Monitoring the EGEE/WLCG Grid Services

Alexandre Duarte™), Piotr Nyczyk™), Antonio Retico!), Domenico Vicinanza)!

3)

Firtname.Lastname @cern.ch

(1)CERN - European Organisation for Nuclear Research, Geneva - Switzerland
(2)Federal University of Campina Grande - Computer Science Dep., Campina Grande - Brazil
(3)University of Salerno - Dep. of Mathematics and Computer Science, Salerno - Italy

Abstract

Grids have the potential to revolutionise computing
by providing ubiquitous, on demand access to computa-
tional services and resources. They promise to allow for
on demand access and composition of computational ser-
vices provided by multiple independent sources. Grids can
also provide unprecedented levels of parallelism for high-
performance applications. On the other hand, grid charac-
teristics, such as high heterogeneity, complexity and distri-
bution create many new technical challenges.

Among these technical challenges, failure management
is a key area that demands much progress. A recent survey
revealed that fault diagnosis is still a major problem for grid
users. When a failure appears at the user screen, it becomes
very difficult for her to identify whether the problem is in
the used application, somewhere in the grid middleware, or
even lower in the fabric that comprises the grid.

In this paper we present a tool able to check if a given
grid service works as expected for a given set of users (Vir-
tual Organisation) on the different resources available on a
grid. Our solution deals with grid services as single com-
ponents that should produce an expected output to a pre-
defined input, what is quite similar to unit testing. The
tool, called Service Availability Monitoring or SAM, is be-
ing currently used by several different Virtual Organizations
to monitor more than 300 grid sites belonging to the largest
grids available today. We also discuss how this tool is be-
ing used by some of those VOs and how it is helping in the
operation of the EGEE/WLCG grid.

1 Introduction

Grids have the potential to revolutionise computing by
providing ubiquitous, on demand access to computational
services and resources. They promise to allow on demand

access and composition of computational resources pro-
vided by multiple independent sources. On the other hand,
grid characteristics, such as high heterogeneity, complex-
ity and distribution (traversing multiple administrative do-
mains) create many new technical challenges, which need
to be addressed.

Among these technical challenges, failure management
is a key area that demands much progress. Even fault diag-
nosis, a basic step in any failure management strategy, needs
to see great improvement if we are to realise the grid vision.
Today, when a grid user or administrator sees a failure in
their screen, they have a very hard time in pinpointing the
root cause of the failure. It may be the user’s own applica-
tion that has a bug, it may be that the user has requested a
certificate whose lifetime was too short, it may be a config-
uration problem in some site that was used by the applica-
tion for the first time or even that a disk on a machine next
door has crashed. It may be a very large number of things.
To further complicate things, error messages may be mis-
leading. A recent study shows that even specialised users,
such as system administrators, can spend as much as 25%
of their time following wrong paths suggested by unclear
error messages[2].

In this work we want to check if a given grid service
works as expected for a given user or set of users on the
different resources available on a grid. To achieve this ob-
jective we developed a framework that uses acceptance-like
tests to help diagnose failures on the grid. In this new frame-
work we deal with the grid services as single components
that should produce an expected output to a pre-defined in-
put. The framework is called Service Availability Monitor-
ing or SAM, and is being currently used to monitor some
of the largest (maybe the largest) production grids available
nowadays.

We start by presenting in Section 2 a brief introduction
on the gLite Grid Middleware, which is being used by the
grid monitored with SAM. In Section 3 we present our solu-
tion, with some historical background and architectural de-

scriptions. Further, in Section 4 we present a case study of
the use of our tool to monitor one of the largest (maybe the
largest one) grid in production today. Section 5 concludes
the paper with our final remarks.

2 The glite Middleware

The gLite middleware [11][3] was born from the collab-
orative efforts of more than 80 people in 12 different aca-
demic and industrial research centres as part of the EGEE
Project[10]. gLite provides a leading-edge framework for
building grid applications tapping into the power of dis-
tributed computing and storage resources across the Inter-
net. Its first version, gLite 1.0, was released on April 4th
2005. The latest version before converging toward a com-
mon architecture with the LCG[12] middleware was 1.5,
released in January 2006. In May 2006 gLite 3.0 was re-
leased, merging LCG2.7 and gLite 1.5. This release con-
tained all the services from LCG 2.7 with the addition of
several components from gLitel.5. Starting from this gLite
3.0, there were no longer separate releases of the two mid-
dleware stacks it is being now used by EGEE and by WLCG
(the worldwide LCG extension).

