Reconstruction of LHC events at CMS

Tommaso Boccali - INFN Pisa
Shahram Rahatlou - Roma University
Lucia Silvestris - INFN Bari
On behalf of CMS Offline group

Outline

Software for CMS reconstruction: use cases and needed performances

The continued effort towards Data Taking

Data Challenges and preparation for Physics

Requirements for a Reconstruction Software

- Allow the processing of Raw Data to produce Data Objects useful for analyses
- Allow the use of the full discriminating power of the CMS sub detectors in Physics measurements in offline analyses
- 3. ... but also something more @ CMS: HLT use case

The LHC collisions will occur @ 40 MHz, while the offline system can stream data to disk only at 150-300 Hz

CMS Trigger Strategy

- CMS has chosen a trigger sequence in which, after a L1 (hardware based) response, reducing the events from 40 MHz to 100 kHz, the offline reconstruction code runs to provide the factor 1000 reduction to 150-300 Hz
- In this way:
 - We develop a single software for HLT and Offline
 - We can use the full complexity of Oflline
 Software @ Trigger level
 - We can scale the system adding CPUs

Traditional

L2 functionality is the most challenging parameter. Does not benefits of full-granularity

CMS

HLT functionality depends on data rate and CPU resources available

Computing Model

2008 CPU ~ 4Si2k

CERN

- FilterFarm (HL Trigger)
- Cern Analysis Facility (small turn around time activities - typically calibrations)
- T0 activities (prompt reconstruction)
- Raw data custodial
 - ~ 7 MSi2k (2008)
 - ~ 5 PB on Tape; ~ 2 PB of disk (2008)
- National / Super national level Tier 1s
 - Raw data custodial (shared)
 - Re-Reconstruction
 - Skimming / RECO/AOD production
 - ~ 10 MSi2k (2008)
 - ~ 10 PB on Tape; ~ 5 PB of Disk (2008)
- Community based Tier 2s
 - Simulation activities
 - Analysis facilities
 - ~ 15 MSi2k (2008)
 - No tape; ~ 5 PB of Disk (2008)

CMS Data Tiers

- CMS plans to implement a hierarchy of Data Tiers
 - Raw Data: as from the Detector
 - Full Event: contains Raw plus all the objects created by the Reconstruction pass
 - RECO: contains a subset of the Full Event, sufficient for reapplying calibrations after reprocessing
 - "Refitting but not re-tracking"
 - AOD: a subset of RECO, sufficient for the large majority of "standard" physics analyses
 - Contains tracks, vertices etc and in general enough info to (for example) apply a different b-tagging
 - Can contain very partial hit level information

Software environments

- The code must be able to run in three different scenarios:
 - Bare root: open the POOL file, and inspect the Data Objects _without any CMS infrastructure_
 - Portable on any machine which runs root, without _any_ effort
 - CMSSW-Lite: load a small number of libraries, don't allow access to any calibration, mag field map etc, but have full access to Physics Objects
 - Your laptop when you are not connected to internet Full-CMSSW: full access to calibrations and full availability of libraries. Used mainly to produce reconstructed objects from RawData to lower Tiers
 - Your favourite T2

Status @ CHEP06

- Last CHEP06 report
 - New software being written (CMS transitioned to new framework in early 2005)
 - Local reconstruction ok with simulated events (no infrastructure for calibrations and realistic conditions)
 - Higher level reconstruction only sketched
 - Jets working (guinea pig)
 - Tracks "coming" (== under debug)
 - All the rest (higher algos) missing

QuickTime™ and a TIFF (LZW) decompress are needed to see this picto

Since then ...

- CSA06 (Sept/Oct 06):Computing/Software andAnalysis challenge
 - Reconstruction enhanced with
 - Tracking
 - Electrons (initial version)
 - Photons (initial version)
 - B/tau tagging
 - Vertexing
 - Jets/MET
 - First definition of data Tiers (FEVT, RECO, AOD)
 - Re-reconstruction, skimming demonstrated

- Total events processed>100M
- Performance
 - < 25 sec/ev (on 1kSi2k CPUs) even on ttbar
 - Memory tops at 500 MB/job after hours/thousands of events
 - Crash rate < 10⁻⁷/event

Ramp up in code size / developers (Full CMSSW)

18 months = +900k lines of code 4x time the involved developers

Lines of code in the repository

Number of developer active in a given month

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Now ...

- CSA07 just taking off
 - Includes also HLT and analysis skim workflows working from raw data
- Extensive physics validation on Reconstruction code
 - Complete switch took 2 years
- Much more attention to calibrations
 - System "complete" ready to handle real data (and being tested with commissioning data)

- Lots of new algorithms
 - Impossible to mention all of them
- Tracking optimized
- Electrons/photons optimal
- Btagging, tau tagging
- Many more jet algos
- Lots of vertexing algos
- Muons optimal
- Particle Flow
- •••

Few Results

Few Results

Data sizes

- Current figures show that we are not far from the estimated quota of 100 kB (AOD) and 500kB (RECO) (in the example, bb events w/o pile up)
 - Even including Simulated information, which accounts up to 20% of the payload
- Still to be reviewed when analysis use cases will be cleared
 - Expect some additions and a lot of cleaning

Data Tier	Size kB/event
RAWSIM	1420
RECOSIM	680
AODSIM	100

Road from here to data taking

- CSA07 will probe reconstruction
 - On yet another O(100M) events
 - With realistic calibrations loaded for all the subsystems
 (== much higher RAM payload, ~ 1 GB/job)
 - With realistic misalignment scenarios
 - Using the complete range of reconstruction / re-reco / skimming / reduced data sets production
- At the same time, reconstruction of data taken during commissioning (Global Runs) is certifying the correct use when starting from raw data

Conclusions

- CMS Reconstruction Software has jumped from being a development prototype to a working product in the period CHEP06-CHEP07
- It is actively debugged on
 - Hundreds of Million of Simulated Events (trying to operate in 2008 real data mode)
 - Real commissioning data (prepare/test the correct calibration/alignment infrastructure)
- We are eager to see the first pp data and confront with it - @ Next CHEP you will see Reconstruction code in Action on it!