

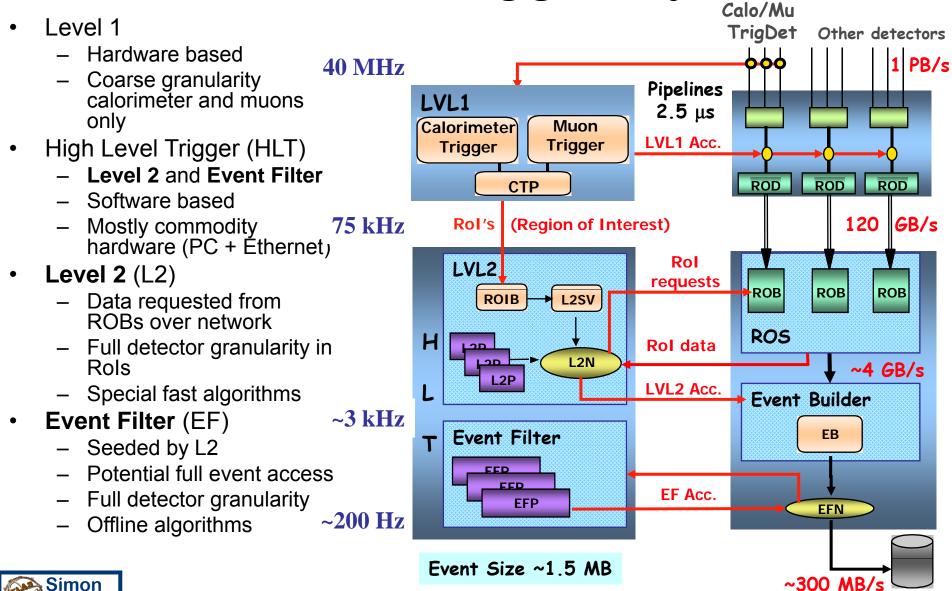
The ATLAS High Level Trigger Steering

Simon George Royal Holloway, University of London

Authors

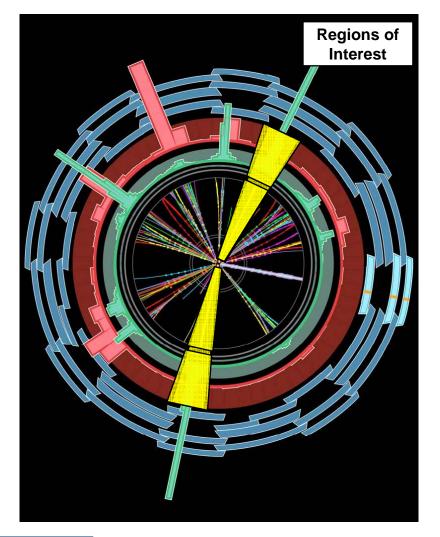
- N. Berger (LAPP Annecy)
- T. Bold (University of California, Irvine)
- T. Eifert (Universite de Geneve)
- G. Fischer (Humboldt-Universitaet zu Berlin)
- S. George (Royal Holloway, University of London)
- J. Haller (Universitaet Hamburg)
- A. Hoecker (CERN)
- J. Masik (University of Manchester)
- M. zur Nedden (Humboldt-Universitaet zu Berlin)
- V. Perez Reale (CERN)
- C. Risler (Humboldt-Universitaet zu Berlin)
- C. Schiavi (INFN, Sezione di Genova)
- J. Stelzer (CERN)
- X. Wu (Universite de Geneve)

With acknowledgement to ATLAS T/DAQ.



