

DIRAC: A Community Grid Solution

A Tsaregorodtsev 1, M Bargiotti 2, N Brook 3, A Casajus Ramo 4, G Castellani 2,
Ph Charpentier 2, C Cioffi 5, J Closier 2, R Graciani Diaz 4, G Kuznetsov 6,
Y Y Li 7, R Nandakumar 6, S Paterson 2, R Santinelli 2, A C Smith 2,10,
M Seco Miguelez 8, S Gomez Jimenez 9
1 Centre de Physique des Particules de Marseille, 163 Av de Luminy Case 902 13288
Marseille, France
2 CERN CH-1211 Genève 23, Switzerland
3 H. H. Wills Physics Laboratory, Royal Fort, Tyndal Avenue, Bristol BS8 1TL, UK
4 University of Barcelona, Diagonal 647, ES-08028 Barcelona, Spain
5 University of Oxford, 1, Keble Road, Oxford OX1 3NP, UK
6 Rutherford Appleton Laboratory, Chilton, Didcot Oxon. OX11 0QX, UK
7 University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK
8 University of Santiago de Compostela, Campus Universitario Sur, ES-15706
Santiago de Compostela, Spain
9 University Rovira i Virgili, Campus Sescelades, Avinguda dels Països Catalans, 26
Tarragona, Spain

E-mail: atsareg@in2p3.fr

Abstract. The DIRAC system was developed in order to provide a complete solution for using
distributed computing resources of the LHCb experiment at CERN for data production and
analysis. It allows a concurrent use of over 10K CPUs and 10M file replicas distributed over
many tens of sites. The sites can be part of a Computing Grid such as WLCG or standalone
computing clusters all integrated in a single management structure. DIRAC is a generic system
with the LHCb specific functionality incorporated through a number of plug-in modules. It can
be easily adapted to the needs of other communities. A special attention is paid to the resilience
of the DIRAC components to allow an efficient use of non-reliable resources. The DIRAC
production management components provide a framework for building highly automated data
production systems including data distribution and data driven workload scheduling. In this
paper we give an overview of the DIRAC system architecture and design choices. We show
how different components are put together to compose an integrated data processing system
including all the aspects of the LHCb experiment - from the MC production and raw data
reconstruction to the final user analysis.

1. Introduction

The LHCb Collaboration is constructing one of the four experiments to run on the future LHC proton-
proton collider at CERN, Geneva. The amount of data that will be produced by the experiment
annually is so large that it necessitates the development of a specialized system for the data

10 Marie Curie fellowships program

http://graybook.cern.ch/institutes/countries/GB.html#006407
http://graybook.cern.ch/institutes/countries/GB.html#003402
http://graybook.cern.ch/institutes/countries/ES.html#006333

production, reconstruction and analysis. The DIRAC project of the LHCb Collaboration was started to
provide such a system.

Originally the DIRAC project was devoted to the simulation data production. The goals that the
project developers fixed for themselves were:
• Seamless use of the various heterogeneous computing resources available to the LHCb

Collaboration;
• Light implementation and deployment on the local sites;
• Minimal effort needed from the LHCb site managers to run the system; single production manager

should be able to run the whole LHCb production system.
The stated goals have to be supported by a careful choice of the system architecture, the component

design and by the implementation technologies. After some experimentation the choice was made in
favour of a services oriented architecture supplemented by a network of lightweight agents, which are
animating the whole system. This architecture has been proven to be very efficient for simulation data
production tasks [1]. However, now the emphasis is shifted towards the data reprocessing and analysis
tasks. Therefore, the system was extended to the new class of workload, which is characterized by the
constraints due to availability of the input data and by the necessity to minimize the task total
execution times. It is important to note that the system provided for the individual user analysis has
much higher requirements with respect to the overall efficiency and stability.

The experience of the DIRAC project shows clearly the advantages of the incremental approach
where the system gradually evolved from managing relatively simple simulation data production tasks
to more complicated data reprocessing tasks including the final user data analysis. This allowed to
build a versatile and consistent system out of components based on the same design principles and
framework implementation. What is also important is that DIRAC was developed by a single
concerted team of developers all sharing the same vision of the project concepts.

The amount of data production workload is very high but the production activity can be planned
before the data to be processed become available. This allows creating tools for automatic job
preparation and submission and those tools were added recently to the project.

One more important problem arises from the necessity to run different kind of jobs with different
priorities and requirements on the same computing resources. Together with potentially complex
policies that the Collaboration might want to introduce, this requires an architecture design in which
these complex rules can be efficiently applied.

