

Large Scale Access Tests and **Online Interfaces to ATLAS Conditions Databases**

A. Amorim, L. Lopes, P. Pereira, J.Simões, (SIM and FCUL, University of Lisbon) I. Soloviev (Petersburg PNPI) **Doris Burckhart CERN** J. G. V. Der Schmitt (MPI Phy, Garching) M. Caprini (IFIN/HH Bucharest) S. Kolos (U. Cal., Irvine (UCI))

ATLAS T/DAQ	Offline Databases	ONASIC2 - Online Asynchronous Interface	to COOL
ATLAS Offline and p • unique ATHENA frame • databases:	rompt reconstruction: work: transient classes + Conversion S	 ices IS (OKS object files as temporary buffer) Avoiding back pressure from database servers 	
Conditions; Detector description, online control, monitoring data, etc.		etc. • Steered trough SetCondition tool - configure ON	ASIC on-the-fly

 Interface to store Configurations databases (OKS) into Conddb each time TDAQ configuration changes – usually at booted. (with OKS2CORAL) form the interfaces to store TDAQ setups with time of validity and persist data to be browsed in future.

- **is object** also slored as an **extended object**
 - Easy schema evolution and of IS Infos and full data storage
 - Enhancing ONASIC integration with Monitoring WG.

DBSTRESSOR / LST07 tests

•Set of tools to test CondDB access in a wide networking scale. •DBStressor: OnlineController accessing DB at ConfigureAction. •Uses IS both to rapidly configure all controllers and also to collect all individual results. It includes a versatile tool to populate the db. Tests **LST07**: during

Main features:

 Uses a simple API to load OKS objects into COOL (TIDB2OKSPlugin) • It's core module for ONASIC2

OKS

Attr

OKS

Attr 🕆

Na

• Uses TIDB2 (Temporal Instrumentation Database 2)

• Handles schema changes- storing the oks binnary object OKS2COOL2 context diagram: OKS2COOL Data Mapping:

- Schema can change any time due to the embedded object in DB
- Keeps historical evolution

(S Data	Conddb Data
Class me ame_1) ime_1)	Folder Name Attr_name_1 () Rel_name_1 ()
Obj OKS_Obj Id Attr_value_1 () alue_1 Rel_value_1 () ()	RowRowIdIdSinceTillAttr_value_1()Rel_value_1()OKS_DataOKS_Data

- Measure Oracle/COOL & LXSHARE Network Bandwidth Test Capability of Indexing of Oracle/COOL
- Measure Times to build Tables in COOL

Test Performance of COOL's queries by ChannelID

Real data vs Simulation 100 clients fetch 5kB data (time in seconds)

easy to track, because data with different schema can be stored on the same folder. • Only relevant attributes can be showed, later we can change our mind and show more attributes.

 OKS2COOL2 stores all info to be bidirectional.

António Amorim (SIM, FCUL – University of Lisbon, Lisbon, Portugal) – Antonio.Amorim@sim.fc.ul.pt