Outline

- Setting the scene: ATLAS trigger
- Motivation: HLT strategy
- Solution: HLT Steering
- Steering details:
 - Trigger Menu
 - Configuration
 - Algorithms
 - Logic
 - Caching
- Performance
- Monitoring
- Conclusions



The ATLAS Trigger System

Key features of ATLAS trigger strategy

- HLT uses Regions of Interest
 - Based on L1 triggers
 - Reduce data bandwidth at L2
 - Reduce processing time
- Early rejection
 - Three level trigger
 - Steps within L2 and EF
 - Reduce processing time
 - Reduce decision latency

HLT steering - in a nutshell

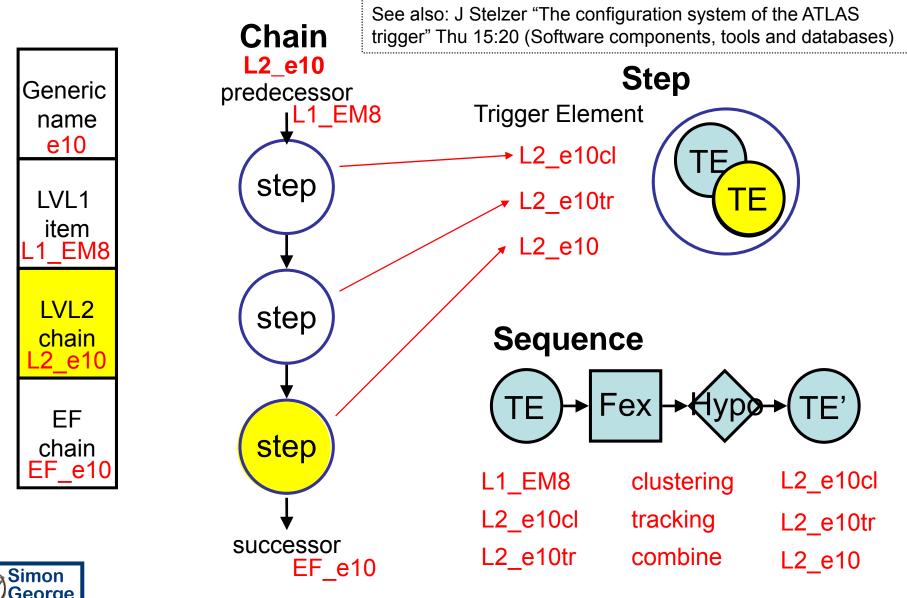
- Rol mechanism
 - Each trigger level or sub-step is seeded by the result of the previous one
- Early rejection
 - Drop event as soon as it cannot pass the trigger
 - Minimise average processing time
- Fast
 - Leave most time for event-selection algorithms
- Flexible
 - Enable/disable triggers
 - Construct complex menus from simple building blocks
- Instrumented for monitoring
- Work in both online and offline s/w environments
 - Online data taking
 - Offline development/debugging and simulation

Sample trigger menu

Generic name	e5	e5_PT	e10	g10	2e10	e20_XE12	XE12
LVL1	EM3 PS		EM8		2EM8	EM18_XE12	XE12 PS
LVL2	e5	PT	e10	g10	2e10	e20_xe12	PT
EF	e5	PT	e10	g10	2e10	e20_xe12	PT
	1			1			

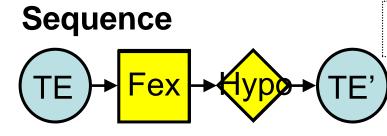
Chain:

var


represents several steps, Frd

several algorithms at It c each step

nultiple and combined triggers, (PS) and/or pass through (PT)



Steering concepts

Algorithms

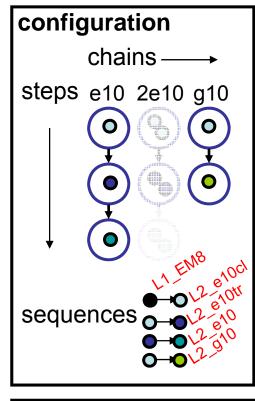
See also: T Fonseca Martin "Event reconstruction algorithms for the ATLAS trigger" Mon 17:55 (Online Computing)

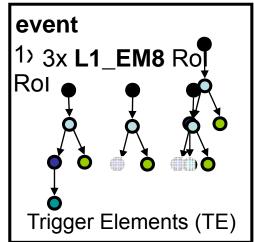
Typical feature extraction (Fex) algorithm:

- Seeded by previous step or Rol
- Retrieves detector data
- Finds "feature" e.g. cluster, track
- Updates Rol position
- Runs once per Rol