These new requirements can be met by naturally extending the agents based architecture where the
agents are deployed right on the worker nodes thus building dynamically an overlay network of
readily available resources. Altogether, it allowed DIRAC to evolve to a complete system for all the
computing tasks that members of the LHCb Collaboration will have to carry out using the highly
distributed computing resources.

In this paper we describe in Section 2 the DIRAC design principles and architecture and justify the
choice of its components and their implementation. The framework components overview is presented
in Section 3. The Workload and Data Management Systems are described in Sections 4 and 5
respectively. The higher level Production Management tools together with the experience gained in the
recent production runs are discussed in Section 6. Section 7 is devoted to conclusions and outlook for
future work.

2. DIRAC overview

2.1. Scope of the project
Most of the computing resources needed by the LHC HEP experiments as well as for some other
communities are provided by Computing Grids. The Grids are providing a uniform access to the
computing and storage resources which simplifies a lot their usage. The Grid middleware stack
provides also the means to manage the workload and data for the users. However, the variety of
requirements of different Grid User Communities is very large and it is difficult to meet everybody’s
needs with just one set of the middleware components. Therefore, many of the Grid User

Communities, and most notably the LHC experiments, have started to develop their own sets of tools
which are evolving towards complete Grid middleware solutions. Examples are numerous ranging
from subsystem solutions (PANDA workload management system [2] or PHEDEX data management
system [3]) or close to complete Grid solutions (AliEn system [4]). DIRAC project is providing a
complete Grid solution for both workload and data management tasks on the Grid.

Although developed for the LHCb experiment, it is designed to be a generic system with LHCb
specific features well isolated as pluggable modules. It allows to construct medium sized grids of up to
several thousands processors by uniting PC farms with most widely used cluster software systems as
well as individual PCs within its integrated Workload Management System. DIRAC is also providing
means for managing tasks on Grid resources taking over the workload management functions. The
DIRAC Data Management components provide access to standard grid storage systems based on the
SRM standard interface or ordinary (S)FTP, HTTP file servers. The File Catalog options include the
LCG File Catalog (LFC) as well as a simple DIRAC File Catalog. The modular organization of the
DIRAC components allows selecting a subset of the functionality suitable for particular applications
or easily adding the missing functionality. All these features allow positioning DIRAC as a complete
Grid solution for a medium size community of users.

2.2. Architecture and components
DIRAC follows the Service Oriented Architecture (SOA) paradigm. Its main components are
presented in Figure 1 [6]. The DIRAC components can be grouped in the following 4 categories:
Resources, Services, Agents and interfaces.

DIRAC Job
Management

Service

DIRAC Job
Management

Service

AgentAgent

Production
Manager

Production
Manager

GANGAGANGA

DIRAC API DIRAC API

JobMonitorSvcJobMonitorSvc

JobAccountingSvcJobAccountingSvc

Job monitorJob monitor

ConfigurationSvcConfigurationSvc

FileCatalogSvcFileCatalogSvcBookkeepingSvcBookkeepingSvc

BK query
webpage

BK query
webpage

FileCatalog
browser

FileCatalog
browser

Services

AgentAgent AgentAgent

MessageSvcMessageSvc

Resources LCGLCG Grid WNGrid WN Site GatekeeperSite Gatekeeper Tier1 VO-boxTier1 VO-box

DIRAC Job
Management

Service

DIRAC Job
Management

Service

AgentAgent

Production
Manager

Production
Manager

GANGAGANGA

DIRAC API DIRAC API

JobMonitorSvcJobMonitorSvc

JobAccountingSvcJobAccountingSvc

Job monitorJob monitor

ConfigurationSvcConfigurationSvc

FileCatalogSvcFileCatalogSvcBookkeepingSvcBookkeepingSvc

BK query
webpage

BK query
webpage

FileCatalog
browser

FileCatalog
browser

Services

AgentAgent AgentAgent

MessageSvcMessageSvc

Resources LCGLCG Grid WNGrid WN Site GatekeeperSite Gatekeeper Tier1 VO-boxTier1 VO-box

Figure 1 DIRAC architecture overview

2.2.1. Resources.
Resources are components which provide access to the computing and storage facilities available to
DIRAC. Computing resources are available in a form of individual PCs, computing farms with various
batch systems or computing grids. DIRAC includes clients for most of the popular batch systems:
PBS/Torque, LSF, Sun Grid Engine, Condor, and BQS. Recently, the support for the Microsoft
Compute Cluster was also added [5]. The clients exist also to access the Computing Elements in the
EGEE grid which are based on the GRAM interface. The support for the future EGEE Computing
Elements will be provided as soon as they will become available. Apart from the EGEE grid, the client
for the NorduGrid was also provided. Together with clients which are representing individual
Windows or Linux PCs as DIRAC Computing resources, DIRAC covers all the possible resources
available to the LHCb experiment. If necessary, new types of the computing resources can be easily
added.

