### Fast Shower Simulation in ATLAS Calorimeter

#### Wolfgang Ehrenfeld – University of Hamburg/DESY

On behalf of the Atlas-Calorimeter and Atlas-Fast-Parameterisation Groups Victoria, Canada, 3.09.2007

- Introduction
- Acceleration Strategies
  - Fast shower parameterisation
  - Frozen shower library
- •Performance





| Sample          | Z -> e+e- di-jets |          | SUSY     |  |  |
|-----------------|-------------------|----------|----------|--|--|
| Subsystem       | Time/Event [%]    |          |          |  |  |
| Tracker         | 3,7               | 3,8      | 4,4      |  |  |
| Calo - barrel   | 5,9               | 7,3      | 11,0     |  |  |
| Calo - endcap   | 32,0              | 46,1     | 33,9     |  |  |
| Calo - forward  | 33,4              | 14,5     | 20,6     |  |  |
| Calo - hadronic | 3,0               | 6,6      | 4,7      |  |  |
| Muon            | 5,7               | 6,4      | 8,0      |  |  |
| Other           | 9,8               | 9,0      | 9,7      |  |  |
| Dead            | 6,5               | 6,3      | 7,7      |  |  |
| Event           | 7,7 min           | 13,6 min | 12,8 min |  |  |

- Simulating the ATLAS detector in Geant4 takes around 10 minutes for an average physics event (not including digitization)
- Interaction rate for average physics processes (jets, W->lv, Z->II, tt̄) is between 10 to 1000 Hz
- Main time is spend in the calorimeter system

### Improve time consumption of EM shower simulation in order to reduce overall simulation time and increase Monte Carlo data sample

## The ATLAS Detector





UН

### The ATLAS Calorimeter





UΗ

Ĥ

# Accelerating Simulation

#### Three different approaches:

#### High energy electrons (> ~1 GeV): fast shower parameterisation

- Describe longitudinal and transverse shower profile by functions
- Low energy electrons (< ~1 GeV): frozen shower library
  - Describe shower by pre-stored hits (frozen shower)



 Substitute very low energy electrons by one energy deposit

#### • Photons are electrons (pair production)



These techniques are implemented into the ATLAS Geant4 detector simulation deriving from GFlashShowerModel (Geant4).

### Fast Shower Parameterisation Technique



## A treatment for showering electrons on a sound mathematical footing is available for electrons:

- Grindhammer, Peters hep-ex/0001020
- Grindhammer, Rudowicz, Peters NIMA290:469(1990)
- Describe longitudinal and transverse shower profile by functions
- Estimate parameters from fully simulated showers (Geant4) as a function of a few kinematic quantities
  - 1. Longitudinal profile ( $\Gamma$  function)
  - 2. Transverse profile (rational function)
- At simulation time substitute an EM shower by random hits sampled from functions for the transfers and longitudinal shower profile at steps of 1/100 X0.
- Approach valid for energies above ~GeV and homogeneous calorimeter

## Fast Shower Parameterisation Technique





 $R_C(t)$  = the median of the energy distribution of the core of the shower  $R_T(t)$  = the median of the energy distribution of the tail of the shower p is a weighting function

$$p(t) = E_{core}(t) / E_{tail}(t)$$

Wolfgang Ehrenfeld

Fast Shower Simulation in ATLAS Calorimeter

7/23

### Parameter Extraction: Forward Calo



#### • Longitudinal shower profile:

UH

- T =  $(\alpha 1)/\beta$  and  $\alpha$  are functions of y=E/E<sub>c</sub> and  $\eta$
- $\bullet$  T and  $\alpha$  are related to moments of the profile



## Performance in Forward Calorimeter



## Frozen Shower Technique



#### • In short:

At simulation time substitute electron shower below an energy cut-off using pre-stored hits.

(Similar approach as for minimum bias events or in computer games, where small parts are produced by pre-stored animations.)

#### • Idea:

- Store only showers for a few discrete Energies and  $\eta$  values (bins) in a library
- Substitute incoming electron below energy cut-off by one shower from the library (get shower from library, interpolate E and  $\eta$ , transform coordinates)
- Reuse showers from library many times

#### • Design goals:

- Significant speed up
- Good agreement with full simulation
- Reasonable resource consumption (disk/memory)



#### • Frozen Shower generation:

- Simulate electrons starting from the front of the calorimeter with fixed Energy,  $\eta$ ,  $\phi$
- Store only energy deposits in the sensitive detector (including sampling fluctuations and response)
- Use local coordinate system (along particle direction) for hit position
- Compress energy deposits
- Create library with many showers

#### • Simulation time:

- If incoming electron is in correct energy range substitute it with a frozen shower
- Pick shower randomly from adjacent Energy and  $\eta$  bins
- Interpolate energy and  $\eta$
- Transform position of energy deposits into global coordinate system
- Put energy deposits back into simulation using dedicated sensitive detector
- For different electrons cycle through the frozen shower library in  $\eta$  and *E* bins

### Reduction of Frozen Shower Size



- **Clustering**: Find a pair of energy deposits with the smallest spacial separation *R* 
  - If  $R < R_{min}$ , replace the pair by one deposit at the center of energy
  - Repeat first step

**Truncation:** O Sort deposits following the energy

- o Calculated running sum
- Keep deposits corresponding to fraction *f* of the total energy

**Rescaling:** • Rescale  $x_i$ - $x_{ave}$ ,  $y_i$ - $y_{ave}$  for the remaining deposits such that the second momentum of the original shower is preserved

Use  $R_{\min} = 5 \text{ mm and } f = 95\%$ .

