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Agenda

• Before we start
• Moore’s “law”
• Hardware and software basics
• Some suggestions for the 

future
• Conclusions

For more in-depth information, see: “Processors size up for 
physics at the LHC”, S.Jarp CERN Courier (April 2007)
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Before we start
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Start of the x86 era for HEP

• Our presentation at 
CHEP-95 in Rio 
– 12 years ago!
– First porting and 

benchmarking of HEP 
codes (in FORTRAN)

• CERNLIB
• CERN benchmarks
• GEANT3
• ATLAS DICE (simulation)

Hey, a 133 MHz PC is as 
fast as the (much more 
expensive) workstations!
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Transistor growth



Moore’s law
• Gordon Moore predicted that transistor count 

would double every 18 – 24 months
– This is still roughly true – even after more than 40 years!

Illustration from 
Wikipedia

Note that a 
derivative “law”
stated that the 
frequency 
would also 
double. This is 
no longer the 
case!



• Initially the processor was simple
– Modest frequency; Single instruction issue; In order; Tiny 

caches; No hardware multithreading or multicore; Running cool

• Since then:
– Frequency scaling (from 150 MHz to 3 GHz)
– Multiple execution ports, wide execution (SSE):
– Out-of-order execution:
– Larger caches:
– HW multithreading:
– Multi-core:
– Heat:

Implications of Moore’s law

All of this has been absorbed without any change to our software model: 
Single-threaded processes farmed out per processor core.
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Understanding 
hardware and 

software basics



Single threaded processes

• Simply illustrated:
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Octo-core or Quad-core w/two-way HW Multithreading
(seen by the OS as 8 independent CPUs)
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Our memory usage

• An initial preoccupation:
– Today, we need 2 – 4 GB per single-threaded process.
– In other words, a dual-socket server needs at least:

• Single core: 4 - 8 GB

• Quad core: 16 - 32 GB

• Future 16-way CPU: 64 – 128 GB (!)

• Future 64-way CPU: 256 – 512 GB (!!)



Are we FLP or INT ?

• Some people believe that our programs are 
entirely “logic intensive”
– This is a misunderstanding!

• Our programs (naturally) operate on 
floating-point entities:
– (x,y,z), (px, py, pz), etc.

• A better description is:
– We have floating-point work wrapped in “if/else” logic

• My estimate
– Atomic operations (fadd, fmul, etc.) represent 15-

20% of all instructions
– But all floating-point work (all loads, atomic ops, math 

functions, and stores) represents ~50% of the cycles
• So why does it scale with SPECint? 

Load
Load

FLP ADD

Store

FLP CMP

Store

Load
Load

Branch
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Today’s architectures are “fat”

• Execution ports in the Core 2 processor:

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-014)

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer
Alu

Int. SIMD
Alu

x87 FP
Multiply

SSE FP
Multiply

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Multiply

FP
Add

FSS Move
& Logic

QW Shuffle

Integer
Alu

Int. SIMD
Alu

FSS Move
& Logic

Shuffle

Alu = Arithmetic, Logical Unit
FSS = FP/SIMD/SSE2
QW = Quadword (64-bits)

Integer
Load

Store
Address

Store
Data

FP
Load

Jump Exec
Unit
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HEP programs are “lean”

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 load point[0]

2 load origin[0]

3

4

5

6 subsd load float-packet

7

8 load xhalfsz

9

10 andpd

11

12 comisd

13 jbe

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), %xmm0
subsd 48(%rdi), %xmm0   // load & subtract
andpd _2il0floatpacket.1(%rip), %xmm0 // and with a mask
comisd 24(%rdi), %xmm0 // load and compare
jbe ..B5.3      # Prob 43% // jump if FALSE

High level C++ code 

Assembler instructions 

Same 
instructions 
laid out 
according to 
latencies on 
the Core 2 
processor 

NB: Out-of-
order 
scheduling 
not taken 
into account. 



ILP in HEP

• ILP (Instruction Level Parallelism)
– Our LHC programs typically issue (on average)

• only 1 instruction per cycle

– This is very low!
• Core 2 architecture can handle 4 instructions
• Each SSE instruction can operate on 128 bits (2 doubles)

– We are typically only extracting 1/8 of maximum 

We are not getting out of first gear!!