DIRAC does not provide a complex Storage Element service capable of managing multiple disk
pools or tertiary storage systems. It includes however a Storage Element service which is providing

access to a disk storage managed by a POSIX compliant file system. The data access is done through a
proprietary DISET protocol which is part of the DIRAC services framework (see below Section 3). To
access other storage systems DIRAC provides various clients which are representing many different
services in a uniform way. Clients exist to access Storage Elements with the SRM standard interface
as well as clients for the most popular data access protocols: gridftp, (s)ftp, http, and some others.

Sometimes the same physical storage is available through several different protocols. This can be
expressed in the storage configuration description and the DIRAC data access tools will be able to use
either of the possible protocols in an optimal way. This also adds redundancy ensuring higher storage
availability in case of intermittent failures.

2.2.2. Services.
The DIRAC system is built around a set of loosely coupled services which keep the system state and
help to carry out workload and data management tasks. The services are passive components which
are only reacting to the requests of their clients possibly soliciting other services in order to
accomplish the requests.

All services and their clients are built in the DISET framework which provides secure access and
flexible authorization rules. Each service has typically a MySQL database backend to store the state
information. The services as permanent processes are deployed centrally at CERN and on a number of
hosts (VO-boxes) at several sites. The number of sites where services are installed is limited to those
with well-controlled environment where an adequate support can be guaranteed. The services are
deployed using system start-up scripts and watchdog processes which ensure automatic service restart
at boot time and in case of service interruptions or crashes. Standard host certificates typically issued
by national Grid Certification Authorities are used for the service/client authentication.

The services are accepting incoming connections from various clients. These can be user interfaces,
agents or running jobs. But since services are passive components, they have to be complemented by
special applications to animate the system.

2.2.3. Agents.
Agents are light and easy to deploy software components which are running as independent processes
to fulfil one or several system functions. All the agents are built in the same framework which is
organizing the main execution loop and provides a uniform way for deployment, configuration,
control and logging of the agent activity.

Agents are running in different environments. Those making part of DIRAC subsystems, for
example Workload Management or Data Distribution, are usually deployed close to the corresponding
services. They watch changes in the service states and react accordingly by initiating actions like job
submission or result retrieval. Agents can run on a gatekeeper node of a site controlled by the DIRAC
Workload Management System. In this case they are making part of the DIRAC WMS ensuring the
pull job scheduling paradigm.

Agents can also run as part of a job executed on a Worker Node as so called “Pilot Agents”.

2.2.4. Interfaces.
The DIRAC functionality is exposed to the system developers and to the users in a variety of ways.
The DIRAC main programming language is Python and programming interfaces (APIs) are provided
in this language. Each service is complemented by the corresponding client class which is in the
simplest case is very thin and just translates the service interface calls.

For the developers making use of the DIRAC system, the functionality is provided as Python API
which is encapsulating in a small number of classes all the methods necessary to build higher level
applications. This API is used, for example, by the GANGA grid user interface project [7] to provide
access to the DIRAC back-end.

For the users of the DIRAC system the functionality is available through a command line interface.
Some DIRAC subsystems have specialized shells to work with. The shells are having extra advantage
of having online help assistance. They also keep the user session state which can be very useful, for
example for meta catalog browsing and other tasks.

DIRAC is also providing Web interfaces for users and system managers to monitor the system
behaviour and to control the ongoing tasks. The Web interfaces are based on the DIRAC Web Portal
framework which is providing secure access to the system service using X509 certificates loaded into
the user browsers.

2.3. Some Design Principles
Here are presented several design patterns that are widely used in the DIRAC system in order to
increase its efficiency and resilience to failures.