2.1 gLite architecture

The gL.ite services can be thematically be grouped into
5 service groups: Access Services, Security Services, In-
formation and Monitoring Services, Data Services and Job
Management Services. Among the glite services one can
distinguish user, site, virtual organisation (VO), and global
(i.e. multi-VO) scope where combinations are possible (au-
thorization policies may for instance be enforced by the VO
and the site). Although most services are managed by a
VO, there is no requirement of having independent service
instances per VO; for performance and scalability reasons
service instances will in most cases serve multiple VOs.

2.2 Executive summary of the services

Some gLite services coming from the 1.5 release were
included in the gLite 3. The LCG workload management
components are also available in gLite 3 and all the services
are now accessible from both toolsets in order to ensure a
smooth upgrade from the LCG 2.7 and gLite 1.5 to gLite
3.0.

Access and Security Services: The prime aim of the Ac-
cess and Security Services is identifying users, allowing or
denying access to services, on the basis of some agreed
policies. It provides a credential having a universal value
that works for many purposes across several infrastructures,

communities, VOs and projects. To carry out this task, gLite
uses the Public Key Infrastructure (PKI) X.509 technology
using Certification Authorities as trusted third parties.

Information Service (IS) and Monitoring: The IS pro-
vides information about the gLite resources and their status.
The published information is used to locate resources and
for monitoring and accounting purposes. Much of the data
published to the IS conforms to a schema that defines a com-
mon conceptual data model to be used for resource moni-
toring and discovery. All the LDAP URLs used to query
the information services running in each site are stored in a
database called GOCDB.

Job Management System, Resource Broker, Computing
Element and Worker Node: The Job Management Ser-
vices collects information about the resource usage done
by users or groups of users (VOs). The up-to-date infor-
mation about the Services/Resources is gathered via sen-
sors (Resource Metering, Metering Abstraction Layer, Us-
age Records). Records are collected by the Accounting Sys-
tem (Queries: Users, Groups, Resource).

Within the services provided by the Job Management
Service, the Computing Element (CE), represents some set
of computing resources localized at a site (i.e. a cluster, a
computing farm) that is responsible for job management:
(submission, control, etc.) A CE provides a generic in-
terface to the cluster, and the cluster itself, a collection of
Worker Nodes (WN), the nodes where the jobs are run.

One of the most relevant services among the ones pro-
vided by the Job Management Services is the Workload
Management System, a service running on a machine called
Resource Broker. The RB is responsible for the distribution
and management of jobs across sites. The purpose of the
WMS is to accept user jobs, to assign them to the most ap-
propriate CE, to record their status and retrieve their output.

Jobs to be submitted are described using the Job Descrip-
tion Language (JDL), which specifies, for example, which
executable to run and its parameters, files to be moved to
and from the worker node, input files needed, and any re-
quirements on the CE and the WN.

Storage Element: The SE is the gLite component which
takes care of the Data Services, providing a storage back-
end.

3 Service Availability Monitoring

subsectionHistory SAM is a monitoring system that was
developed based on more than two years of experience
with providing high level monitoring tools for EGEE/LCG

grid infrastructure. The concept of high level monitor-
ing emerged in EGEE/LCG as the solution to manage the
growing infrastructure that started with about 20 sites and
quickly grew to 60, then more then 100 and ultimately be-
yond 200 computational sites. Number of sites and diver-
sity of low level monitoring tools (a.k.a. fabric monitoring)
made it impossible for a single operational body to know
and understand the status of the whole grid and individual
sites.

TestZone Tests The first approach to tackle this problem
was a simple set of bash and perl scripts to perform a cen-
tralised testing of Computing Elements (CE) and the re-
sources hidden behind, namely Worker Nodes (WN). The
system contained the following components.

e set of bash scripts with WN tests based on site certifi-
cation script provided in LCG release notes:

— general environment tests:
mountpoints, installed software,

software paths,

— Replica Management tests,

e skeleton of the test job (JDL file and main script) that
can be submitted to a site and execute all the tests,

e set of bash scripts to submit test jobs to all sites, col-
lect outputs as text files, parse output files and generate
reports,

e perl CGI to process output files and generate HTML
reports of test results.

The system had the following features:

e list of sites to test taken from BDII configuration file
(a centrally managed file of officially certified sites),

e tests submitted as test jobs to all CEs in the grid from
a single central UI,

e test jobs executed on WNs of all sites,

e results of tests returned as output sandbox of the jobs
(HTML file with test log and “info” file with machine
readable results as key-value pairs),

o full history of test results stored on a central machine
(CERN AFS) as text files and available through web
interface.

e the set of tests was customisable, however list of tests
to be displayed on the web report was static (CGI con-
figuration file).

