

Role of Advanced Computation in the Design of the International Linear Collider (ILC)

Peter Tenenbaum SLAC

CHEP 2007

Global Design Effort

1

The ILC

- An electron-positron linear collider for exploration of HEP at the *terascale*
 - Higgs, SUSY
 - Dark matter
 - Extra dimensions
- Requirements
 - Energy reach
 - From the Z (92 GeV) to 0.5 TeV
 - Future expansion to 1 TeV or more
 - Integrated Luminosity
 - 500 fb⁻¹ in ~4 years of running
 - Peak luminosity of 2 x 10³⁴ cm⁻² sec⁻¹
 - 75-85% availability

The ILC (2)

- ILC challenges
 - Accelerating Gradient
 - Maximize gradient in 1.3 GHz, SC cavities
 - Luminosity
 - Need to maintain extremely small emittances
 - Single-bunch effects
 - Multi-bunch effects
 - Availability
 - Need to meet typical HEP accelerator availability with
 - 10 x as many potential failure points
 - Extremely complex facility
- Advanced computation has a role in *all* of these areas
 - Various definitions of "advanced"

Parameter	ILC	SLC	
CM Energy	500 GeV	92 GeV	
Luminosity	2 x 10 ³⁴ cm ⁻² sec ⁻¹	2 x 10 ³⁰ cm ⁻² sec ⁻¹	
Gradient	31.5 MV/m	17 MV/m	
γε _x *	10 µm	40 µm	
γε _y *	40 nm	4,000 nm	
N _{bunch}	2625	3	
t _{bunch}	369 nsec	60 nsec	
N _{cavity}	~16,000	~1,000	
N _{magnet}	~13,000	~3000?	

• Baseline design calls for

ilr

ΪĹ

- 10 MW modulators and klystrons...
- ...feeding RF power through transport system...
- ...to the RF couplers...
- ... for 26 RF cavities
- Advanced computing used in designing every stage of this process
 - CAD
 - RF component design
 - EM field solvers
 - Multipactoring simulations

Primaries - Green, Secondaries - Red

Accelerating Gradient (2)

- Limits to TTC cavity gradient
 - ~43 MV/m from critical field (FUNDAMENTAL)
- Raising gradient limit \rightarrow reducing surface fields
- HP EM field solvers (plus human imagination) employed
- Real cavities based on these designs work!
 Path to 1 TeV upgrade?

CHEP 2007

İİĹ

- Need to achieve small emittances in damping rings
 - Manage "conventional" and "novel" collective effects
 - "Conventional:" alignment, dynamic aperture, impedance, space charge
 - "Novel:" ion and electron cloud instabilities
- Preserve small emittances in beamlines from DR to IP
 - Dilutions from RF cavities
 - Wakefields (single- and multi-bunch)
 - RF kicks

Dilutions from other components

- Dispersion, coupling
 - Static and dynamic effects
- Collimator wakefields

– Beam-beam effects

• Especially for beams with subtle shape distortions

Dilutions from Wakefields

CHEP 2007

İİĹ

Cavity HOMs

- Comparison of measured HOMs and ideal modeled HOMs reveals
 - Real HOMs tend to be at lower frequencies
 - Polarization ∆f larger than expected
 - Large spread in Q values
 - Q > 10⁶ for some 2nd band modes!
- Extensive Omega3P modeling to study this
 - Frequency shift and Δfpol from particular cavity deformations
 - Mainly caused by welding on stiffening rings and then retuning
 - Q shift from variable pickup gap in HOM coupler

TTF module 5: 1st-2nd dipole band 1.E+07 1st band 6th pair 2nd band 6th pair ð 0 0 1.E+06 8 1.E+05 00000 1.E+04 6 F (MHz) 1.E+03 1600 1650 1700 1750 1800 1850 1900

Cavity HOMs (2)

- Ideal WFs: direction of kick == direction of offset
- Real WFs: eigenmodes can have orientation
 - Diagonal deformations
 - Asymmetry of fundamental and HOM couplers
- Pretty sensitive
 - 1 cell x 200 µm deformation @ 45 degrees
 = factor of 5 change in "mode rotation wake"

Single-Bunch Effects

- Asymmetry of couplers leads to asymmetric cavity fields
 - SRWF head-tail proportional to bunch charge
 - RF kick head-tail kick
 ~independent of bunch
 charge
- Big effect!