2.3.1. Redundancy
The distributed computing environment is intrinsically unstable. Of course, it is necessary to spend
much effort in order to increase the availability of all the services, especially in the grid environment
which has more means for their monitoring and control. However, it is impossible to eliminate all the
reasons for failures because of the software and hardware faults but also because of human mistakes.
Therefore, the distributed computing systems should be built in such a way that the damage of
temporary services unavailability is minimized. It is unacceptable to loose results obtained after
consumption of a large amount of the computing resources or have the whole system blocked because
one of its components is down. The distributed computing system in this case should continue to
function although with a reduced capacity. This can be achieved by adding redundancy to each
operation where each failure can be retried with either another instance of a service or at a later time
when the faulty service is returning back into operation.

In DIRAC the redundancy is achieved in several ways. First, the information which is vital to the
successful system operation is duplicated at several services to ensure that at least one copy will be
available to client requests. This is done for the DIRAC Configuration Service and for the File Catalog
each of which has several mirrors kept synchronized with the master instance. Together with the
necessary redundancy it allows to introduce a certain load balancing reducing the services load.

Second, all the important operations which success is mandatory for the functioning of the system
without losses are executed in a failover recovery framework which allows retrying them in case of
failures. All the information necessary for the operation execution is encapsulated in an XML object
called request which is stored in one of the geographically distributed request databases. For LHCb in
the WLCG environment these databases are deployed on the VO-boxes. Special agents running close
to the request databases are attempting to accomplish the stored operations as many times as necessary
until the final success. For the data management operations, for example for initial data file uploading
to some grid storage, in case of failure the files are stored temporarily in some spare storage element
with a failover request to move the data to the final destination when it will become available.

2.3.2. System state information
The information about the system state is one of the most vital ingredients of the successful operation.
It is very important to distinguish the slowly changing static information such as the system
configuration data and fast changing dynamic information, for example the available capacity of the
computing resources. It is important not to mix the static and dynamic data within the same
information system. In DIRAC the static configuration data is made available to all the clients via the
Configuration Service (CS) which has multiple reservations as described above. Moreover, this
information can be cached on the client side for relatively short periods without risks of the client
misbehaviour. Keeping the static and dynamic information separately reduces the risk of
compromising the static information due to system overloading. The dynamic information is in most
cases looked for at its source. For example, the current state of a computing resource is obtained
directly from the batch system or from the computing element to avoid obsolete data. This is why, for
example, the DIRAC Workload Management System is following the “pull” paradigm where the
computing resources availability is examined by a network of agents running in close connection to
the sites.

2.3.3. Requirements to sites

The main responsibility of the sites is to provide resources for the common use in a grid. The
resources are controlled by the site managers and made available through middleware services
(Computing and Storage Elements). It is not unusual that the middleware expertise level is sometimes
not very high at the sites especially when the site is a newcomer to the grid community. It is important
to keep requirements on the site operations as simple as possible to lower the thresholds for joining the
grid and thus making more resources available. In particular, specific requirements of different VO’s
to the site operations should be minimized. DIRAC is putting very low requirements on the sites
asking for no special support for the LHCb VO. For example, unlike other VO’s there are no
requirements to run special LHCb services on sites like local File Catalogs or data access
infrastructures. The data production activity is requiring no special support from the site managers
apart from ensuring availability of the standard services. There is also no special requirement on VO
job optimization and accounting. All this allows exploiting numerous sites providing resources to the
LHCb VO by a small central team of production managers.

3. DIRAC Framework
The DIRAC framework for building secure SOA based systems is providing generic components not
specific to LHCb which can be applied in the contexts of other VOs as well [8]. The framework is
written in Python language and includes the following components :

• DISET (DIRAC Secure Transport) secure communication protocol
• Web Portal framework
• Configuration System
• Logging System
• Monitoring System

3.1. DISET protocol
Originally DIRAC used the XML-RPC
protocol for client/service
communications. This was a simple and
efficient choice for the early stages of
the project. The original XML-RPC
was enhanced with GSI compliant
authentication mechanism [9]. The
more intensive use of the system made it necessary to increase the efficiency of the client/service
interactions which resulted in the introduction of a proprietary DISET protocol.

DIRAC Services and Agents

Configuration SystemMonitoring System Logging System

DISETCLI / GUI Web site

DIRAC Services and Agents

Configuration SystemMonitoring System Logging System

DISETCLI / GUI Web site

Figure 2 DIRAC Framework components

The latest DISET framework is providing distributed applications with a standard Grid GSI based
authentication mechanism. It allows definition of configurable authorization rules which can be
specified for each service method using user identities and groups. Finer grained rules can be coded
for each method as well.

