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The ILC
• An electron-positron linear collider 

for exploration of HEP at the 
t lterascale
– Higgs, SUSY

Dark matter– Dark matter
– Extra dimensions

• RequirementsRequirements
– Energy reach

• From the Z (92 GeV) to 0.5 TeV
• Future expansion to 1 TeV or more

– Integrated Luminosity
• 500 fb-1 in ~4 years of running500 fb in 4 years of running

– Peak luminosity of 2 x 1034 cm-2 sec-1

– 75-85% availability
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The ILC (2)
• ILC challenges

– Accelerating Gradient
• Maximize gradient in 1 3 GHz

Parameter ILC SLC

CM Energy 500 GeV 92 GeV
Maximize gradient in 1.3 GHz, 
SC cavities

– Luminosity
• Need to maintain extremely 

small emittances

Luminosity 2 x 1034  

cm-2sec-1
2 x 1030  

cm-2sec-1

small emittances
– Single-bunch effects
– Multi-bunch effects

– Availability

Gradient 31.5 MV/m 17 MV/m

γεx
* 10 μm 40 μmy

• Need to meet typical HEP 
accelerator availability with

– 10 x as many potential 
failure points

γεy
* 40 nm 4,000 nm

Nb h 2625 3failure points
– Extremely complex 

facility
• Advanced computation has a 

role in all of these areas

Nbunch 2625 3

tbunch 369 nsec 60 nsec

role in all of these areas
– Various definitions of 

“advanced”
Ncavity ~16,000 ~1,000

Nmagnet ~13,000 ~3000?
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Accelerating Gradient
• Baseline design calls for

– 10 MW modulators and 
klystrons…

– …feeding RF power 
through transport 
system…

– …to the RF couplers…
– …for 26 RF cavitieso 6 ca t es

• Advanced computing 
used in designing every 
stage of this processstage of this process
– CAD
– RF component design

Bellows

• EM field solvers
– Multipactoring 

simulations
P i iP i i G S d iG S d i R dR d
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Accelerating Gradient (2)

• Limits to TTC cavity gradient
– ~43 MV/m from critical field (FUNDAMENTAL)

• Raising gradient limit → reducing surface fields
• HP EM field solvers (plus human imagination) 

employed
• Real cavities based on these designs work!
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Luminosity Issues
• Need to achieve small emittances in damping rings

– Manage “conventional” and “novel” collective effects
“C i l ” li d i i d• “Conventional:” alignment, dynamic aperture, impedance, 
space charge

• “Novel:”  ion and electron cloud instabilities

• Preserve small emittances in beamlines from DR to 
IP
– Dilutions from RF cavitiesDilutions from RF cavities

• Wakefields (single- and multi-bunch)
• RF kicks

Dil ti f th t– Dilutions from other components
• Dispersion, coupling

– Static and dynamic effects
• Collimator wakefields

– Beam-beam effects
• Especially for beams with subtle shape distortions
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Dilutions from Wakefields
• 1.3 GHz cavity wakes are weak compared to 

higher frequencies
• In SC cavities wakes tend to stick around 

~forever
• In SC cavities trapped modes are possible
• ILC relies on damping and detuning to achieve 

desired multi-bunch emittance preservation
• Rely heavily on 3-D modeling to understandRely heavily on 3 D modeling to understand 

cavity HOMs
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Cavity HOMs
• Comparison of measured 

HOMs and ideal modeled 
HOMs reveals

TTF module 5: 1st-2nd dipole band
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– Real HOMs tend to be at 
lower frequencies

– Polarization Δf larger than 
expected
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– Large spread in Q values
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• Extensive Omega3P 
modeling to study this
– Frequency shift and Δf-

pol from particular cavity
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TDR cavity: 1st/2nd dipole band modes
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• Mainly caused by welding 
on stiffening rings and then 
retuning
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retuning
– Q shift from variable 

pickup gap in HOM 
coupler
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CHEP 2007 Global Design Effort 8

1.E+03
1.6E+09 1.7E+09 1.8E+09 1.9E+09



Cavity HOMs (2)
• Ideal WFs:  direction of 

kick == direction of offset
• Real WFs:  eigenmodes 

can have orientation
– Diagonal deformations
– Asymmetry of 

fundamental and HOMfundamental and HOM 
couplers

• Pretty sensitivee y se s e
– 1 cell x 200 μm 

deformation @ 45 degrees 
= factor of 5 change in= factor of 5 change in 
“mode rotation wake”
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Single-Bunch Effects

• Asymmetry of couplers y y p
leads to asymmetric 
cavity fields
– SRWF – head-tail 

proportional to bunch 
chargeg

– RF kick – head-tail kick 
~independent of bunch 
chargecharge

• Big effect!Big effect!
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Beam Optical Effects
• Effects of misalignments / errors well understood

– Unlike cavities, where we’re still asking, “What happens 
h th b th h ff t ”when the beam passes through off-center”

• Different computational issues
Simulating wide variety of beam tuning and diagnostic– Simulating wide variety of beam tuning and diagnostic 
procedures…

– … with inputs that are as realistic as possible…
– …and evolution in time 

• Time scales of nanoseconds to years

E h i i fl ibilit d hi h th h t f• Emphasis is on flexibility and high throughput of 
relatively simple beam dynamics computations
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Beam Optics (2)
ILC beam optics work has moved away from closed form programs• ILC beam optics work has moved away from closed-form programs…

