How good is the match
between LHC software and
current/future processors?

Sverre Jarp
CERN openlab CTO
CHEP 2007
5 September 2007

@]

“:» Agenda i

e Before we start
e Moore’s “law”
e Hardware and software basics

e Some suggestions for the
future

e Conclusions

For more in-depth information, see: “Processors size up for
physics at the LHC”, S.Jarp CERN Courier (April 2007)

5 September 2007 CHEP Plenary - SJ 2

Before we start

pppppppppppppp

CERN

openlab

\
Ny egm
'I.-‘.

Start of the x86 era for HEP CERN

openlab

e QOur presentation at
CHEP-95 in Rio =2

— 12 years ago!

— First porting and
benchmarking of HEP
codes (in FORTRAN)

« CERNLIB

« CERN benchmarks

e GEANTS3

o ATLAS DICE (simulation)

5 September 2007 CHEP Plel

EUROPEAN LABORATORY FOR PARTICLE PHYSICS
{IN/93/14

PC
as
Physics Computer
for
LHC?

Sverre Jarp, Hong Tang, Antony Simmins

Computing and Networks Division/CERN
1211 Geneva 23 Switzerland
(Sverre Jarp @ Cermn CH, Hong. Tang@Cem CH, Antony . Simmins@Cemn CH)

Refael Yaari

Weizmann Institute, Israel
N wa cll

Presented at CHEP-95, 21 September 1995, Rio de Janeiro, Brazil

e CERN

‘e openlab

Transistor growth

eeeeeeeeeeeeeeeeeeeeeeeeeeee

\'»

Ny 'pgm
-“‘

Moore’s law

CERN

openlab

« Gordon Moore predicted that transistor count
would double every 18 — 24 months
— This is still roughly true — even after more than 40 years!

Moore’s Lavw
16,000,000 060
Hurmber of tangirecs deubling pvere 18 monhe
N,
1,000,600,060 —
\ - HamiE 2
\ € B cagiel
g . Irf
2" 2" ltamivm 2
b WELOLPE — Number of Ransisies doukiing pyrcy B4 mesths. \:r,r .*""F
ﬁg \ ’ Prungum &
E £ * fprivm
W00 — Ny . pani
k] K Benitprm Il
E E . 2htine
- ¢'r r"
mrm] — Lo -F
= E ! 'r" l““rr 40
r' L l’.“’
100,000 = ‘."r Lo s
. ‘q'
’ I‘"
4r‘ Lot SRS
o "
10000 = s
< Teom
2300 - ‘H&w
[| [] |
o0 EE a AR
Year

Note that a
derivative “law”
stated that the
frequency
would also
double. This is
no longer the
case!

Illustration from
Wikipedia

Implications of Moore’s law ~ SERN

Initially the processor was simple

— Modest frequency; Single instruction issue; In order; Tiny
caches; No hardware multithreading or multicore; Running cool

Since then:

— Frequency scaling (from 150 MHz to 3 GHz)

— Multiple execution ports, wide execution (SSE):
— Out-of-order execution:

— Larger caches:

— HW multithreading:

— Multi-core:

— Heat:

All of this has been absorbed without any change to our software model:
Single-threaded processes farmed out per processor core.

o CERN

‘e openlab

Understanding
hardware and
software basics

eeeeeeeeeeeeee

\ »

“:= Singlethreaded processes €CERN

™ openlab

o Simply illustrated:

HEP Process 0
HEP Process 2
HEP Process 3

HEP Process 7|

HEP Process 6 [

HEP Process 5[/

HEP Process 4.

[Corel | [HEPProcess1

!

Quad-core Octo-core or Quad-core w/two-way HW Multithreading
(seen by the OS as 8 independent CPUSs)

“.:=» Our memory usage CERN

" e openlab

 An initial preoccupation:
— Today, we need 2 — 4 GB per single-threaded process.
— In other words, a dual-socket server needs at least:

Single core: 4 - 8 GB

Quad core: 16 - 32 GB

Future 16-way CPU: 64 — 128 GB (!)

Future 64-way CPU: 256 — 512 GB ()

g Vi Are we FLP or INT ? CERN
 Some people believe that our programs are — Load

entirely “logic intensive”

— This is a misunderstanding! \

 Our programs (naturally) operate on
floating-point entities:

- (X.¥,2), (Px: Pys P,), €tC. l
e A better description is: -
— We have floating-point work wrapped in “if/else” logic v
: 0
« My estimate L oad
— Atomic operations (fadd, fmul, etc.) represent 15-
20% of all instructions \
— But all floating-point work (all loads, atomic ops, math
functions, and stores) represents ~50% of the cycles FLPCMP

« So why does it scale with SPECint? l

Branch

\'»

“.:* Today's architectures are “fat” CERN

openlab

e Execution ports in the Core 2 processor:

5 September 2007

PortO | Port1l | Port2 | Port 3| Port4 | Port5
Integer |_4 tore Store
Address Data
|
FP
Load
/xﬁ FP FSS Move
Multipl & Logic
: ply Fp :
SSE FP Add
Shuffle
Multiply | | —
| Alu = Arithmetic, Logical Unit
FSS Move FSS Move FSS = FP/SIMD/SSE?2
& Logic & Logic QW = Quadword (64-bits)
1 1
QW Shufflel QW Shuffle

CHEP Plena

Issue ports in the Core 2 micro-architecture
(from Intel Manual No. 248966-014)

HEP programs are “lean”

High level C++ code =2

Assembler instructions =

CERN

openlab

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%orsi), ZoxmmO
subsd 48(%ordi), 2oxmmO // load & subtract

andpd _ 2ilOfloatpacket.1(%orip), Yoxmm0O // and with a mask
comisd 24(%ordi), YoxmmO // load and compare

Same
instructions
laid out
according to
latencies on
the Core 2
processor =2

NB: Out-of-
order
scheduling
not taken

into account.