- Typical hypothesis (Hypo) algorithm:
- Follows Fex algorithm
- Compares features to hypothesis
- Marks TE' as valid or not
- Runs once per threshold

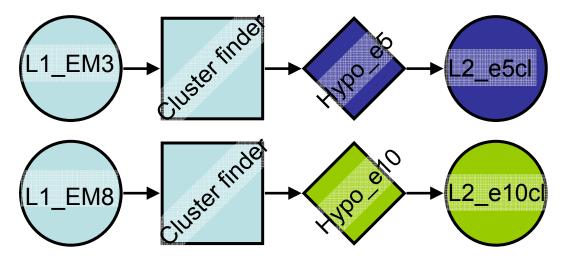
Example Hypotheses:


- Calo cluster: Cut on cluster shape parameters
- Electron: cut on cluster-track matching variables
- Most cases: apply E_{T} or p_{T} threshold


Other types of algorithm available for more complex logic.

Steering logic

- Static configuration + dynamic event state
- First create initial TEs from L1 Rols
 - One per threshold per Rol
 - At EF, from L2 output instead
- Activate relevant chains
- Loop over steps
 - Loop over active chains
 - Loop over TEs (event) that match step requirements (config)
 - Run sequence that links TE from prev. step in chain to required TE
 - Result (depends on algorithms): TE is active or not
 - If insufficient active TEs remain, deactivate chain
 - If no active chains remain, end loop
- Apply pre-scale, pass-through and reject/accept event

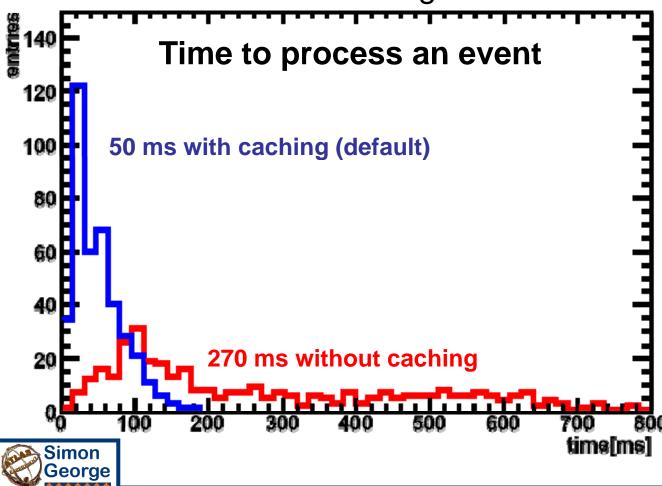


Caching

Two sequences: same fex, different hypo:

1) Steering will run fex only once;