Site Functional Tests Site Functional Tests (SFT) was a
direct successor of TZTests. Name was change to better
describe the functionality of the system and to avoid refer-
ences to the concept of Test Zone, which was abandoned.
The list of significant changes included:

e tests submission and results collecting code was
rewritten from scratch,

e list of sites to test was being taken from GOCDB (us-
ing HTTP and regularly updated text file) and top-level
BDII,

e several new tests were added,

e concept of critical and non-critical tests was intro-
duced, only tests considered to be critical could change
the overall site status,

e programatical interface to site status information was
added (statustable.cgi).

SFT2 As a consequence of emerging Grid Operations a
number of new monitoring tools was developed and popu-
larised. One of the most important of them was GStat, a tool
to monitor and analyse grid information system, namely
BDII. To enable a common monitoring platform that would
allow sharing test results and monitoring information be-
tween SFT and GStat, a new version of SFT with major
architectural changes was introduced. SFT2 included the
following new features:

e auniversal relational data schema was designed to pro-
vide abstract representation of monitoring data, suit-
able for SFT, GStat and potentially other monitoring
systems,

e test job scripts which became difficult to managed
were converted into a single master script with individ-
ual tests as independent executables returning results
in a common format,

e a basic pre-execution checks were added to validate
test environment and minimise false alarms before
launching the tests against sites,

e test results were published directly from WN by the job
master script using per! publishing client, SOAP pro-
tocol over HTTP and publishing web service running
on SFT Server machine,

e test results were stored in the MySQL database and
published to R-GMA !

'In fact MySQL database was shared by SFT2 server and R-GMA
archivers, but the data was directly inserted into MySQL by the publishing
web service

e during the evolution of SFT additional “dimension”
was added to test results which was the executing VO,
and as a consequence the data schema was extended
accordingly.

Service Availability Monitoring After EGEE/LCG grid
infrastructure had grown in terms of number of sites but
also number of different service types, it become clear, that
the model imposed by SFT? is not giving enough informa-
tion about the status of all important site services such as
Storage Elements, LCG File Catalogues, etc. Because of
the data model inherited from R-GMA? the performance of
SFT started to slowly degrade and the database soon be-
came difficult to maintain. In addition there was intensive
ongoing development of third-party monitoring frameworks
for EGEE/LCG that provided complementary information
to SFT and/or covered services or areas not monitored di-
rectly by SFT. That is why a decision was made to extend
SFT to a new system called Service Availability Monitoring
(SAM) that would provide required features:

e optimised database schema for storing and processing
test results,

e concept of sensors as containers of tests targeted
against different types of grid services,

e concept of standalone sensors as third-party monitor-
ing frameworks or test suites that could publish test
results into SAM database in uniform format,

e integration with other monitoring and operational tools
like: FCR (critical tests), CIC Portal (alarm system),
GridView, etc.

e automatic service and site availability metrics calcula-
tion per VO based on critical tests selection,

3.1 Architecture

SAM is a system which although functionally replaces
and extends SFT, but was redesigned almost completely
from scratch based on the vast experience gathered during
work on SFT and SFT2. The architecture of the system
is shown in figure 1. The system which has a number of
specialised components was logically divided into three in-
dependent layers: input, data storage and processing and
output.

2SFT despite its name was only monitoring a single type of sites’ com-
ponents, namely Computing Elements

3R-GMA imposes semi-relational data model which lacks many fea-
tures typical for relational data model like: table normalisation, integrity
constraints, customisable indexing.

Input Storage and processing Output

Alarm systom | CiC.dashboard |
intrtace (XSQL) > operations,aerms) |

N sawerona | |
1Y (etaied rpory | |
] (Python) |
; H

aaaaaaaaaaa

module.
(PHP+3QL)

Figure 1. SAM Architecture

3.1.1 Inputlayer

The input layer mostly consists of components responsible
for exectuing regular tests against all grid services and de-
livering results. There are two possibilities: either tests are
executed and results published by the default component
which is SAM Submission Framework®, or the equivalent
functionality is provided by the standalone monitoring tool
that is publishing the results into SAM.

SAM Submission Framework is a software package
which provides a uniform platform for executing the tests
and publishing test results to the central database. It com-
municates with the system through web services and pro-
vides command line utilities to perform two simple opera-
tions on the underlying database:

query the database for information about grid infrastruc-
ture description (sites, nodes, services, VOs) using an
abstract high level query format,

publish the results to the database by using a simplified
transport data schema.

In addition the environment of SAM Submission Frame-
work provides standardised elements like: sensors’ direc-
tory structure and communication protocols, set of environ-
mental variables (status codes, directories), common filter
format for selecting nodes, test wrapper script with time-
out mechanism.