5 September 2007

jbe ..B5.3 # Prob 43% // jump if FALSE
Cycle Port O Port 1 Port 2 Port 3 Port 4 Port 5
1
2
3
4
5
: | et [oedioarpecie |
-
: | o |
g

\

“ 1 ILP in HEP 20

 ILP (Instruction Level Parallelism)

— Our LHC programs typically issue (on average)
e only 1 instruction per cycle

— This is very low!
e Core 2 architecture can handle 4 instructions
e Each SSE instruction can operate on 128 bits (2 doubles)

— We are typically only extracting 1/8 of maximum

We are not getting out of first gear!!

“ 2 FLP in HEP cEnn

 Floating-point performance
— Intel Core 2 can do 4 FLOPs per cycles

— We just said that we execute ~1 instruction per
cycle
« And that 20% are floating-point operations

— We probably average 0.2 FLOPs per cycle

5% of peak: We are crawling along in first gear!!

\

“;= What is coming? CERN

openlab

-;‘

e Industry will bombard us with new
designs based on multi-billion
transistor budgets

— Hundreds of cores;
e Somebody even mentioned “thousands” recently !

— Multiple threads per core

— Unbelievable floating-point performance
e The race is on for Tera-FLOP chips
» Aggressive graphics designs from existing vendors
and new contenders
— Because of thermal issues: Many are back to
In-order designs
e For instance: Itanium, Sun Niagara, Intel Power6
e Others may follow

Of course, we will also continue to see the traditional x86-64
processors evolve (as expected).

v.i' e B CERN

‘e openlab

Some suggestions

eeeeeeeeeeeeeeeeeeeeeeeeeeee

“:* Why worry? CERN

o

e Clearly, the emphasis now is to get LHC
started and there is plenty of compute power
across the Grid.

« The suggestions are only relevant if we want
to extract (much) more compute-power out of
new chip generations

— Try to increase the ILP (especially the floating-point
part)

— Investigate “intelligent” multithreading

— Reduce our overall memory footprint

\ »

“:= 1) Increased ILP CERN

™ openlab

« Aim at creating richer “sections”, with
especially the floating-point contents
exposed

e Assist our C++ compilers in making
these sections effective**

— Optimization in all important areas
* Inlining of “tiny” methods
» Disambiguation of data pointers/references
* Minimization of if and switch statements
» Etc.

— Optimization of mathematical functions
* Log, exp, sine, cosine, atan2, etc

** Session 259 on CM S SW performance analysis tomorrow at 14:40
** Session 316 on performance monitoring tools tomorrow at 17:10

Ny egm
-"‘

2) Multithreading

 Explore new paradigms, for example:

Event Event- Event-
specific | | specific | | specific
data data data

Event-
specific
data

CERN

openlab

\

7= 3) Simplify/restructure code CERN

" e openlab
« Today, our frameworks are very m R
complicated and heavy
— |n one case, we observed 400+ shared libraries
/] @)
. &=
BOOT T

 Make a move alaBOOT?

— Test coverage of various applications has shown that
frequently the 80/20 rule applies:

» 20% of the code is enough to cover 80% of the (even
complex) use cases

« Having a more modular approach would be
very beneficial
— For instance,

* Quicker porting to assess new hardware
* Quicker adoption of new paradigms

“'sm CERN

‘e openlab

CONCLUSIONS

5 September 2007 CHEP Plenary - SJ 22

\'»

Conclusions CERN

‘o openlab

Moore’s law has been extremely beneficial to HEP

— Especially frequency scaling (whilst it lasted), out-of-order execution
(latency hiding), and multi-core

« Thanks to x86 technology, we have enjoyed
performance increases by several orders of magnitude
— Ever since CHEP-95
— Both absolute performance and performance per CHF

e If we need this to continue during an LHC era, which will
be populated by billion-transistor processors
— We should increase the “agility” of our software structures

 Your take-away:

— If we want fewer parallel jobs, fewer “heat-generating” servers for
solving a given HEP problem, there are still plenty of under-utilized
resources inside each CPU!

“'sm CERN

‘e openlab

Backup

5 September 2007 CHEP Plenary - SJ 24

CPU performance vector CERN

openlab

e Defined in 3 dimensions inside a processor:

Density of work (cycles)

Instructions (per cycle)

Calculation width (per inst)

5 September 2007 CHEP Plenary - SJ 25

5 September 2007

CHEP Plenary - SJ

N, "

Jem E mpl mpl CERN
Yok ven sSi er example CERN
High level C++ code > for (i=0; i<N; i++) sum += vector[i];

L5:

addsd (%ordi,%rax,8), oxmmO
Assembler instructions - addq $1, %rax

cmpq %rsi, Yorax

jne L5
Same
instructions
laid out Cycle Port 0 Port 1 Port 2 Port 3 Port 4 Port 5
the latency . (bubble)
of the addsd
instruction. S (bubble) _
NB: the load
vector
instructions Incompressible part
are done
0OO00.

26

v:= Even simpler example (2)

 When running simple test with vector[100]
— Remember that floating-point calculations are done on the SSE units

* Which can issue two FLP operations in parallel (in a single cycle)

CERN

openlab

Compiler

Cycles per
addition

gcc 3.4/4.2 (02)

gcc 3.4/4.2 (O2, unrolled by hand)

iIcc 10.0 (O2, automatic vectorisation)

Theoretical minimum

This simple example illustrates well what we see in many HEP benchmarks:
Only 10 — 20% of the resources are productive (unless we act)!