Second time, results are taken from cache

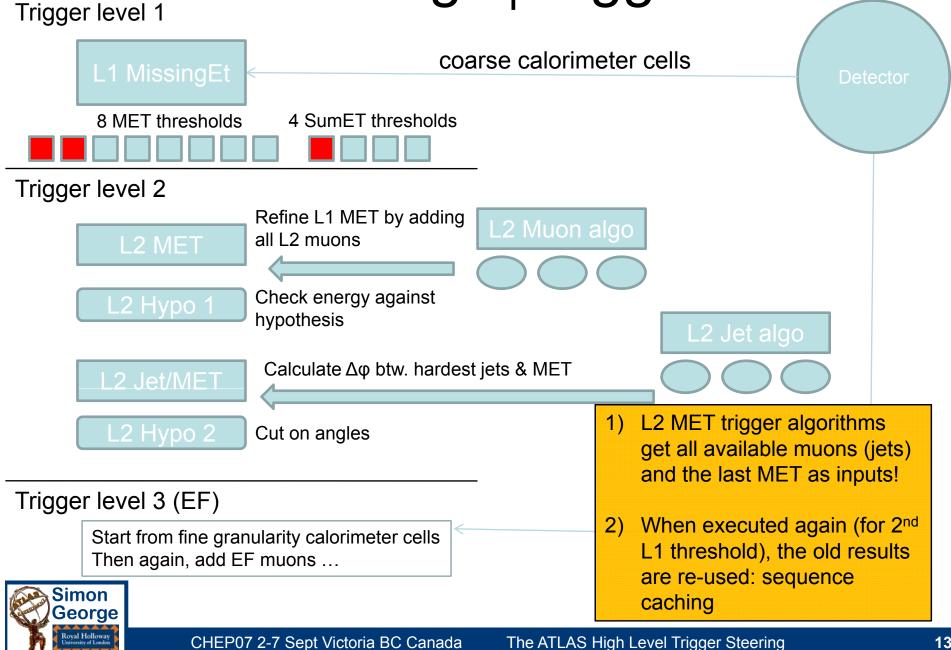

2) Same sequence in different chains is also cached

 \Rightarrow **Implicit caching** when same item appears multiple times in configuration

Benefits of caching

- Useful gain in speed
- Simplifies configuration
- Times consistent with target

3 GHz Xeon CPU


Code is not yet optimised: expect to reduce steering time.

No rejection: worst case scenario.

Inclusive e/γ menu for very low lumi.

400 top events: atypically busy; average 16 Rols (~4 EM) per event rather than the usual ~2.

MissingE_T trigger

HLT steering - overhead time

- Framework is only small fraction of total
- Times consistent with target

Average time to process an event Chains Evaluation 47.73(94.0 %)

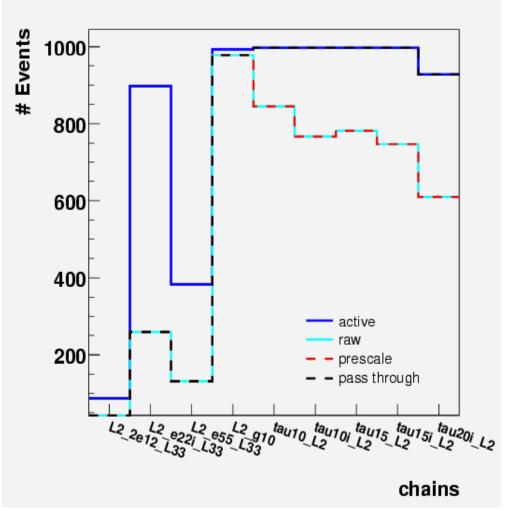
3 GHz Xeon CPU

Code is not yet optimised: expect to reduce steering time.

No rejection: worst case scenario.

Inclusive e/γ menu for very low lumi.

400 top events: atypically busy; average 16 Rols (~4 EM) per event rather than the usual ~2.


Monitoring Overhead 0.53(1.0 %) Result Building 0.45(0.9 %) Lyl Converter 2.07(4.1 %)

Steering has been run live online during cosmic data runs

Monitoring

- Vital for online operation
- Steering instrumented to count events
 - By chain and by step
 - before & after pre-scale and pass-through
- Also monitoring Rol position, TE abundances, errors, times
- Histograms gathered and merged for online monitoring display
 - Time stamps allow conversion to rates
- IMonitoredAlgorithm interface allows algorithms to declare variables for histogramming.
 - These are also gathered, merged and available for online display.
 - Same histos used for validation.

Events with chain active, accepted (raw, after prescale, after pass through)

Conclusions

- The HLT steering implements the key features of the HLT event selection strategy:
 - Region of Interest/seeding
 - Steps/early rejection
- Complex menus have been built up
- Caching saves time and simplifies config
- Time overhead is modest
- Well instrumented for monitoring
- Already used in cosmic runs and tech. runs
- More information in the paper