All the sensors in SAM are plug—in modules that com-
municate with the Framework using fixed protocol. In the
design of SAM Submission Framework we introduced two
levels of hierarchy: sensors as containers and tests as in-
dividual code units (executables) which usually produce a
single result record. The architecture of SAM Submission
Framework is shown in figure 2.

4also referred as SAM Client, internally called lcg-sam-client

Main script (same-exec)

2 1
¢ ¢ Sensor 1 N
Scheduler prepare
script
3
Publishing | - | | check
script script
X
Comments:

1. Executed only once before all tests

2. Schedule based on list of nodes retrieved from SAM DB

3. Parallel execution of check script for all nodes independently

4. Execution defined by internal sensor logic

5. Bulk publishing of all test results per tested node (recommended)

Figure 2. SAM Submission Framework

3.1.2 Storage and processing

The components of SAM which are responsible for col-
lecting monitoring data, storage and post-processing are in-
stalled on a central machine called SAM Server. The core of
the system is the relational database® which holds all the in-
formation like: Grid infrastructure description (sites, nodes,
services, VOs and relations between them), test results,
test criticality, availability metrics and application config-
uration. The components that interact directly with SAM
database and are installed on SAM Server are the follow-
ing:

Web services which are SOAP services providing methods
to query SAM database for infrastructure description
(Query web service) and to publish test definitions and
results to the database (Publishing web service),

BDII Synchronisation script to discover sites and nodes in
the grid information system,

GOC DB Replication script to replicate GOC Database®
into SAM,

Summarisation module set of scripts to generate service
and site status summaries and availability metrics,

Alarm system set of PL/SQL procedures, triggers and
XML data exports exposed on HTTP to automatically
generate alarms on failures of critical tests and give
programmatic interface to the alarms.’

SIn current implementation only Oracle DBMS is supported

SEGEE/LCG specific database

Tused in EGEE/LCG to interface with COD Dashboard which is the
main operational tool

3.1.3 Output

The presentation layer of SAM contains a number of com-
ponents that are accessing SAM database directly or indi-
rectly (through XML data exports) and are even parts of
external systems. The most important components are the
following:

SAM Portal a reporting tool written in Python that dis-
plays individual test results by VO, service type, and
region, as an HTML table with possibility of showing
history of test results and the detailed log from test ex-
ecution,

GridView visualisation portal which shows configurable
availability plots (intervals, VO-wise, site-wise, etc),

COD Dashboard an external portal for Grid operations in
EGEE/LCG which is a front end to the alarm system
and ticketing system.

3.2 Data schema

The data schema for SAM was design to give maximum
flexibility for integration various existing monitoring tools
in EGEE/WLCG run by different VOs. It is split into two
parts: infrastructure description (used by query web service
to get information about nodes to monitor) and test results.
For publishing test results SAM defines two levels of data
schema: transport schema and internal storage schema.

Transport data schema is meant to be used in commu-
nication between monitoring tools like: SAM Submission
Framework, sensors, standalone monitoring tools. As a
consequence it is designed to be a relational data model with
the tables in 1st Normal Form (1NF). It defines three tables
which are used for definitions and automatically discovery
of tests and for publishing test results.

The data transported using the transport data schema
is then received by the publishing web service and trans-
formed into internal storage schema which is mostly in 3rd
Normal Form and is used in underlying RDBMS. The de-
scription of internal storage schema and infrastructure de-
scription schema is outside the scope of this paper.

Below we present the definitions of the tables in trans-
port data schema.

TestDef Each test performed should be registered in the
test table. Here additional help information on the test and
the data produced can be looked up. New tuples should be
published in this table in case:

e anew test is introduced and its definition has to be pub-
lished, or

e an existing test was modified (for example dataThresh-
old was changed for performance test) and the defini-
tion needs to be updated

Consequently, tuples for TestDef table should be pub-
lished with rather low frequency but the full history will be
kept (for analysis of historical results). The attributes of
TestDef table are shown in table 1.

Field Description
testName short name of the test process
testTitle full title of the test
testAbbr user friendly name as column header
testHelp test description or URL to help page
dataType type of data produced by test
dataUnit unit of measure for the test
dataThreshold | threshold on value causing failure
Table 1. TestDef table
TestEnvVars The TestEnvVars table is where the moni-

toring frameworks (SAM, GStat,etc..) may store additional
information about the environment (RB, BDII, central SE,
etc.) of a single “test session”. A single test session usu-
ally corresponds to a single test cycle as a bunch of test jobs
executed against all sites in short time period. It should be
identified by unique “envName” and by inserting multiple
tuples with the same “envName” into this table, it is possi-
ble to specify various parameters of the environment. The
attributes the table are shown in table 2.