DISET is providing also a complete framework for creating distributed services. It has a built-in
support for multiple threads and automatic logging of the history of the requests. Along with the RPC
functionality it allows also transfers of files or groups of files in the same interface with a special
binary protocol. With DISET developers can also build portals which serve as a single access point for
a secure access to a set of services with a single authentication step. All these mechanisms are
employed in construction of the DIRAC distributed system

3.2. Web portal framework
The Web portal framework allows building Web interfaces to DIRAC services. It provides
authentication based on user grid credentials and user groups which can be selected during the
interactive session. The framework is using the DISET portal functionality to redirect client requests
to corresponding services and to collect responses. It provides means to organize the contents of the
DIRAC Web sites using the Pylons contents management system [10]. All the monitoring and control

tools of a DIRAC system are exported through the Web portal which makes them uniform for users
working in different environment and on different platforms.

3.3. Configuration Service
The Configuration Service is built in the DISET framework to provide static configuration parameters
to all the distributed DIRAC components. This is the backbone of the whole system and necessitates
excellent reliability. Therefore, it is organized as a single master service where all the parameter
updates are done and multiple read-only slave services which are distributed geographically, on VO-
boxes at Tier-1 LCG sites in the case of LHCb. All the servers are queried by clients in a load
balancing way. This arrangement ensures configuration data consistency together with very good
scalability properties.

3.4. Logging and Monitoring Services
All the DIRAC components are using the same logging facility which can be configured with one or
many back-ends including standard output, log files or external service. The amount of the logging
information is determined by a configurable level specification. One important use of the logger is the
possibility to report to the Logging Service where all the distributed components are reporting
encountered cases of system failures. This service is accumulating information for the analysis of
behaviour of the whole distributed system including third party services provided by the sites and
central grid services. The quick error report analysis allows spotting and even fixing the problems
before they are hitting the user.

The Monitoring Service is collecting activity reports from all the DIRAC services and some agents.
It presents the monitoring data in a variety of ways, e.g. historical plots, summary reports, etc.
Together with the Logging Service, it provides a complete view of the health of the system for the
managers.

4. Workload Management System
Originally DIRAC was developed to support the production of the Monte-Carlo simulation data for the
LHCb experiment. The Workload Management System (WMS) was the central component of this
activity. The necessity of integration of various heterogeneous resources within the same system led to
the design of the WMS with a central Task Queue and a network of light agents [11]. The new design
allowed extending the DIRAC WMS to also data processing and analysis tasks [12]. In the following
the main advantages of this approach are discussed.

4.1. Overlay network
The use of light pilot agents as part of the WMS with a “pull” scheduling paradigm is now widely
accepted as a way to hide the fragility of the underlying distributed resources and thus increase the
efficiency of their usage as seen by the end users. This is achieved by checking the sanity of the exact
operational environment in which the user jobs will be executed before actually pulling the real
workload from the central Task Queue. But this approach has also other advantages as well.

The agents, which are deployed close to the computing resources – either on the computing cluster
gatekeepers or right on the grid worker nodes – are presenting various kinds of resources in a uniform
way. Therefore, they are forming an overlay network which is the only one seen by the DIRAC WMS.
This makes it easy to integrate the whole variety of computing systems from single PCs to various
grids into a single community system. To include a new type of a computing resource it is sufficient to
develop the corresponding specialized agent. Therefore, it was trivial to combine with the DIRAC
WMS such back-ends as WLCG and NorduGrid Grids, standalone Linux (e.g. PBS or Sun Grid
Engine) and Windows Compute Clusters, and standalone PCs, for example from the Online LHCb
computing farm with no batch system installed.

4.2. Managing VO policies
The WMS architecture with the central Task Queue offers also an elegant solution to the problem of
the VO workload optimization and application of the VO policies by managing priorities of the tasks

coming from different user groups. In the systems without central queues, the job priorities can be
only applied at the level of the site local batch systems. If even it is possible in principle, in practice
this requires a lot of maintenance work because each change in the VO policies should be applied at
all the sites by local system managers. This takes a lot of time in large distributed systems like Grids
and it is extremely difficult to maintain consistent policies across all the sites. It is important also that
the application of VO policies can not be precise because of uncertainties due to badly defined waiting
times in the local batch queues.

The Central Task queue together with the pilot agent approach allow for application of the VO
policies in a single place which simplifies a lot the definition and maintenance of the policy rules. The
policies are applied consistently across the whole distributed system even in the case of heterogeneous
resources, for example across several grids (Error! Reference source not found.). The application of
the policies is precise because of the “late” job scheduling where it is guaranteed that the job starts
immediately on the Worker Node when pulled by the pilot agent from the Task Queue. In fact, the
whole distributed system can be regarded as a single large batch system where the standard scheduling
tools can be applied. In DIRAC the policies can be applied by either a simple job priority calculator
based on configurable group and user static priorities or more complex calculators. In particular, the
use of the MOAB commercial task scheduler in conjunction with the DIRAC central Task Queue was
demonstrated [13].

