Level-2

• LVL2:

- > iterative (3 iter.) cone
 - algorithm calculates energyweighted position (η, φ) .
- > 3 possible granularities
- Apply simple, robust, fast calibration procedure.

L2:

- <u>muFast:</u> muon spectrometer stand alone reconstruction (η , φ and p_T)
 - Track reconstruction efficiency: ~99.5% barrel, ~100% endcap
- muComb: refines muon tracks combining them with the Inner Detector track.
- mulso: Calorimeter isolation algorithm to reject muons from beauty and charm semileptonic decays.

EF:

• Wraps offline reconstruction

Examples of muon slice performance studies

Extensive studies of efficiency and resolution for different thresholds, η regions, micalibration and misalingment

Missing E_{T}

- Rol concept does not apply to global quantity
- Data preparation is a major concern when accessing entire calorimeter

Ex. resolution studies:

- L2
 - L1 Missing E_T + all L2 Muons
- EF
 - default Algorithm = loop over all cells at EM-scale
 - alternative algorithm = loop over Ex/Ey sums in FEB header
 - + muons
 - simple hadronic calibration

b-tagging

Significance of longitudinal impact parameter

L1: use jet thresholds HLT:

- 3j/2b or 4j/3b
 - b-tagging 70% eff.
 - (Offline b-tag 60%)
- L2 tracking •
- **EF** tracking •
- Hypo: likelihood based on impact parameter
- Under study:
 - Use cluster to get jet direction
 - Use more offline "tools", ex.: secondary vertex

Present status of trigger algorithms

High Level Trigger algorithms:

•Developed offline

•Tested in an "online-like" environment

•Run online in ATLAS experimental area (Point 1)

Integration of the Trigger and Data Acquisition System B. Gorini, Thursday 14:50

		еγ	Muons	Jets	Taus	Etmiss	b-tag	Bphys
L 2	offline	\odot	0	0	0	\odot	0	<u>(</u>)
	Emulated online	3	3	3	0		3	0
	online	\odot	٢	C	\odot			
ΕF	offline	0	0	0	0	0	0	<u>(</u>)
	Emulated online	\odot	\odot	\odot	0	\odot	3	C
	online	\odot	\odot	\odot	3			

are not finished and frozen, work ongoing to improve performance have not being tested

Summary

HLT event reconstruction is mature, we are on good track to have a successful startup

- ATLAS High Level Trigger (HLT) allows a sophisticated event reconstruction using full detector granularity
 - Run in large official MonteCarlo productions
 - Tested systematically in "online-like" environment
 - Run at Point 1 (ATLAS experimental area) with cosmics data and with MC data preloaded into DAQ system
 - Everything progresses smoothly
- Anyhow continuous work is ongoing to improve performance (timing, memory leaks, robustness, reconstruction performance, rejection power ...) and to implement more and more complex menus

Spares

Brief Summary of the May Technical Run (21/5-25/5)

- Hardware
 - ROIB (+ LVL1 emulator), 120 ROSs, 29 SFI
 - 4 HLT racks (130 dual quad-core 1.8 GHz), ~5% final system
- Software
 - tdaq-01-07-00, AtlasHLT 2.0.5-HLT, Offline 12.0.5-HLT-1
 - <u>All basic HLT slices integrated</u>
 - e10, g10, mu6, tau10, jet20, cosmic, Bphysics, met
 - combined : e10+g10+mu6+tau10+jet20
- Input events
 - ~ 6k events (mixed physics processes, ~60% jets and ~40% W/Z)
 - LVL1 simulated with CSC-05
- Main achievement
 - Validated DAQ and HLT infrastructure with final hardware
 - Measurements with dummy algorithm L2 and EF with final
 ¹⁸ hardware

Combined data sample

- For technical run May
- ~55% J0, J1, J2, J3, J4, J5, J6 jet-jet samples
- ~15% Wee
- ~13% W
- ~3% Wtauhad
- ~2% Zee
- ~7% Z
- ~5% JF17 (dijets filtered to be very electromagnetic)

Examples of photon slice performance studies

Direct Photon Production

Exotics diphoton studies

		2g20i Efficiency				
SM H→γγ trigger	Trigger Level	$H_{120} \rightarrow \gamma \gamma$ with Pileup	$H_{120} ightarrow \gamma \gamma$ no Pileup			
Studies	L1	96.3±0.4%	96.2±0.4%			
	L2 Calo	90.0±0.6%	90.1±0.6%			
	EF Calo	83.5±0.7%	84.0±0.7%			

Developing methods to determine trigger efficiency from data Z→ee

- Control sample: reconstruct Z + 1e
 trigger
- Determine trigger efficiency checking if second electron has beer triggered

Determine differential trigger efficiency $(vs \eta, \phi \text{ and ET})$

2 artificial inefficient regions in ϕ for L1

Z→ee + Jets