Other ATLAS T/DAQ presentations at CHEP07

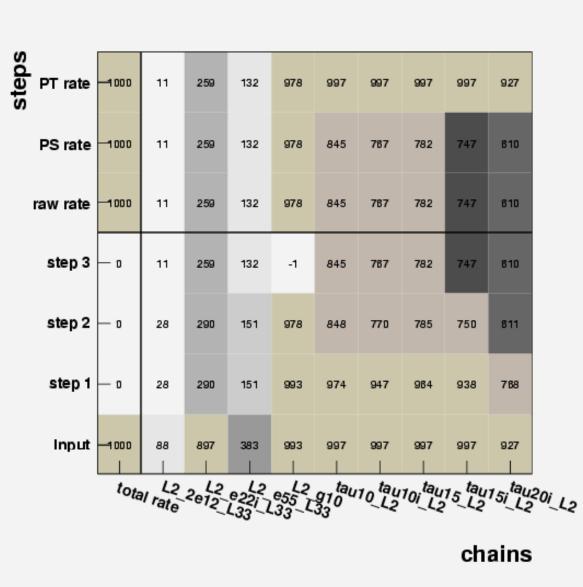
- Monday, 03 September 2007
 - [421] Implementation and Performance of the ATLAS Second Level Jet Trigger
 - Patricia CONDE MUíñO
 - Poster 1 board 19
 - [437] Remote Management of nodes in the ATLAS Online Processing Farms
 - Marc DOBSON
 - Poster 1 board 21
 - [143] The ATLAS High Level Trigger Steering
 - by Simon GEORGE (Royal Holloway)
 - (Oak Bay: 16:50 17:05)
 - [339] Event reconstruction algorithms for the ATLAS trigger
 - by Teresa Maria FONSECA MARTIN (CERN)
 - (Oak Bay: 17:55 18:10)
 - [378] Trigger Selection Software for Beauty physics in ATLAS
 - by Dmitry EMELIYANOV (RAL)
 - (Oak Bay: 18:10 18:25)
- Wednesday, 05 September 2007
 - [112] A software framework for Data Quality Monitoring in ATLAS
 - by Serguei KOLOS (University of California Irvine)
 - (Oak Bay: 14:35 14:50)
 - [332] The ATLAS DAQ System Online Configurations Database Service Challenge
 - by Igor SOLOVIEV (CERN/PNPI)
 - (Oak Bay: 15:05 15:20)
 - [45] The ATLAS Trigger: Commissioning with cosmic-rays
 - by Jamie BOYD (CERN)
 - (Lecture Theatre: 17:30 17:45)
- Thursday, 06 September 2007
 - [28] Integration of the Trigger and Data Acquisition Systems in ATLAS
 - by Benedetto GORINI (CERN)
 - (Oak Bay: 14:50 15:05)
 - [50] The configuration system of the ATLAS Trigger
 - by Jörg STELZER (CERN, Switzerland)
 (Lecture Theatre: 15:20 15:40)

CHEP07 2-7 Sept Victoria BC Canada The ATLAS High Level Trigger Steering

Backup slides

Time constraints on HLT Algorithms

- LVL2 timing requirement
 - Need to absorb up to 75 kHz LVL1 rate (upgradeable to 100 kHz)
 - Processing of a new event is initiated every 10 μs
 - ~500 1U slots allocated to the LVL2 farm
 - Current baseline: 500 quad-core dual CPU (>=2 GHz), one event per core
 - $\Rightarrow \sim 40$ ms average processing time per event (includes data access & processing time)
- EF timing requirement
 - Need to absorb up to ~3 kHz LVL2 rate
 - Processing of a new event is initiated every ~300 μs
 - ~1800 1U slots for the EF farm
 - Current baseline: 1800 quad-core dual CPU (>=2 GHz), one EF process per core
 - ~4s average processing time per event (includes data access & processing time)
- Aggregate processing power of current baseline HLT farms is consistent with assumption in TDR based on 8 GHz single core dual CPU
- Relative allocation of LVL2 & EF processors is configurable



Time measurements

- Top events
 - 400 events
 - 0.6 MU, 3.6 EM, 5.0 TAU, 6.8 J Rols
 - i.e. tot 16 per event
 - Not typical!
- Menu
 - LVL2 e/g with very low thresholds for commissioning at low lumi
 - 47 chains.
- CPU
 - 3 GHz Xeon
- Time
 - Caching saves ~80% and is on by default
 - Steering overhead (with caching) ~6%
- Compared to realistic setup
 - Expect to use few hundred chains in full menu
 - Expect average ~2 Rols per event with high lumi thresholds and typical events
 - Online technical runs show times in more realistic setup are compatible (or close) with no. of available processors

Monitoring

