Use of Alternate Path WAN Circuits at Fermilab

Phil DeMar / Matt Crawford CHEP 2007

Why end-to-end circuits?

- Convergence of need, capability, & strategic direction
- Sometimes just because our stakeholders ask for them
 - They anticipate better WAN performance with circuits

Need

- Emerging CMS high impact data movement requirements
- Predictable network performance requirements:
 - Distributed DAQ function
 - Distributed analysis model
- Data movement thru CMS Tier structure is flexible, not hierarchical
 - Significant trans-oceanic traffic
- LHC traffic projections call for rapid increase in traffic levels

Table 1. Transatlantic Network Requirements Estimates and Bandwidth Provisioning Plan, from the T0/T1 networking group, in Gbps

			0 1/	•		
Year	2005	2006	2007	2008	2009	2010
CERN-BNL (ATLAS)	0.5	5	15	20	30	40
CERN-FNAL (CMS)	7.5	15	20	20	30	40
Other (ESnet, Tier2, Inter- Regional Traffic)	2	10	10	10-15	20	20-30
TOTAL US-CERN BW	10	30	45	50-55	80	100-110
US LHCNet Bandwidth	10	20	30	40	60	80
Other BW (GEANT, Surfnet, IRNC, Gloriad)	Backup	10	10	10-20	20	20-30

Capability

- Fermi LightPath:
 - Optical network infrastructure between FNAL & StarLight:
 - Leased dark fiber
 - Dense Wave Division Multiplexing equipment (Ciena Metro)
 - □ Initial (2004) configuration: 1x10GE & 2x1GE channels
 - Current configuration: 6x10GE & 2x1GE channels
- Direct fiber to StarLight provides a plethora of network connectivity opportunities
 - Wide spectrum of possible peering partners available
 - L2 technology options become available (L1 someday?)
- Optical network infrastructure offers flexible, economical upgrade options

Strategic Direction

- DOE High Performance Network Planning Workshop established a strategic model to follow:
 - High bandwidth backbones for reliable production IP service
 - ESnet
 - Separate high-bandwidth network paths for large scale science data flows
 - Science Data Network
 - Metropolitan Area Networks (MAN) for local access
 - Fermi LightPath a cornerstone for Chicago area MAN

FNAL Alternate Path Circuits

- Supported since 2004
- Serve a wide spectrum of experiments
 - CMS Tier-2s are heavy users
- Implemented on multiple technologies
 - But based on end-to-end layer-2 paths
- Usefulness has varied

Remote Site	Experiment	Transit Provider(s)	Max B.W.	<u>Status</u>
UCL. UK	CDF	UKLight	1 Gb/s	Moderate use
CERN (LHC)	CMS	US-LHCnet	10 Gb/s	LHCOPN
Simon Fraser	D0	CAnet4; WestGrid (BC)	1 Gb/s	decommissioned
Caltech	CMS	UltraLight	10 Gb/s	T1/T2 data
Apache Pt (NM)	SDSS	ESnet (MPLS)	<< 1Gb/s	decommissioned
Sinica, Taiwan	CDF	ASnet	2.5 Gb/s	Intermittent use
Florida	CMS	UltraLight; FLR	10 Gb/s	T1/T2 data
McGill	CDF / D0	CAnet4	1 Gb/s	Intermittent use
NCHC, Taiwan	SDSS	Twaren	1 Gb/s	Intermittent use
IoP; Prague, Cz	D0	Surfnet; CESnet	1 Gb/s	Intermittent use
UCSD	CMS	ESnet (SDN)	10Gb/s	T1/T2 data
Wisconsin	CMS	WISnet	10 Gb/s	T1/T2 data
Purdue	CMS	Purdue	10 Gb/s	T1/T2 data
IN2P3 , France	D0 (CMS?)	ESnet,HOPI,GEANT	Two x 1Gb/s	Intermittent use
BNL	LHC	Internet2 Dynamic Circuit Service	N x 1Gb/s	Testing

Topology of circuit connections

- Circuits utilize MAN infrastructure:
 - One 10GE channel reserved for routed IP service (purple)
 - One supports LHCOPN circuit (orange) to CERN
 - Two support end-to-end circuits to CMS Tier-2 (shades of green)
- Circuits based on end-to-end vLANs
 - Direct BGP peering with remote site
- Multiple provider domains is the norm
 - Deployed technology varies by domains involved
 - Complexity is higher than IP service

Internal US-CMS Tier-1 LAN

Making the E2E circuit routing work

- Define high impact traffic flows:
 - Minimal-size source/dest. netblock pairs
 - US-CMS Tier-1 / CERN T-0 address pairs follow LHCOPN circuit path (purple)
 - Other FNAL-CERN traffic on routed path (blue)
- Establish E2E circuits on alternate path border router
 - BGP peer across VLAN-based circuits, advertising only source netblock
- Policy route internally on source/dest pairs
- Inbound routing depends on policies of remote end
 - Prefer comparable PBR for symmetry
 - But implement inbound PBR locally

Usefulness of E2E Circuits

- Monthly FNAL outbound traffic
- Recent spikes exclusively due to CMS ramp-up testing
 - Supports CMS traffic projections
 - Traffic levels indicate performance capabilities, not trend

- Relative ratio of circuit-based traffic to routed traffic is also more an indication of performance capability
 - US Tier-2s (circuit-based) routinely sustain 2-3 Gb/s and higher
 - □ In CSA06 European T2s (routed) were sustaining 100Mb/s-900Mb/s

Issues with E2E circuits

- Circuit coordination & establishment can be complex
 - Varies with # of administrative domains and mix of underlying technology
- Monitoring becomes more difficult
- Troubleshooting problems are more difficult, too
 - Likely to be needed more frequently as well
- Failure modes need to be understood and tested
- Proper documentation can be a lot of work
 - Or doesn't get adequately done...