User
Interface

User
Interface

DIRAC APIDIRAC API

Community
Production

Tools

Community
Production

Tools

Community
Policies

Community
Policies

Central Task Queue

User

Production
manager

Administrator

DIRAC WMS

NorduGrid
EGEE

Batch Systems
Windows Compute Cluster

User
Interface

User
Interface

DIRAC APIDIRAC API

Community
Production

Tools

Community
Production

Tools

Community
Policies

Community
Policies

Central Task Queue

User

Production
manager

Administrator

DIRAC WMS

NorduGrid
EGEE

Batch Systems
Windows Compute Cluster

Figure 3 DIRAC WMS with the central Task Queue

An important prerequisite of the VO policies application in the systems with the central Task Queues
is the necessity of usage of generic pilot agents where the identity of the owner of the pilot job is not
necessarily the same as the one of the owner of the actual workload. This allows the pilot agent to pick
up the highest priority job across the whole user community at each scheduling operation. The
changing of the ownership of the workload executed on a Worker Node have seen doubts of the site
managers because of potential security concerns. However, introduction of a glexec authorization tool
which can be used on the Worker Nodes to apply site policies to the user workload obtained by the
generic pilot agent resolves this problem [14].

5. Data Management System
The DIRAC project is providing a range of tools to handle data management tasks. The tools can be
classified in several levels (Figure 4).

The low level tools include clients of various kinds of storages and file catalogs. DIRAC project
provides only a simple Storage Element service accessible through the DISET protocol with a disk file
system back-end. Otherwise, clients of all the mostly used storage systems are provided exposing to
the users a uniform API.

As was mentioned above, the main File Catalog in use by LHCb is LCG File Catalog (LFC) with a
single master write accessible instance and multiple read-only mirrors. DIRAC is also providing its
own simple File Catalog solution which is used in LHCb in the context of the Production Management
System although provides all the basic functionalities needed for general applications.

The Replica Manager class which is encapsulating all the basic file management operations:
uploading, replication, registration. The Replica Manager is masking the diversities of different
storage systems and can handle several file catalogs at the same time. For the Grid Storage Elements
the Replica Manager functionality is based on the GFAL/LCG utilities.

The higher level Data Management components include an automatic Data Distribution System and
a Data Integrity Checking System. The Data Distribution System allows defining destination storages
for all the types of data used by a VO before the data actually become available. Once the first replicas
of the data to be distributed are registered in the File Catalog, the replication requests are formed and

sent for execution automatically.
The data transfers are effectuated
either by means of the FTS service
of the WLCG project or by
specialized DIRAC agents [15].

The experience of managing
large volumes of data in the
distributed computing environment
made it clear the necessity of
thorough checking of the integrity
of the data stored in various storage
systems and the contents of the
replica catalogs. Since the storage

systems and catalogs are completely decoupled, these checks are not trivial. DIRAC provides several
ways to carry out the checks [16]. The corresponding tools are centred around the Integrity Database
which is accumulating reports of inconsistencies of the contents of the storage and catalogs as well as
reports on the data access problems. The reports are sent by specialized agents which are
systematically examining the storage and catalog name spaces but also by any other components
which can fail to access some data. The contents of the Integrity Database are used in turn by agents
attempting to recover the corrupted data or to restore the consistence of the catalogs. If the recovery
operation can not be performed automatically, the control is passed to the human Data Manager.

Automated Data
Distribution System

Automated Data
Distribution System

Reliable Data
Transfer Layer
Reliable Data

Transfer Layer

Replica ManagerReplica Manager

Data
Manager

LHCb
Detector

SRM

xxxFTP

DIRAC SE

LFC

Proc DB

DIRAC FCStorages Catalogs

FTSFTSProduction
Jobs

Jobs

Transfer AgentsTransfer Agents

Automated Data
Distribution System

Automated Data
Distribution System

Reliable Data
Transfer Layer
Reliable Data

Transfer Layer

Replica ManagerReplica Manager

Data
Manager

LHCb
Detector

SRM

xxxFTP

DIRAC SE

LFC

Proc DB

DIRAC FCStorages Catalogs

FTSFTSProduction
Jobs

Jobs

Transfer AgentsTransfer AgentsTransfer AgentsTransfer Agents

Figure 4 Data Management System components

6. Production Management System
The Workload and Data Management Systems are providing interfaces to the computing and storage
resources and serve as a solid foundation for higher level applications. In the data production activity,
managers have to deal with hundreds of thousands of jobs and data file replicas. To be efficient, they
need a set of convenient tools to manage these large workloads. The DIRAC system provides various
tools to cope with these tasks.

