
5 September 2007 CHEP Plenary - SJ 1

How good is the match
between LHC software and
current/future processors?

Sverre Jarp
CERN openlab CTO

CHEP 2007
5 September 2007

5 September 2007 CHEP Plenary - SJ 2

Agenda

• Before we start
• Moore’s “law”
• Hardware and software basics
• Some suggestions for the

future
• Conclusions

For more in-depth information, see: “Processors size up for
physics at the LHC”, S.Jarp CERN Courier (April 2007)

5 September 2007 CHEP Plenary - SJ 3

Before we start

5 September 2007 CHEP Plenary - SJ 4

Start of the x86 era for HEP

• Our presentation at
CHEP-95 in Rio
– 12 years ago!
– First porting and

benchmarking of HEP
codes (in FORTRAN)

• CERNLIB
• CERN benchmarks
• GEANT3
• ATLAS DICE (simulation)

Hey, a 133 MHz PC is as
fast as the (much more
expensive) workstations!

5 September 2007 CHEP Plenary - SJ 5

Transistor growth

Moore’s law
• Gordon Moore predicted that transistor count

would double every 18 – 24 months
– This is still roughly true – even after more than 40 years!

Illustration from
Wikipedia

Note that a
derivative “law”
stated that the
frequency
would also
double. This is
no longer the
case!

• Initially the processor was simple
– Modest frequency; Single instruction issue; In order; Tiny

caches; No hardware multithreading or multicore; Running cool

• Since then:
– Frequency scaling (from 150 MHz to 3 GHz)
– Multiple execution ports, wide execution (SSE):
– Out-of-order execution:
– Larger caches:
– HW multithreading:
– Multi-core:
– Heat:

Implications of Moore’s law

All of this has been absorbed without any change to our software model:
Single-threaded processes farmed out per processor core.

5 September 2007 CHEP Plenary - SJ 8

Understanding
hardware and

software basics

Single threaded processes

• Simply illustrated:

Socket

H
EP

 P
ro

ce
ss

 0
C

or
e

0

C
or

e
1

C
or

e
2

C
or

e
3

Quad-core

H
EP

 P
ro

ce
ss

 1

H
EP

 P
ro

ce
ss

 2

H
EP

 P
ro

ce
ss

 3

Socket
H

EP
 P

ro
ce

ss
 0

C
or

e
0

C
or

e
1

C
or

e
2

C
or

e
3

Octo-core or Quad-core w/two-way HW Multithreading
(seen by the OS as 8 independent CPUs)

H
EP

 P
ro

ce
ss

 1

H
EP

 P
ro

ce
ss

 2

H
EP

 P
ro

ce
ss

 3

C
or

e
0

C
or

e
1

C
or

e
2

C
or

e
3

H
EP

 P
ro

ce
ss

 4

H
EP

 P
ro

ce
ss

 5

H
EP

 P
ro

ce
ss

 6

H
EP

 P
ro

ce
ss

 7

Our memory usage

• An initial preoccupation:
– Today, we need 2 – 4 GB per single-threaded process.
– In other words, a dual-socket server needs at least:

• Single core: 4 - 8 GB

• Quad core: 16 - 32 GB

• Future 16-way CPU: 64 – 128 GB (!)

• Future 64-way CPU: 256 – 512 GB (!!)

Are we FLP or INT ?

• Some people believe that our programs are
entirely “logic intensive”
– This is a misunderstanding!

• Our programs (naturally) operate on
floating-point entities:
– (x,y,z), (px, py, pz), etc.

• A better description is:
– We have floating-point work wrapped in “if/else” logic

• My estimate
– Atomic operations (fadd, fmul, etc.) represent 15-

20% of all instructions
– But all floating-point work (all loads, atomic ops, math

functions, and stores) represents ~50% of the cycles
• So why does it scale with SPECint?

Load
Load

FLP ADD

Store

FLP CMP

Store

Load
Load

Branch

5 September 2007 CHEP Plenary - SJ 12

Today’s architectures are “fat”

• Execution ports in the Core 2 processor:

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-014)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit

5 September 2007 CHEP Plenary - SJ 13

HEP programs are “lean”

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0 // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3 # Prob 43% // jump if FALSE

High level C++ code

Assembler instructions

Same
instructions
laid out
according to
latencies on
the Core 2
processor

NB: Out-of-
order
scheduling
not taken
into account.

ILP in HEP

• ILP (Instruction Level Parallelism)
– Our LHC programs typically issue (on average)

• only 1 instruction per cycle

– This is very low!
• Core 2 architecture can handle 4 instructions
• Each SSE instruction can operate on 128 bits (2 doubles)

– We are typically only extracting 1/8 of maximum

We are not getting out of first gear!!

FLP in HEP

• Floating-point performance
– Intel Core 2 can do 4 FLOPs per cycles

– We just said that we execute ~1 instruction per
cycle

• And that 20% are floating-point operations

– We probably average 0.2 FLOPs per cycle

5% of peak: We are crawling along in first gear!!

What is coming?

Of course, we will also continue to see the traditional x86-64
processors evolve (as expected).