Field Description

envName | identifies a single “'test session”

name name of the parameter (RB, etc.)

value value of the parameter (RB hostname, etc.)

Table 2. TestEnvVars table

TestData The TestData table is where all the results pro-
duced by tests and sensors are stored in a uniform format.
The attributes the table are shown in table 3. The definition
of valid status values for test results is shown in table 4.

3.3 Availability metrics

Based on test results stored in the database SAM is cal-
culating a current status of service instances of all the types
and also an overall status of sites. In addition for all service
instances and sites the availability metric values are calcu-
lated. The calculation is performed by the summarisation

Field Description

voName VO that performed the test

testName identifies test used to obtain data

nodeName identify node tested to produce data

timestamp Measurement timestamp

envName Foreign key in TestEnvVars table

status status of the result (see table 4)

summaryData | short test result data representation

detailedData additional detailed information (log)
Table 3. TestData table

Code | Status | Description

0 na no status available

10 ok normal status

20 info useful information

30 note important information

40 warn | failure may happen soon

50 error | failure of local service only

60 crit fatal failure affecting other services

100 maint | subject is under maintenance

Table 4. Test results status codes

module, and a separate set of statuses and metric values are
generated for each VO independently.

A current status for each service instances is calculated
as a logical AND of all the test results for the node. This is
done for each VO independently by taking only those tests
which were selected by the VO as critical. As a result each
service instance is marked either as available or down for
each VO independently.

After calculating status of all service instances for all
VOs, SAM is calculating the overall site status for all sites
by taking into account all service instances in a given site.
A site is marked as currently available if at least one of the
service instances of each type is available, and is marked as
down otherwise. This is also done on per VO basis.

All the statuses are stored in the database as hourly snap-
shots of the current situation in the grid. Based on the snap-
shots the summarisation module calculates availability met-
ric value of each service instance and site for each VO. The
value is calculated as a fraction of time (percentage of snap-
shots) in selected integration interval, when service instance
or site was available. Currently the summarisation module
calculates and stores availability metric values for the fol-
lowing intervals: day, week, month.

4 Case Study: Monitoring a Global Grid

A number of grid infrastructures are currently featured
by SAM. As major examples we mention here those built
within the WLCG/EGEE[7], SEE-Grid [15], EELA[6],
Health-e-Child[5], EuMedGrid[9], EuChina Grid[8], Baltic
Grid[1] projects. In these contexts, which are in general
different for scale, scope and purpose of the infrastructure,
SAM platforms were deployed in slightly different configu-
rations, according mainly to the number of sites monitored
and to project’s hardware and software resources.

On account of the number of its sites and Virtual Orga-
nizations, of its geographical spread, and of the complex
structure of its operations, the WLCG/EGEE grid is by far
the largest grid infrastructure among those featured by SAM
services.

In the following sub-sections we will give a short
overview on the overall organization of the operations in
the WLCG/EGEE grid. Then we will explain in more de-
tail how the different players make use of SAM features in
order to perform their functions within their respective con-
texts. Finally we will provide a quantitative view of the im-
pact that the introduction of SAM/SFT gave to the overall
quality of the WLCG/EGEE grid services.

4.1 Grid operations in WLCG/EGEE

The WLCG/EGEE infrastructure is based on grid ser-
vices provided by more than 200 sites distributed all over
the world. The users of these services are organised in
more than one-hundred different Virtual Organizations. The
overall quality of service guaranteed to the VOs is defined
by MOUs (Memorandum of Understanding) stipulated be-
tween the individual VOs and the supporting sites. In order
to assure the overall quality of the service provided both
in terms of availability and performance, the WLCG/EGEE
infrastructure was organised into 10 federations or regions.
In order to coordinate the operations throughout the regions,
an operational process was defined based on two main play-
ers: a network of Regional Operational Centres and the Grid
Operators.

The Regional Operation Centre (ROC) holds the overall
responsibility for the services run within its region. This
means, in practical terms, to make sure that all the sites in
the region are operated in conformity to a set of agreed op-
eration procedures. From the EGEE project’s perspective,
the ROCs represent “the infrastructure”. From the site’s
perspective, the ROC is the project’s reference point where
to obtain information about project-wide policies and re-
quirements, technical advices, recommendations and gen-
eral support.