- Effects of misalignments / errors well understood
 - Unlike cavities, where we're still asking, "What happens when the beam passes through off-center"
- Different computational issues
 - Simulating wide variety of beam tuning and diagnostic procedures...
 - ... with inputs that are as realistic as possible...
 - …and evolution in time
 - Time scales of nanoseconds to years
- Emphasis is on *flexibility* and high throughput of relatively simple beam dynamics computations

Beam Optics (2)

- ILC beam optics work has moved away from closed-form programs...
 - LIAR, DIMAD, etc.
- …towards beam dynamics library packages
 - Write your own program to take advantage of well-understood libraries
 - Much more flexibility
 - Somewhat more work for the users
- Several packages in use today
 - BMAD (F90)
 - PLACET (?/Tcl-Tk/Octave)
 - Merlin (C++)
 - Lucretia (Matlab/C)
- Different meaning of "advanced computing"
 - Emphasis not on consumption of massive # of FLOPs
 - Though we like to do that, too!
 - Emphasis on flexibility of the code
 - To model the accelerator as *realistically* as possible!
 - To the extent possible, integrating a lot of heretofore discrete simulation areas
 - » IE, not too fun to use one code to simulate linac, one for BDS, one for IR, one for beam-beam effect, one for dumpline
 - Countervailing pressure: make the models as simple, general, and understandable as possible

Optics Tuning -- Examples

- ILC Turnaround and Spin Rotator
 - Strong coupling and dispersion terms from misalignments, rolls, strength errors
 - A number of correction strategies used
 - Orbit tuning
 - Global dispersion control
 - Global coupling control
- Simulation performed using BMAD library
 - Average over 100 seeds

RTML: 1-1, BA, bumps, skew LM, BA, bumps, skew LM LOCALSKEW 20060824

Optics Tuning – Examples (2)

- BDS Tuning
 - In addition to usual dispersion, copuling errors
 - Waist (z position of focus)
 - Sextupoles
 - Chromaticity
 - Geometric sextupole
 - Octupoles!
- Extremely complex tuning algorithm
 - Initial orbit via BBA and magnet movers
 - Global correction via large number of knobs
- Simulated using Lucretia
 - 100 seeds

Accelerator Availability

- ILC goal of 75% availability for lumi production
 - Comparable to B-factories but with much larger numbr of failure points
- ILC needs to do better
- Need to understand what that means
 - Which availabilities need to be improved?
 - Where can we tolerate single points of failure?
 - What facility layout choices are good/bad?
- AvailSim, a flexible Matlab simulation package
 - Time-domain simulation
 - Tunable assumptions about layout, component failures, etc.

	Improvement factor A that gives 17% downtime for 2 tunnel undulator e+	Downtime (%) due to these devices for 2 tunnel undulator e+ source with	Nominal MTBF	Nominal MTTR
Device	source	strong keep_alive	(hours)	(hours)
magnets - water cooled	20	0.4	1,000,000	8
power supply controllers	10	0.6	100,000	1
flow switches	10	0.5	250,000	1
water instrumention near pump	10	0.2	30,000	2
power supplies	5	0.2	200,000	2
kicker pulser	5	0.3	100,000	2
coupler interlock sensors	5	0.2	1,000,000	1
collimators and beam stoppers	5	0.3	100,000	8
all electronics modules	3	1.0	100,000	1
AC breakers < 500 kW		0.8	360,000	2
vacuum valve controllers		1.1	190,000	2
regional MPS system		1.1	5,000	1
power supply - corrector		0.9	400,000	1
vacuum valves		0.8	1,000,000	4
water pumps		0.4	120,000	4
modulator		0.4	50,000	4
klystron - linac		0.8	40,000	8
coupler interlock electronics		0.4	1,000,000	1
vacuum pumps		0.9	10,000,000	4
controls backbone		0.8	300,000	1
100 million and a second of the				5/1/22 124

Limitations and Future Developments

- EM Modeling
 - Emphasis has been on single components or small clusters of components
 - Would like to expand our field of view
 - Consider modes of a 26-cavity ILC RF unit as an integrated object
 - Other, similar expansions DR simulations with impedance, ions, ecloud (multi-physics)

– SciDAC COMPASS Project

"Community Petascale Project for Accelerator Science and Simulation"

Limitations / Future Developments

- Beam Optics modeling
 - Becoming compute-bound over the last few years
 - 2003 ILC Technical Review Committee report spent 6 CPU months producing 1 plot!
 - Complexity of the physics magnetostatic optics, wakefields, beam-beam interaction
 - Time scales sub-microseconds to weeks
 - Moving to take advantage of high-powered computing
 - Multi-threaded, massively parallel, buzzword-compliant
 - Important to include all the phenomena we want in a sufficiently transparent and flexible way
 - Ground motion is a good example!
 - IR solenoids which wrap around beamline components is another
 - And don't get me started about modeling the undulator for positron production...

Availability Simulations

- Not at all compute-bound
- Need to improve interfacing between accelerator design and AvailSim
 - Right now user hand-codes magnet counts, power supply stringing, etc.
 - Can we get that from the lattice file instead?
 - May need to expand definition of lattice file
 - Which we may want to do anyway...
- Some amount of concern about the input assumptions
 - IE, worry about "GIGO" effect
 - Probably done the best we can
 - Gathered information about failure rates, recovery times from most HEP labs on Earth

Thanks to the worldwide ILC Accelerator Design Team

(Especially the ones whose talks and papers I raided for figures!)