6.1. Workflow definitions
Each data production stage usually consists of several interdependent steps where the outputs of initial
steps serve as input to subsequent steps. DIRAC provides means to describe workflows of any
complexity as sequences of any number of simple operations. The operations are coded as Modules
which can be assembled in Steps which typically correspond to invoking single applications. The
Modules can be as simple as calling a user defined scripts or custom to execute a VO specific
application. The Steps can be combined in complex Workflows executing several applications.

The Production Managers are using a library of predefined Modules, Steps and Workflows to either
create new workflows or update the old ones. A special graphical Workflow Editor is provided to help
this work.

6.2. Automatic Data Processing
Once the workflow is prepared, it is necessary to specify the corresponding jobs should be created, i.e.
define the corresponding production. All the production definitions including the necessary statistics
and input data to be processed are registered in the Processing Database. These definitions are used by
a special agent to generate and submit jobs to the Workload Management System. It is important to

note that the data to be processed are
registered in the Processing Database
at the same time and in the same
operation as uploading the files. It
means that the data is automatically
available to define and submit the
corresponding processing jobs as soon
as it is stored in the Grid environment
(Figure 5).

The Production Management
System is capable to perform
definition and submission of all the
foreseen tasks in a fully automatic,
data driven way. In the case of LHCb,

the automatic processing chain will include the following tasks:

Production
Manager

Data
Manager

Production
definitions
Production
definitions

Data to
process
Data to
process

Processing Database

Production
Workflow

Editor

Data
Distribution

System

DIRAC
File Catalog

DIRAC WMS

Jobs
Production Agent

Production
Manager

Data
Manager

Production
definitions
Production
definitions

Data to
process
Data to
process

Processing Database

Production
Workflow

Editor

Data
Distribution

System

DIRAC
File Catalog

DIRAC WMS

Jobs
Production Agent

Figure 5 Production Management System components

• Saving data from the on-line disk buffers to the persistent storage in the CERN Castor system;
• Making the second replica of the RAW data in the Tier-1 centres;
• Reconstruction of the RAW data at Tier-1 centres and distribution of the resulting DST data to

other Tier-1 centres;
• Stripping (preselection) of the reconstructed data and distribution of the resulting analysis data to

all the other Tier-1 centres for final analysis.
As a result, the user analysis of the experimental data should be possible with a minimal delay with

respect to the moment of the data acquisition in all the Tier-1 centres according to the LHCb
Computing Model [17].

6.3. Production experience and performance
The performance of the LHCb Production System based on the DIRAC project was evaluated during
the last long Data Challenge 2006 (DC’06) which took place in 2006-2007. This was, in fact, a period
of normal production with just few special test runs for new introduced Grid functionality. During this
period there were about 1.5 million jobs executed. The number of concurrently executed jobs reached
the peak value of 9750 together with several tens of thousands jobs waiting in the DIRAC central Task
Queue. More than 120 distinct sites were involved mostly in the WLCG Computing Grid but also
some standalone clusters. In the whole the Production System showed a very stable performance with
an effective job success rate well above 90%. More details on the LHCb production experience can be
found in [18].

The DIRAC DC’06 performance was achieved with all the central WMS services, including the job
database, running on just one host situated at CERN. Since all the services are completely independent
of each other, they can be deployed on different machines with even several instances of each services.
Standard database performance enhancement solutions can be also applied to the central DIRAC
database. Altogether, this shows a clear scalability potential of the system. Even in its present setup it
is capable to serve a complete mid-range VO having access to heterogeneous distributed resources and
more capacity can be easily added if necessary.

The DC’06 revealed a clear necessity of thorough monitoring of the sanity of the Grid resources
provided by the sites. It turned out that often the site managers are not aware that the services under
their responsibility are not functioning properly for a given VO. The SAM framework for monitoring
the status of the Grid services had to be complemented by specific VO tests to help site managers to
maintain their installations. In the case of LHCb these test jobs turned out to be crucial for successful
functioning of the Production System. The peculiarity of the LHCb approach is that the DIRAC WMS
is used to submit and monitor the jobs performing tests in the SAM framework with the results
reported to the SAM Database [19]. This resulted in higher testing efficiency and in shorter service
downtimes.