Wolfgang Ehrenfeld

## Reduction of Frozen Shower Size





## Reduction of Frozen Shower Size - Zoom





Fast Shower Simulation in ATLAS Calorimeter

#### o η binning:

• Energy binning:

over all bins

E<sub>dep</sub>(S1+S2+S3)/E<sub>ger</sub> Accordion structure is non-pointing

10, 20, 50, 100, 200, 500, 1000 MeV

- Effective sampling fraction varies with  $\eta$
- Compensation by change of absorber depth
  - o Barrel:  $\eta = 0.8$
  - Endcap: η=2.5
- Compensation by HV (Endcap)













Wolfgang Ehrenfeld





Single electrons/positrons with E=50 GeV from IP:

- average time gain of 10
- Cracks and intersections clearly visible



### Results - Timing of Physics Events



#### Single electrons/positrons

|         | full [s] | fast [s] | improvement |
|---------|----------|----------|-------------|
| Barrel  | 2,3      | 0,7      | 3,3         |
| Endcap  | 4,4      | 0,9      | 4,9         |
| Forward | 1,1      | 0,4      | 2,8         |

#### acceleration factor: ~2

#### Physics events

UН

|                 | Z -> e+e-      |         | di-jets  |         | SUSY     |         |  |
|-----------------|----------------|---------|----------|---------|----------|---------|--|
|                 | full           | fast    | full     | fast    | full     | fast    |  |
| Subsystem       | Time/Event [%] |         |          |         |          |         |  |
| Tracker         | 3,7            | 7,8     | 3,8      | 7,2     | 4,4      | 8,0     |  |
| Calo - barrel   | 5,9            | 6,0     | 7,3      | 5,8     | 11,0     | 7,7     |  |
| Calo - endcap   | 32,0           | 24,0    | 46,1     | 27,1    | 33,9     | 23,0    |  |
| Calo - forward  | 33,4           | 19,0    | 14,5     | 10,9    | 20,6     | 12,1    |  |
| Calo - hadronic | 3,0            | 5,7     | 6,6      | 13,4    | 4,7      | 10,3    |  |
| Muon            | 5,7            | 13,0    | 6,4      | 12,5    | 8,0      | 13,9    |  |
| Other           | 9,8            | 11,7    | 9,0      | 12,0    | 9,7      | 12,3    |  |
| Dead            | 6,5            | 12,7    | 6,3      | 11,1    | 7,7      | 12,7    |  |
| Event           | 7,7 min        | 3,3 min | 13,6 min | 6,5 min | 12,8 min | 6,3 min |  |



#### $\circ$ 50 GeV Electrons/Positrons from IP, flat distribution in $\phi$ :



- > Overall agreement is good
- Small, constant offset in barrel
- Some discrepancy around edges in endcap

Wolfgang Ehrenfeld

#### Other Quantities at Generated Level nr

UΗ







- Quantities at simulation level look good
- How about reconstruction level?



- How good is this?
  - For this first attempt: good
  - For SUSY searches: okay
  - For precision measurements: bad
- Is the current implementation sufficient for analysis?
- This question should be motivated by physics and might not have one general solution
- Current goal:
  - Try to understand which features are working and which not
  - Try to understand if they are needed
  - Fix it by first principal
  - Fix it by modeling it

# DESY

#### Checks on reconstructed electrons: quantities for $e/\gamma$ ID

• Shower width in 3 strips:

width in  $\eta$  calculated from three strips in  $1^{\text{st}}$  sampling

 Lateral shower shape R<sub>η(37)</sub>: ratio of energy reconstructed in 2<sup>nd</sup> sampling in a 3x7 and 7x7 cluster (ηxφ) Agreement already quiet good. Need study if e/γ ID is effected!







- In order to produce a sufficiently large Monte Carlo dataset the Atlas detector simulation needs to be accelerated
- The calorimeters are the main time consumers
- Different acceleration techniques are possible:
  - Fast shower parameterisation
  - Frozen Shower library
  - One spot model
- All three methods have been implemented and tested within the Atlas detector simulation
  - Factor 10 time gain for electrons and photons
  - Factor 2-3 time gain for average physics event
  - Main time gain comes from Frozen Showers
  - Fast shower parameterisation only good for high energy electrons
  - Good description of quantities at simulation and reconstruction level

#### • Fast simulation approach is tested on the GRID right now

Improve detector description