• Industry will bombard us with new
designs based on multi-billion
transistor budgets
– Hundreds of cores;

• Somebody even mentioned “thousands” recently !
– Multiple threads per core
– Unbelievable floating-point performance

• The race is on for Tera-FLOP chips
• Aggressive graphics designs from existing vendors

and new contenders
– Because of thermal issues: Many are back to

in-order designs
• For instance: Itanium, Sun Niagara, IBM Power6
• Others may follow

5 September 2007 CHEP Plenary - SJ 17

Some suggestions

Why worry?

• Clearly, the emphasis now is to get LHC
started and there is plenty of compute power
across the Grid.

• The suggestions are only relevant if we want
to extract (much) more compute-power out of
new chip generations
– Try to increase the ILP (especially the floating-point

part)
– Investigate “intelligent” multithreading
– Reduce our overall memory footprint

1) Increased ILP
• Aim at creating richer “sections”, with

especially the floating-point contents
exposed

• Assist our C++ compilers in making
these sections effective**
– Optimization in all important areas

• Inlining of “tiny” methods
• Disambiguation of data pointers/references
• Minimization of if and switch statements
• Etc.

– Optimization of mathematical functions
• Log, exp, sine, cosine, atan2, etc

Prepare

COMPUTE

Retire
** Session 259 on CMS SW performance analysis tomorrow at 14:40
** Session 316 on performance monitoring tools tomorrow at 17:10

2) Multithreading
• Explore new paradigms, for example:

Non-
reentrant

code

Magnetic
field

Physics
processes

Global
data

Event-
specific

data

Core 0

Non-
reentrant

code

Magnetic
field

Physics
processes

Global
data

Event-
specific

data

Core 1

Non-
reentrant

code

Magnetic
field

Physics
processes

Global
data

Event-
specific

data

Core 2

Non-
reentrant

code

Magnetic
field

Physics
processes

Global
data

Event-
specific

data

Core 3

Reentrant
code

Magnetic
field

Physics
processes

Global
data

Event
specific

data

Core 0

Event-
specific

data

Core 1

Event-
specific

data

Core 2

Event-
specific

data

Core 3

3) Simplify/restructure code

• Today, our frameworks are very
complicated and heavy
– In one case, we observed 400+ shared libraries

• Make a move à la BOOT?
– Test coverage of various applications has shown that

frequently the 80/20 rule applies:
• 20% of the code is enough to cover 80% of the (even

complex) use cases

• Having a more modular approach would be
very beneficial
– For instance,

• Quicker porting to assess new hardware
• Quicker adoption of new paradigms

R

O

O

TBOOT

5 September 2007 CHEP Plenary - SJ 22

CONCLUSIONS

Conclusions

• Moore’s law has been extremely beneficial to HEP
– Especially frequency scaling (whilst it lasted), out-of-order execution

(latency hiding), and multi-core

• Thanks to x86 technology, we have enjoyed
performance increases by several orders of magnitude
– Ever since CHEP-95
– Both absolute performance and performance per CHF

• If we need this to continue during an LHC era, which will
be populated by billion-transistor processors
– We should increase the “agility” of our software structures

• Your take-away:
– If we want fewer parallel jobs, fewer “heat-generating” servers for

solving a given HEP problem, there are still plenty of under-utilized
resources inside each CPU!

5 September 2007 CHEP Plenary - SJ 24

Backup

5 September 2007 CHEP Plenary - SJ 25

CPU performance vector

• Defined in 3 dimensions inside a processor:

Calculation width (per inst)

Instructions (per cycle)

Density of work (cycles)

5 September 2007 CHEP Plenary - SJ 26

Even simpler example

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 addq addsd load vector[i]]

2 (bubble)

3 (bubble) cmpq+jne

for (i=0; i<N; i++) sum += vector[i];

.L5:
addsd (%rdi,%rax,8), %xmm0
addq $1, %rax
cmpq %rsi, %rax
jne .L5

High level C++ code

Assembler instructions

Same
instructions
laid out
according to
the latency
of the addsd
instruction.

NB: the load
vector
instructions
are done
OOO.

Incompressible part

Compiler Cycles per
addition

gcc 3.4/4.2 (O2)

gcc 3.4/4.2 (O2, unrolled by hand)

icc 10.0 (O2, automatic vectorisation)

Theoretical minimum

Even simpler example (2)

• When running simple test with vector[100]
– Remember that floating-point calculations are done on the SSE units

• Which can issue two FLP operations in parallel (in a single cycle)

This simple example illustrates well what we see in many HEP benchmarks:
Only 10 – 20% of the resources are productive (unless we act)!

3

1

.75

.5

	Agenda
	Before we start
	Start of the x86 era for HEP
	Transistor growth
	Moore’s law
	Implications of Moore’s law
	Understanding hardware and software basics
	Single threaded processes
	Our memory usage
	Are we FLP or INT ?
	Today’s architectures are “fat”
	HEP programs are “lean”
	ILP in HEP
	FLP in HEP
	What is coming?
	Some suggestions
	Why worry?
	1) Increased ILP
	2) Multithreading
	3) Simplify/restructure code
	CONCLUSIONS
	Conclusions
	Backup
	CPU performance vector
	Even simpler example
	Even simpler example (2)