The Grid Operators (COD) are a distributed team in
charge of providing an active and continuous monitoring of

the availability and performance of the grid services. The
key function of the COD is to detect issues affecting the grid
services, to provide possibly a first analysis, to report exist-
ing problems to the relevant ROCs (generally via service
tickets) and, finally, to validate the solution. The COD team
also assures the service tickets assigned to the ROCs to be
followed-up correctly and in the due time. The interaction
between ROC and COD is instrumented by an agreed esca-
lation procedure, which defines exactly the expected times
for the resolution of classes of problems, as well as the mea-
sures to deal with unresponsive sites, these measures rang-
ing from the reminder e-mail to the suspension of the site.
The escalation procedure, as well as the Operation Manual,
are developed and maintained in collaboration by the ROCs
and the COD.

The overall activity of ROCs and CODs is supervised
and coordinated within the EGEE project by an Operations
Coordination Committee (OCC), which is in charge of mon-
itoring the WLCG/EGEE operations as a whole and report-
ing to the project management.

The ROC and SAM

In order to be integrated in the WLCG/EGEE grid, a site has
to demonstrate its technical suitability to run grid services at
a convenient level of quality and, more important, not to in-
troduce unexpected perturbations in the grid. Just for exam-
ple, it is technically possible to configure a grid site in such
way that, independently on the actual amount and quality of
its resources, it starts attracting user jobs in what is called
a “black-hole” effect. In order to prevent this one well as
other intentional or accidental security issues, each site that
wants to join the WLCG/EGEE grid has to undergo a pre-
liminary testing and validation of it services, generally indi-
cated as "’site certification”, to be done by the relevant ROC.
The ROC, which will be responsible for the site throughout
its future life, is given by the EGEE project the responsibil-
ity of defining and implementing a convenient certification
procedure for sites in the region.

On account of SAM (and its earliest version SFT) be-
ing among the first utilities available in the WLCG/EGEE
context able to test the overall functionality of a whole grid
site, almost all ROCs gave to SAM’s results a predominant
relevance in the definition of their certification procedures.
In the most common scenario, as one of the conditions for
a site to be certified, the ROC wants a site to successfully
pass the default SAM test across some days before allow-
ing it to receive production jobs. The main technical dif-
ficulty in using SAM for certification purposes is that the
production instance of SAM, by definition, does not au-
tomatically submits tests to uncertified sites. In the aim
of helping the ROCs in the implementation of SAM-based
certification tests a centralised utility was set-up to enable
on-demand submission of SAM tests to any registered sites
in WLCG/EGEE. This utility is known as theSAM Admin’s

page [16].

The COD and SAM

The function of the COD is currently covered by 10 spe-
cialised ROCs alternating in weekly shifts. Members of
the COD have got a number of tools available to support
their activity. Specifically, in order to monitor the grid ser-
vice availability, the main tool is the COD Dashboard, de-
veloped in the framework of the CIC portal. The COD
Dashboard raises alarms using at this purpose data provided
by SAM. The alarms are then followed-up by the CODs
via service tickets. The COD dashboard gives also access,
for further analysis, to site availability data and test results
made available from the SAM database.

4.2 Monitoring activity by Virtual Orga-
nizations

In addition to the “institutional” monitoring activity done
by the CODs, also some of the Virtual Organizations take
active part in grid service availability monitoring by pro-
viding, maintaining and running specialised tests for VO-
specific grid applications. Usually these tests are run, within
the SAM framework, across a subset of sites, namely the
ones supporting the VO. These tests are in general devel-
oped independently by working groups in the VOs, and
therefore they are not under the configuration control of the
standard SAM platform.

All the four LHC experiments are deploying or planning
to deploy a set of custom tests within the EGEE/WLCG
SAM production infrastructure. The general aim of these
test is to run sanity checks against both middleware and ap-
plication services. In particular, at the time when this paper
is being written, the VOs cms, alice and lhch , correspond-
ing to the homonymous LHC experiments, are already run-
ning their own SAM tests in production.

CMS from one side and Alice and LHCb from the other
used two different strategies in order to integrate their tests
in SAM. We can classify these two methods, respectively, as
a sort of “advanced usage of the Submission Framework”,
chosen by CMS, and an “hybrid submission methods” im-
plemented by ALICE and LHCb. we will now briefly go
some details concerning each of the mentioned VOs.

CMS is submitting custom tests to the CEs since the be-
ginning of 2007 [14]. SAM tests are used to validate fea-
tures concerning both the CMS applications (e.g., the exis-
tence of the CMS software area, the local configuration of
CMS sites, the CMS software version, the ability to stage
out files from WN to local SE, the discovery of local Squid
server, the ability to read calibration data via Squid server)
as well as the middleware (namely SRMv1 and v2 inter-
faces with respect to the translation LFN/SURL, data access
from UI to remote SE).