An example of circuit complexity

IN2P3/FNAL test circuit:

- Four service providers
- Technology mix
- ~2 months to get configured
- Monitoring still not complete
- Circuit documentation is sparse

IN2P3-FERMILab 2xGE Path setup

Monitoring E2E circuits

- Complicated by multi-domain boundaries and layer-2 technology
- PerfSONAR emerging as cross-domain data collection monitoring tool
 - A work-in-progress at this point
 - Minimal level of monitoring capabilities currently available
 - interface status
 - Active monitoring capabilities being worked on
- PerfSonar currently deployed for LHCOPN E2E circuit monitoring

Oper. State: Admin. State:		per.														
Dom ain	CERN		USLHCNET			ESNET				FERMI						
Link Structure	EP	◄		DP		DP	◄		DP	←	DP	◄		DP	←	EP
Туре	EndPoint	ID Part Info	ID Part Info	Demarc	Domain Link	Demarc	ID Part.Info	ID Part Info	Demarc	Domain Link	Demarc	ID Part Info	ID Part Info	Demarc	Domain Link	EndPoir
Local Name	CERN-T0	S513-C-BE1	CERN-FERMI- LHCOPN-001- GVA-CERN	USLHCNET- GEN	CERN-FERMI-LHCOPN- 001-GVA-CHI	USLHCNET- CHI	CERN-FERMI- LHCOPN-001- CHI-ESNET	LHCOPN-UU1-	ESNET- STARLIGHT	CERN-FERMI-LHCOPN- 001-FERMI-STARLIGHT	ESNET- FERMI	CERN-FERMI- LHCOPN-001- Site-Tail		FERMI- ESNET	rnd2	FERMI T1
State Oper.		Up	Up		Up		Up	Up		Up		Up	Up	-	Up	
State Admin.		Normal Oper.	Normal Oper.	-	Normal Oper.	-	Normal Oper.	Normal Oper.		Normal Oper.		Normal Oper.	Normal Oper.	-	Normal Oper.	-
Tim estam p	-	2007-01-26 T13:15:22 +01:00	2007-02-06 T17:31:23 +01:00	-	2007-02-10T01:17:03 +01:00		2007-01-26 T13:15:19 +01:00	2007-02-10 T00:15:43.0	-	2007-02-10T00:15:43.0	-	2007-02-10 T00:15:43.0	2007-02-09 T17:00:01.0- 6:00	-	2007-02-09T17:00:01.0- 6:00	-

Operational experiences with circuits

- E2E circuit failure modes are different than for IP service
 - They are more complex
 - Impact of the failure may be severely felt elsewhere
 - Operational failures can be "creative" and difficult to troubleshoot
- Asymmetric paths will occur and will be difficult to detect
 - We're working on flow data analysis to detect this

Unexpected consequences of changes

UNL moves several T2 systems to a new subnet

UNL CMS

Performance Analysis Methodology

- Problem diagnosis more difficult at layer-2
- Developing structured approach to troubleshooting
- Model for the process is medical diagnosis
 - Collect the physical characteristics
 - Run diagnostic tests
 - Record everything; develop a history of the analysis
- Strategic approach:
 - Sub-divide problem space:
 - Application-related problems
 - End system diagnosis and tuning
 - Network path analysis
 - Then divide and conquer

Steps in Performance Analysis

- Definition of the problem space
- Collection of system information & network path characteristics
- Host configuration analysis
- Network path performance analysis
 - Current base tools: NDT & OWAMP
- Evaluate packet flow patterns

Dynamic Circuits on the Horizon

- Dynamic path-selection services under development
 - Lambda Station (FNAL), Terapaths (BNL)
- Lambda Station (LS) project:
 - Based on PBR mechanisms
 - LS called by apps or wrapper scripts
 - Schedules reservable network paths
 - Configures selective rerouting into LAN
 - Only configures local site infrastructure
 - Coordinates with LS on remote end
 - Deployed within Tier-1 SRM service

Winding It Up...

- End-to-end circuits have proven to be useful at FNAL
 - Especially for LHC/CMS high impact data movement
 - In some cases, useful for other experiments & projects as well
- Additional management & support cost involved
 - Complexity is an obvious concern
 - Scalability too…
- We will see a natural selection process play out
 - What works & is worth the effort will remain and grow
 - What doesn't prove to be worth the effort will disappear
- When will dynamic end-to-end circuits be widely available?
 - The crystal ball is a little cloudy...