7. Conclusions and outlook
The DIRAC project once started as a simulation data production system now has evolved into a
general purpose grid middleware which is covering all the major tasks performed in a distributed
computing environment. The incremental development process ensured stable performance along with
steadily increasing functionality. It allows now integrating different types of computing resources in a
single system of up to 10’000 CPUs and there is a clear path of increasing its capacity due to a
modular, service oriented architecture.

The system supports not only execution of individual jobs but also handling large sets of logically
grouped tasks. Much attention is paid to the automation of well defined production activities in order
to reduce the number of human operators. The general purpose functionality can be easily adapted to
the needs of specific VOs by providing pluggable components developed in the common framework.
The problems of stability of the resources in the ever changing grid environment are solved to a large
extent with various failover mechanisms adding redundancy to the whole system. All these features
allow positioning the DIRAC project as a general purpose Community Grid Solution for a mid-range
to large VO having access to various heterogeneous computing resources.

Further DIRAC developments will be aimed at perfection of the current functionality which will be
fully exploited during the upcoming series of the LHCb Dress Rehearsals to be held in 2008. This
should scale will to the requirements of the real data taking period. Multiple improvements in the
DIRAC interfaces are also foreseen to make it a viable alternative for other user communities as well.

8. Acknowledgements
The authors would like to acknowledge the European Marie Curie Fellowships program which
allowed several young and dynamic developers to contribute to the DIRAC project.

References
[1] A.Tsaregorodtsev et al, DIRAC – The Distributed Data Production and Analysis for LHCb,

Proceedings of the CHEP 2004 Conference.
A.Tsaregorodtsev et al, DIRAC, The LHCb Data Production and Distributed Analysis System,

Proceedings of the CHEP 2006 Conference.
[2] T. Maeno, PanDA: Distributed production and distributed analysis system for ATLAS,

Proceedings of the CHEP 2007 Conference
[3] L. Tuura et al, Scaling CMS data transfer system for LHC start-up, Proceedings of the CHEP

2007 Conference
[4] P. Saiz et al, AliEn2: the ALICE grid Environment, Proceedings of the CHEP 2007 Conference
[5] Y.Y.Li et al, Extension of the DIRAC workload-management system to allow use of distributed

Windows resources, Proceedings of the CHEP 2007 Conference,
[6] R.Graciani Diaz, A.Casajus Ramo, DIRAC Agents and Services, Proceedings of the CHEP

2007 Conference
[7] A. Maier et al, Ganga - a job management and optimising tool, Proceedings of the CHEP 2007

Conference
[8] R.Graciani Diaz, A.Casajus Ramo, DIRAC Framework for Distributed Computing.

Proceedings of the CHEP 2007 Conference
[9] R.Graciani Diaz, A.Casajus Ramo, DIRAC Security Infrastructure, Proceedings of the CHEP

2006 Conference.
[10] Pylons project, http://pylonshd.com .
[11] S.K.Paterson, A.Tsaregorodtsev, DIRAC Optimized Workload Management, Proceedings of the

CHEP 2007 Conference
[12] A.Maier, S.K.Paterson, Distributed Data Analysis in LHCb, Proceedings of the CHEP 2007

Conference
[13] G.Castellani et al, DIRAC Job Prioritization and Fair Share in LHCb, Proceedings of the CHEP

2007 Conference
[14] D. Groep et al, glExec - gluing grid computing jobs to the Unix world, Proceedings of the

CHEP 2007 Conference

http://pylonshd.com/

I. Sfiligoi et al, Addressing the Pilot Security Problem With gLExec, Proceedings of the CHEP
2007 Conference

[15] A.C.Smith et al, DIRAC Reliable Data Management for LHCb, Proceedings of the CHEP 2007
Conference

[16] M. Bargiotti, A.C.Smith, DIRAC Data Management: consistency, integrity and coherence of
data, Proceedings of the CHEP 2007 Conference

[17] A.C.Smith et al, DIRAC Data Production Management, Proceedings of the CHEP 2007
Conference

[18] R.Nandakumar et al, The LHCb Computing Data Challenge DC06, Proceedings of the CHEP
2007 Conference

[19] J.Closier et al, Ensuring GRID resource availability with the SAM framework in LHCb,
Proceedings of the CHEP 2007 Conference

