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The ILC

* An electron-positron linear collider
for exploration of HEP at the

terascale

 Requirements

« Fromthe Z (92 GeV)to 0.5 TeV
* Future expansionto 1 TeV or more

« 500 fb"! in ~4 years of running
— Peak luminosity of 2 x 1034 cm2 sec™’
— 75-85% availability
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,",',f The ILC (2)

P t ILC SLC
« |LC challenges arameter

2 GeV
. Maximize gradient in 1.3 GHz, CMEnergy | 500 GeV. | 92 Ge

SC cavities
Luminosity |2 x 1034 2 x 1030

e 2 -1 2 -1
* Need to maintain extremely cmsec cmsec

small emittances Gradient 31.5 MV/m | 17 MV/m
— Single-bunch effects

— Multi-bunch effects

Ve, 10 ym 40 pm
* Need to meet typical HEP S
accelerator availability with Y&y 40 nm 4,000 nm
— 10 x as many potential
failure points Npunch 2625 3
— Extremely complex
facility
: to, 369 nsec 60 nsec
» Advanced computation has a punen
role in all of these areas Newr, ~16.000 ~1.000
N ~13,000 ~30007?

magnet
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{0 Accelerating Gradient

- Baseline design calls for s - '--- A\ A )
— 10 MW modulators and & 7m

RRRRR

klystrons... e T ..o |
— ...feeding RF power —_— _ cueson siomaes

through transport e | ] e

system... N
— ...to the RF couplers... 12KV MARX CELL, FRONT VIEW

— ...for 26 RF cavities

« Advanced computing
used in designing every

— CAD
— RF component desig
« EM field solvers

— Multipactoring
simulations

CHEP 2007 Global Design Effort 4



mll

Qo

IO[O

10°

IO”

IO[O

,',IE Accelerating Gradient (2)
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Eace,max = 51.4MVim
Qo =0.777E10

iy L
1 ] « Raising gradient limit — reducing surface fields

- ;‘5 « HP EM field solvers (plus human imagination)

Eace |]\']Wm|

T employed
—4& om0 °* Real cavities based on these designs work!
Re-entrant Low-Loss

CHEP 2007 Global Design Effort 5



,',IE Luminosity Issues

* Need to achieve small emittances in damping rings

» “Conventional:” alignment, dynamic aperture, impedance,
space charge

* “Novel:” ion and electron cloud instabilities

* Preserve small emittances in beamlines from DR to
P

— Dilutions from RF cavities

» Wakefields (single- and multi-bunch)
* RF kicks
— Dilutions from other components
« Dispersion, coupling
— Static and dynamic effects
» Collimator wakefields

» Especially for beams with subtle shape distortions

CHEP 2007 Global Design Effort



,',IE Dilutions from Wakefields
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« 1.3 GHz cavity wakes are weak compared to 4.0 - - - - -
higher frequencies )
« In SC cavities wakes tend to stick around e
~forever e .
* In SC cavities trapped modes are possible 35 | -
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,',IE Cavity HOMs

HOMs and ideal modeled 1-E+07 77 4stband 6th pair " 2ndband 6th pair |
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ile Cavity HOMs (2)

Ideal WFs: direction of
kick == direction of offset

Real WFs: eigenmodes

can have orientation

Pretty sensitive

CHEP 2007
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,',IE Single-Bunch Effects

« Asymmetry of couplers
leads to asymmetric
cavity fields

— SRWEF - head-tail
proportional to bunch

0.12
charge
— RF kick — head-tail kick 0.1
~independent of bunch .
charge L
* Big effect! 0.04
0.02

20 10 0 10 20

x[mm]

CHEP 2007 Global Design Effort 10



1s -
: Beam Optical Effects
"o
« Effects of misalignments / errors well understood
— Unlike cavities, where we’re still asking, “What happens
when the beam passes through off-center”
« Different computational issues

— Simulating wide variety of beam tuning and diagnostic
procedures...

— ... with inputs that are as realistic as possible...