CMS integrated custom tests by simply using standard
features of the submission framework. (CITA) They oper-
ate a SAM client, installed at CERN, where custom tests
were plugged into the existing SAM CE sensor. The lifecy-
cle of CMS test in SAM is exactly the same as for standard
tests. On top of that, CMS is calculating independently the
perceived site availability according to user-oriented met-
rics. In particular they consider the ~Availability” of a given
site as the fraction of up-time/total-time (so not considering
downtimes) The downtime is considered, instead, in the cal-
culation of site Reliability, defined as (site up-time)/(total-
time - scheduled downtime)

Alice is mainly interested in using SAM to submit func-
tionality tests to VOBOXES 8. The tests results have then to
be displayed in MonALlIsa, the tool used by Alice to moni-
tor the complex of the VO applications [13].

Alice uses a different approach in order to submit cus-
tom VOBOX tests: basically tests are scheduled and sub-
mitted and results are retrieved by proprietary application
of Alice’s. Test definitions, conditions (environment) and
results are then inserted in SAM database using the SAM
transport schema. It is worth pointing out that, from that
moment on, test records pertaining from Alice submissions
are formally identical to records inserted by the standard
submission framework.

By accessing the records in the SAM database through
the Programmatic Interface an by making them available to
MonALlsa for displaying, Alice finalised the original test
requirement. The added value of using the SAM platform
is that, by doing so, Alice gets in addition all the standard
fetures provided by the SAM framework (e.g. visualiza-
tion and availability sums in GridView). Moreover test data
are permanently available in the database, to be easily inter-
faced with other application via the Programmatic Interface.

LHCb adopted a very similar approach to Alice’s, by us-
ing DIRAC to submit custom SAM tests [4]. Critical test
objects for LHCs are e.g., the length of LHCb queue on the
CE, the architecture and OS version, the whole MonteCarlo
chain as implemented by LHCb applications, installation of
LHCDb software and publication of tags. Then as far as the
grid services are concerned, LHCb runs also custom tests
against the SRM storage elements.

In the LHCb submission model, the whole SAM client is
shipped on the Worker Node at the site, runs the tests locally
and publishes the results in SAM DB using the standard
SAM protocols. This particular submission method allows

8The VOBOX is a component of the gLite distribution to be listed
among the “’site services”. It consists essentially of a box, equipped with a
full collection of grid clients (grid User Interface), providing in addition a
controlled and secured environment where application servers part of the
VO software are allowed to run.

LHCb to take advantage of both the SAM features (dis-
plays, programmatic interface, notification), together with
the ability of closely monitoring the evolutions of SAM jobs
by using the DIRAC built-in job-tracking and logging fea-
tures.

The integration cases described above are different as
conception and strategy, but however all successfully im-
plemented, which is a confirmation of the flexibility and ex-
tensibility of SAM’s open architecture.

A thing to be pointed out is that, all the intense devel-
opment activities started by the WLCG/EGEE VOs, aimed
to creation and integration of new VO-specific tests, did
not entail, so far, any modification’s in the SAM core”
database schema, originally designed with an eye to possi-
ble external contributions to the monitoring features offered
by SAM.

4.3 Measuring SAM effect

In terms of positive impact on the day-to-day grid op-
erations, in the relatively short history of grid monitoring,
and specifically dealing with the WLCG/EGEE context, we
must say that the most significant improvement in the over-
all availability and stability of the WLCG/EGEE grid was
undoubtedly reached before SAM went to operations, when
the monitoring activity was featured by SAM’s predecessor,
SFT (see 3).

SAM took over SFT in production one year ago in order
to better scale with the increasing number of monitored sites
and tests to be run. In order to prove that SAM is indeed
scaling quite well, we analysed the test results concerning
the last year of operation, starting from the date when SAM
went in production.

250

200

WV‘VM

100
I l '

0

B S S S S S S S S S S S)
K K K s K K &
G FFFFEFEFEFE @\W& & NN\A@ & @N& @”9@ &

Figure 3. SAM availability

Figure 3 shows two plots. The upper one is the number
of sites registered to the WLCG/EGEE project; the lower
one is an indicator of the overall service availability. Specif-
ically the overall service availability is calculated as the sum

