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Motivation



) Storage In Research:
" Financial and Technical Observations

e Storage costs often dominate in research

— CPU per $ has fallen faster than disk space per $
for most of the last 25 years

e Accessing data on disks Is increasingly
difficult

— Transfer rates and access times (per $) are
iImproving more slowly than CPU capacity,
storage capacity or network capacity.

* The following slides are based on equipment
and services that I" have bought for data-
Intensive science

* The WAN services from 1998 onwards were bought by Harvey Newman of Caltech
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Another View

e 1In 1997 $M bought me:

~ 200-core CPU farm
(~few x 108 ops/sec/core)

or

~ 1000-disk storage system
(~2 x 102 ops/sec/disk)

e Today $1M buys me (you):

~ 2500-core CPU farm
(~few x 10° ops/sec/core)

or

~ 2500-disk storage system
(~2 x 103 ops/sec/disk)

e In5—-10years?



Impact on Science

e Sparse or random access must be
derandomized

e Define, in advance, the interesting
subsets of the data

 Filter (skim, stream) the data to
Instantiate interest-rich subsets



Economics of Solutions



“Economics of LHC Computing

o Difficult to get $10M additional funding
to Improve analysis productivity

e Easy to re-purpose $10M of computing
funds if it would improve analysis
productivity



Cost-Effectiveness

 DRAM Memory:
— $100/gigabyte

— SLAC spends ~12% of its hardware budget on
DRAM

e Disks (including servers)
— $1/gigabyte

— SLAC spends about 40% of its hardware budget
on disk

* Flash-based storage (SLAC design)
— $10/gigabyte

— If SLAC had been spending 20% of its hardware
budget on Flash we would have over 100TB
today.



Practical Steps

The PetaCache Project



PetaCache Goals

Demonstrate a revolutionary but cost
effective new architecture for science
data analysis

Build and operate a machine that will
be well matched to the challenges of
SLAC/Stanford science



-J The PetaCache Story So Far

We (BaBar, HEP) had data-access problems

We thought and investigated

— Underlying technical issues

— Broader data-access problems in science
We devised a hardware solution

— We built a DRAM-based prototype

— We validated the efficiency and scalability of our low-level data-
access software, xrootd

— We set up a collaboration with SLAC'’s electronics wizards (Mike
Huffer and Gunther Haller) to develop a more cost-effective Flash-
based prototype

We saw early on that new strategies and software for data
access would also be needed



/- )DRAM-Based Prototype Machine
= (Operational early 2005)

Cisco Switch

NNNNNN”

Data-Servers 64 Nodes, each
Sun V20z, 2 Opteron CPU, 16 GB memory
1TB total Memory
Solaris or Linux (mix and match)

PetaCache
MICS + HEP-
BaBar Funding



DRAM-Based Prototype
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i») FLASH-Based Prototype
= QOperational Real Soon Now

5 TB of Flash memory

* Fine-grained, high bandwidth access



S LAC Department of Particle & Particle Astrophysics

K255, otz Building Blocks

Slice Access Module
(SAM)

1 Gbyte/sec
PGP (Pretty Good Protocol)

Four Slice Module
(FSM)
256 GByte Flash

Cluster Inter-Connect Module
(CIMm)

Application
specific

1 Gigabit Ethernet (.1 GByte/sec)
(L of n)

Network Attached Storage
8 x 10 G-Ethernet
(8 GByte/sec)

Host
Client Interface (SOFI)
(1 of n)

Slide from
Mike Huffer



S LAC Department of Particle & Particle Astrophysics

@ Office of Science/ The “ Ch aSSiS"

.5, OLOGE.

1U
Air-Outlet

. 2 FSMs/Card
- 1/2TByte
. 16 Cards/Bank
- 8TByte
. 2 Banks/Chassis
- 64 SAMS
- 1C™m
- 16 TByte
. 3 chassis/rack
- 48 TByte

Passive
Backplane

Supervisor Card (8U)

X2
(XENPACK MSA)

Accepts
DC power

Line Card (4V)
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S LAC Department of Particle & Particle Astrophysics

75, ot 48 TByte facility

L5, O.OLE.

1 chassis

Catalyst 6500 (3 x 4 10GE, 2 x 48 1GE)

SOFI Host ( 1 x 96) xRootD servers

Slide from
Mike Huffer



Commercial Product

 Violin Technologies

— 100s of GB of DRAM per box (available
now)

— TB of Flash per box (available real soon
now)

— PCle hardware interface
— Simple block-level device interface
— DRAM prototype tested at SLAC



Some Performance
Measurements
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Latency (2)

Current reality

Xrootd Data Server
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Latency (3)
Immediately Practical Goal

Memory Client Application
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DRAM-Based Prototype

“Yatency (microseconds) versus data retrieved (bytes)

—— Server xrootd overhead

— Server xrootd CPU

— Client xroot overhead

— Client xroot CPU

— TCP stack, NIC, switching
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DRAM-Based Prototype
Throughput Measurements
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Throughput Tests

« ATLAS AOD Analysis

— 1 GB file size (a disk can hold 500 — 1000 of
these)

— 59 xrootd client machines (up to 118 cores)
performing top analysis getting data from 1 server.

— The individual analysis jobs perform sequential
access.

— Compare time to completion when server uses its
disk, compared with time taken when server uses
Its memory.
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Comments and Outlook

Significant, but not revolutionary, benefits for
high-load sequential data analysis — as
expected.

Revolutionary benefits expected for pointer-
based data analysis — but not yet tested.

The need to access storage in serial mode
has become part of the culture of data-
intensive science — why design a pointer-
based analysis when its performance is
certain to be abysmal?

TAG database driven analysis?