— ...and evolution in time
» Time scales of nanoseconds to years

« Emphasis is on flexibility and high throughput of
relatively simple beam dynamics computations

CHEP 2007 Global Design Effort 11



,',IEA Beam Optics (2)

» |LC beam optics work has moved away from closed-form programs...

e ...towards beam dynamics library packages

« Several packages in use today

« Different meaning of “advanced computing”
» Though we like to do that, too!

+ To model the accelerator as realistically as possible!

— To the extent possible, integrating a lot of heretofore discrete simulation
areas

» |E, not too fun to use one code to simulate linac, one for BDS, one for
IR, one for beam-beam effect, one for dumpline

» Countervailing pressure: make the models as simple, general, and
understandable as possible

CHEP 2007 Global Design Effort 12
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* |LC Turnaround and
Spin Rotator

* Orbit tuning

» Global dispersion
control

» Global coupling control

« Simulation performed
using BMAD library

CHEP 2007
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,',IE Optics Tuning — Examples (2)

BDS Tuning | | ; TTTEEEEEEE
8 100 - HHHAHHH TR f
£ 7 ‘
2 80 ,,,,,,,, = | I I O O ' ' N A O N N N A N N A R -

 Waist (z position of focus) g e -

« Sextupoles 5 4 L v
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: = 20 R e L +
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,'.,E Accelerator Availability

Cryo

RF power sources 8%

ILC goal of 75% availability
for lumi production

ILC needs to do better
Need to understand what

7%

that means war st

RF structure
% controls

0,
Diagnostic_ | 17%

0%

Improvement factor| .. (%) due

A\ that gives 17% to these devices for

downtime for 2 2 tunnel undulator Nominal

tunnel undulator e+ e+ source with Nominal MTBF MTTR

Device source strong keep_alive (hours) (hours)

magnets - water cooled 20 0.4 1,000,000 8

power supply controllers 10 0.6 100,000 1

flow switches 10 0.5 250,000 1

. . . water instrumention near pump 10 0.2 30,000 2
AvailSim, a flexible Matlab  peversueeies : :
) kicker pulser 5 0.3 100,000 2

H I t' k coupler interlock sensors 5 0.2 1,000,000 1
SI m u a Ion paC age collimators and beam stoppers 5 0.3 100,000 8
all electronics modules 3 1.0 100,000 1

AC breakers < 500 kW 0.8 360,000 2

vacuum valve controllers 1.1 190,000 2

regional MPS system 1.1 5,000 1

power supply - corrector 0.9 400,000 1

vacuum valves 0.8 1,000,000 4

water pumps 0.4 120,000 4

modulator 0.4 50,000 4

klystron - linac 0.8 40,000 8

coupler interlock electronics 0.4 1,000,000 1

vacuum pumps 0.9 10,000,000 4

controls backbone 0.8 300,000 1
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,',IE Limitations and Future Developments

 EM Modeling

« Consider modes of a 26-cavity ILC RF unit as an
iIntegrated object

» Other, similar expansions — DR simulations with
impedance, ions, ecloud (multi-physics)

« “Community Petascale Project for Accelerator Science
and Simulation”

CHEP 2007 Global Design Effort 16
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Limitations / Future Developments

« Beam Optics modeling

CHEP 2007

2003 ILC Technical Review Committee report — spent 6 CPU
months producing 1 plot!

Complexity of the physics — magnetostatic optics, wakefields,
beam-beam interaction

Time scales — sub-microseconds to weeks

Multi-threaded, massively parallel, buzzword-compliant

Ground motion is a good example!

IR solenoids which wrap around beamline components is
another

And don’t get me started about modeling the undulator for
positron production...

Global Design Effort
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,",'E Availability Simulations
« Not at all compute-bound

* Need to improve interfacing between accelerator
design and AvailSim

» May need to expand definition of lattice file
— Which we may want to do anyway...

« Some amount of concern about the input
assumptions

» Gathered information about failure rates, recovery times from
most HEP labs on Earth
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