of the daily availability metric of each sites in production,
being the daily availability metric for a site is the percentage
of time in the day during which the site has been fully op-
erational. We tried and reduce the negative bias on the sum
due to test results coming from still uncertified sites. Re-
sults of tests run across uncertified sites, in fact, are mixed-
up in the database with those of certified sites. Since an
historical record of status transitions for a site in not cur-
rently available, in order to correct this effect we decided
to count in the sum the contribution of a given site starting
from the first day in which the daily availability for that site
resulted to be equal to 1. The consideration behind this as-
sumption is that, when a site is available continuously for 1
day it is reasonable to foresee that its initial set-up phase is
over and the site is getting close to the certification . In this
way, without making a neat distinction between certified
and uncertified sites, we meant to measure the "SAM ef-
fect” in terms of usefulness of the tool to the “operations” in
broad sense, which means to the certification activity done
by the ROC, as well as to the monitoring activity done by
the COD. As an indirect proof of the robustness and scala-
bility of the monitoring tool, Figure 3 demonstrates how the
increasing number of monitored sites (about 50% more than
the precedent year) did not affect the overall availability of
the grid services although the manpower and effort spent for
the monitoring activity was basically left unchanged.

5 Conclusion

We presented a framework that uses acceptance tests to
help diagnose failures on the grid. In this new framework
we deal with the grid services as single components that
should produce an expected output to a pre-defined input.
The framework, called Service Availability Monitoring or
SAM, is being currently used to monitor some of the largest
(maybe the largest) production grids available nowadays
and proved to be helpful on improving the reliability of the
monitored grid services.

References

[1] BalticGrid. Develop and integrate the research and ed-
ucation computing and communication infrastructure
in the baltic states into the emerging european grid in-
frastructure. In http://www.balticgrid.org, 2007.

[2] R. Barrett, E. Haber, E. Kandogan, P.P. Maglio,
M. Prabaker, and L.A. Takayama. Field studies of
computer system administrators: Analysis of system
management tools and practices. In Procceedings of
Computersupported Cooperative Tools, pages 388—
395. ACM Press, 2004.

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

S. Burke, S. Campana, A. D. Peris, F. Donno, P. M.
Lorenzo, R. Santinelli, and A. Sciaba. glite 3.0 users
guide. In https://edms.cern.ch/file/722398/1.1/gLite-
3-UserGuide.pdf, 2006.

J. Closier. Ensuring grid resource availability with the
sam framework in lhcb. In Proceedings of CHEP2007,
Dirac House - Temple Back Bristol BS1 6BE, UK,
2007. IOP Publishing.

Health e child. An integrated platform for european
pediatrics based on a grid-enabled network of lead-
ing clinical centres. In http://www.health-e-child.org,
2007.

EELA. E-infrastructure shared between europe and
latin america. In http://www.eu-eela.org, 2007.

EGEE. Enabling grids for e-science. In http://www.eu-
egee.org, 2007.

EUChinaGrid. the euchinagrid initiative. In
http://www.euchinagrid.org, 2007.

EUMEDGrid. Empowering escience across the
mediterranean. In http://www.eumedgrid.org, 2007.

F. Gagliardi, B. Jones, F. Grey, M.-E. Bgin, and
M. Heikkurinen. Building an infrastructure for sci-
entific grid computing: status and goals of the egee
project. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sci-
ences, 363(1833):1729-1742, 2005.

The gLite Team. glite: Lightweight middleware for
grid computing. In http://cern.ch/glite, 2007.

M. Lamanna. The lhc computing grid project at cern.
In Proceedings of the IXth International Workshop
on Advanced Computing and Analysis Techniques in
Physics Research, pages 1-6, November 2004.

L.Betev, PBuncic, A.Peters, P.Saiz, S.Bagnasco,
PMendez-Lorenzo, C.Cistoiu, and C.Grigoras. The
alice grid - the beat of a different drum. In Pro-
ceedings of ACAT2007 (XI International Workshop
on Advanced Computing and Analysis Techniques in
Physics Research), Amsterdam, NL, Apr 2007. IOP
Publishing.

A. Sciaba’, S. Campana, A. Di Girolamo, E. Lan-
ciotti, N. Magini, P. Mandez Lorenzo, E. Miccio, and
R. Santinelli. Testing and integrating the wlcg/egee

middleware in the lhc computing. In Proceedings of
CHEP2007,2007.

[16] Poznan

[15] SEE-GRID. South eastern european grid-enabled ein-

frastructre development. In http://www.see-grid.org,
2007.

Supercomputing and Network-
ing Center. Sam admin’s page. In
http://monitoring.egee.man.poznan.pl/menu.php,
2007.

	Introduction
	The gLite Middleware
	gLite architecture
	Executive summary of the services

	Service Availability Monitoring
	Architecture
	Input layer
	Storage and processing
	Output

	Data schema
	Availability metrics

	Case Study: Monitoring a Global Grid
	Grid operations in WLCG/EGEE
	Monitoring activity by Virtual Organizations
	Measuring SAM effect

	Conclusion