FLP in HEP

• Floating-point performance
– Intel Core 2 can do 4 FLOPs per cycles

– We just said that we execute ~1 instruction per 
cycle

• And that 20% are floating-point operations

– We probably average 0.2 FLOPs per cycle

5% of peak: We are crawling along in first gear!!



What is coming?

Of course, we will also continue to see the traditional x86-64 
processors evolve (as expected).

• Industry will bombard us with new 
designs based on multi-billion 
transistor budgets
– Hundreds of cores;

• Somebody even mentioned “thousands” recently !
– Multiple threads per core
– Unbelievable floating-point performance

• The race is on for Tera-FLOP chips
• Aggressive graphics designs from existing vendors 

and new contenders
– Because of thermal issues: Many are back to 

in-order designs
• For instance: Itanium, Sun Niagara, IBM Power6
• Others may follow
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Some suggestions



Why worry?

• Clearly, the emphasis now is to get LHC 
started and there is plenty of compute power 
across the Grid.

• The suggestions are only relevant if we want 
to extract (much) more compute-power out of 
new chip generations
– Try to increase the ILP (especially the floating-point 

part)
– Investigate “intelligent” multithreading
– Reduce our overall memory footprint



1) Increased ILP
• Aim at creating richer “sections”, with 

especially the floating-point contents 
exposed

• Assist our C++ compilers in making 
these sections effective**
– Optimization in all important areas

• Inlining of “tiny” methods
• Disambiguation of data pointers/references
• Minimization of if and switch statements
• Etc.

– Optimization of mathematical functions
• Log, exp, sine, cosine, atan2, etc

Prepare

COMPUTE

Retire
** Session 259 on CMS SW performance analysis tomorrow at 14:40
** Session 316 on performance monitoring tools tomorrow at 17:10



2) Multithreading
• Explore new paradigms, for example:
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3) Simplify/restructure code

• Today, our frameworks are very 
complicated and heavy
– In one case, we observed 400+ shared libraries

• Make a move à la BOOT?
– Test coverage of various applications has shown that 

frequently the 80/20 rule applies:
• 20% of the code is enough to cover 80% of the (even 

complex) use cases

• Having a more modular approach would be 
very beneficial
– For instance,

• Quicker porting to assess new hardware
• Quicker adoption of new paradigms

R

O

O

TBOOT
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CONCLUSIONS



Conclusions

• Moore’s law has been extremely beneficial to HEP
– Especially frequency scaling (whilst it lasted), out-of-order execution 

(latency hiding),  and multi-core

• Thanks to x86 technology, we have enjoyed 
performance increases by several orders of magnitude
– Ever since CHEP-95
– Both absolute performance and performance per CHF

• If we need this to continue during an LHC era, which will 
be populated by billion-transistor processors
– We should increase the “agility” of our software structures

• Your take-away:
– If we want fewer parallel jobs, fewer “heat-generating” servers for 

solving a given HEP problem, there are still plenty of under-utilized 
resources inside each CPU!
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Backup
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CPU performance vector

• Defined in 3 dimensions inside a processor:

Calculation width (per inst)

Instructions (per cycle)

Density of work (cycles)
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Even simpler example

Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

1 addq addsd load vector[i]]

2 (bubble)

3 (bubble) cmpq+jne

for (i=0; i<N; i++) sum += vector[i];

.L5:
addsd (%rdi,%rax,8), %xmm0
addq $1, %rax
cmpq %rsi, %rax
jne .L5

High level C++ code 

Assembler instructions 

Same 
instructions 
laid out 
according to 
the latency 
of the addsd
instruction.

NB: the load 
vector 
instructions 
are done 
OOO.

Incompressible part



Compiler Cycles per 
addition

gcc 3.4/4.2 (O2)

gcc 3.4/4.2 (O2, unrolled by hand)

icc 10.0 (O2, automatic vectorisation)

Theoretical minimum

Even simpler example (2)

• When running simple test with vector[100]
– Remember that floating-point calculations are done on the SSE units

• Which can issue two FLP operations in parallel (in a single cycle)

This simple example illustrates well what we see in many HEP benchmarks:
Only 10 – 20% of the resources are productive (unless we act)!
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