– LIAR, DIMAD, etc.
• …towards beam dynamics library packages

– Write your own program to take advantage of well-understoodWrite your own program to take advantage of well understood 
libraries

– Much more flexibility
– Somewhat more work for the users

S l k i t d• Several packages in use today
– BMAD (F90)
– PLACET (?/Tcl-Tk/Octave)
– Merlin (C++)Merlin (C )
– Lucretia (Matlab/C)

• Different meaning of “advanced computing”
– Emphasis not on consumption of massive # of FLOPs

Th h lik d h !• Though we like to do that, too!
– Emphasis on flexibility of the code

• To model the accelerator as realistically as possible!
– To the extent possible, integrating a lot of heretofore discrete simulation 

areas
» IE, not too fun to use one code to simulate linac, one for BDS, one for 

IR, one for beam-beam effect, one for dumpline
• Countervailing pressure:  make the models as simple, general, and 

understandable as possible
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Optics Tuning -- Examples
• ILC Turnaround and 

Spin Rotator
– Strong coupling and 

dispersion terms from 
misalignments, rolls, g
strength errors

– A number of correction 
strategies usedg

• Orbit tuning
• Global dispersion 

control 
• Global coupling control

• Simulation performed 
using BMAD libraryusing BMAD library
– Average over 100 

seeds
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Optics Tuning – Examples (2)
• BDS Tuning

– In addition to usual 
dispersion, copuling
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Accelerator Availability
• ILC goal of 75% availability 

for lumi production
– Comparable to B-factories

            Cryo
8%

          Vacuum
16%

RF power sources
12%

Comparable to B factories 
but with much larger 
numbr of failure points

• ILC needs to do better          Magnets
5%

PS + controllers
17%

• Need to understand what 
that means
– Which availabilities need 

to be improved?

        AC power
7%

        controls
    RF structure

7%

    Water system
11%

to be improved?
– Where can we tolerate 

single points of failure?
– What facility layout

17%      Diagnostic
0%

Device

Improvement factor 

A that gives 17% 
downtime for 2 

tunnel undulator e+ 
source

Downtime (%) due 
to these devices for 
2 tunnel undulator 

e+ source with 
strong keep alive

Nominal MTBF 
(hours)

Nominal 
MTTR 

(hours)What facility layout 
choices are good/bad?

• AvailSim, a flexible Matlab 
simulation package

g p_ ( ) ( )
magnets - water cooled 20 0.4 1,000,000 8
power supply controllers 10 0.6 100,000 1
flow switches 10 0.5 250,000 1
water instrumention near pump 10 0.2 30,000 2
power supplies 5 0.2 200,000 2
kicker pulser 5 0.3 100,000 2
coupler interlock sensors 5 0.2 1,000,000 1
collimators and beam stoppers 5 0.3 100,000 8
all electronics modules 3 1.0 100,000 1

– Time-domain simulation
– Tunable assumptions 

about layout, component 
failures etc

all electronics modules 3 1.0 100,000 1
AC breakers < 500 kW 0.8 360,000 2
vacuum valve controllers 1.1 190,000 2
regional MPS system 1.1 5,000 1
power supply - corrector 0.9 400,000 1
vacuum valves 0.8 1,000,000 4
water pumps 0.4 120,000 4
modulator 0.4 50,000 4
klystron - linac 0.8 40,000 8
coupler interlock electronics 0.4 1,000,000 1
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Limitations and Future Developments

• EM Modeling
Emphasis has been on single components or– Emphasis has been on single components or 
small clusters of components

– Would like to expand our field of viewWould like to expand our field of view
• Consider modes of a 26-cavity ILC RF unit as an 

integrated object
• Other, similar expansions – DR simulations with 

impedance, ions, ecloud (multi-physics)

– SciDAC COMPASS Project
• “Community Petascale Project for Accelerator ScienceCommunity Petascale Project for Accelerator Science 

and Simulation”
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Limitations / Future Developments
• Beam Optics modeling

– Becoming compute-bound over the last few years
• 2003 ILC Technical Review Committee report – spent 6 CPU 

months producing 1 plot!
• Complexity of the physics – magnetostatic optics, wakefields,Complexity of the physics magnetostatic optics, wakefields, 

beam-beam interaction
• Time scales – sub-microseconds to weeks

Moving to take advantage of high powered computing– Moving to take advantage of high-powered computing
• Multi-threaded, massively parallel, buzzword-compliant

– Important to include all the phenomena we want in a 
sufficiently transparent and flexible way

• Ground motion is a good example!
• IR solenoids which wrap around beamline components is• IR solenoids which wrap around beamline components is 

another
• And don’t get me started about modeling the undulator for 

positron production
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Availability Simulations
• Not at all compute-bound
• Need to improve interfacing between acceleratorNeed to improve interfacing between accelerator 

design and AvailSim
– Right now user hand-codes magnet counts, power 

supply stringing, etc.
– Can we get that from the lattice file instead?

• May need to expand definition of lattice file• May need to expand definition of lattice file
– Which we may want to do anyway…

• Some amount of concern about the input p
assumptions 
– IE, worry about “GIGO” effect
– Probably done the best we can

• Gathered information about failure rates, recovery times from 
most HEP labs on Earth
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