
CMS Conditions Data Access using FroNTier

Barry Blumenfeld1,David Dykstra2, Lee Lueking2,Eric Wicklund2

1Johns Hopkins University, Baltimore, Maryland 21218
2Fermilab, Batavia, Illinois 60510

E-mail: lueking@fnal.gov

Abstract. The CMS experiment at the LHC has established an infrastructure using the
FroNTier framework to deliver conditions (i.e. calibration, alignment, etc.) data to processing
clients worldwide. FroNTier is a simple web service approach providing client HTTP access to
a central database service. The system for CMS has been developed to work with POOL which
provides object relational mapping between the C++ clients and various database technologies.
Because of the read only nature of the data, Squid proxy caching servers are maintained near
clients and these caches provide high performance data access. Several features have been
developed to make the system meet the needs of CMS including careful attention to cache
coherency with the central database, and low latency loading required for the operation of the
online High Level Trigger. The ease of deployment, stability of operation, and high performance
make the FroNTier approach well suited to the GRID environment being used for CMS offline,
as well as for the online environment used by the CMS High Level Trigger (HLT). The use
of standard software, such as Squid and various monitoring tools, make the system reliable,
highly configurable and easily maintained. We describe the architecture, software, deployment,
performance, monitoring and overall operational experience for the system.

1. Introduction

The CMS Experiment is using a multi-tier web approach to deliver conditions data to a
worldwide community of distributed processing and analysis clients. CMS conditions data
includes calibration, alignment, and configuration information used for offline detector event
data processing. Conditions data is keyed by time, or run number, and defined to be immutable,
i.e. new entries require new tags or versions. A given object may be used by thousands of jobs
and caching such information close to the processing activity provides significant performance
gains. Readily deployable, highly reliable and easily maintainable web proxy/caching servers
are a logical solution for this caching and fit seamlessly into the web approach.

2. Implementation and Advantages

The CMS software stack used by the client to access the conditions data is illustrated in Fig. 1.
CMS uses POOL-ORA (Object Relational Access) [1] as an object to relational mapping tool to
relate C++ objects to the relational database schema. A FroNTier plugin for CORAL [2] has
been created to provide read-only access to the POOL DB objects via FroNTier. The system
functions with the following steps:

(i) Pool and CORAL generate SQL queries from the CMS client framework C++ objects.

(ii) The FroNTier client converts the SQL into an HTTP GET and sends it over the network
to the FroNTier server.



(iii) The FroNTier server unpacks the SQL request, sends it to the DB server, and retrieves the
needed data.

(iv) The data is optionally compressed, then packed into an HTTP formatted stream and sent
back to the client.

(v) Squid proxy/caching server(s) between the FroNTier server and client caches requested
objects, significantly improving performance and greatly reducing the load on the central
database.

The system uses standard tools to make it reliable, readily deployable, highly configurable and
easily maintained. The FroNTier server employs Tomcat [3] as the servlet container, Squid [4] is
used for the proxy/caching servers; both are well proven and extremely reliable. Squid provides
convenient monitoring through SNMP [5], and MRTG [6] are employed to chart interesting
metrics including access rates, network throughput and cache hit statistics. Many tools are
available to analyze the logs produced by squid which are formatted similar to those produced
by Apache servers, and we currently are using AWStats [7] to do this for the central servers.
These products are well documented in existing literature and on the web.

The only deployments needed at Tier-1, Tier-2, and Tier-3 centers are Squids, and installation
is quick, and administration is straightforward. Squids are highly configurable and customizable
to match specific site environments, security and other needs. No DBA’s are needed beyond the
central database at CERN as the caches are loaded on demand and self managing. If a cache is
lost or corrupted it is simply repopulated automatically with little or no intervention required.

Figure 1. The CMS software stack.

3. FroNTier Deployment

The FroNTier system has been, or is being, deployed for all processing that requires access to
the CMS conditions data. Fig. 2 provides an overview of this deployment at the Experiment
site, for the Tier-0 prompt reconstruction farm, and beyond to Tier-1 and Tier-N sites. The
High Level Trigger (HLT) filter farm and Tier-0 prompt reconstruction farm represent special
challenges that will be discussed later. One key component of the offline deployment is the
central service referred to as the “Launchpad” shown in Fig. 3. Here, two machines are operated
in parallel, each with a Tomcat and Squid operating in tandem. The two boxes provide load



Figure 2. Overview of FroNTier deployment for delivering CMS conditions data.

sharing through a Round Robin DNS configuration and failover through client retries. If one
of the Launchpad servers is down, it is removed from the Round Robin DNS dynamically. The
Squids are configured in accelerator mode and communicate only to the FroNTier Tomcats so
no access control is required. This is referred to as “wide open FroNTier” and allows new sites
to begin using the service with no registration required, a convenient approach given the very
large number of potential users. The FroNTier servlets run under the standard Tomcat server,
and there is typically a servlet for development, integration and production activities. Each
servlet is configured to connect to an instance of the Oracle database.

There are many configuration options available for the squids and the cache management
and sharing greatly affects the performance of the system. Peer caching was initially used to
share cached objects between the launchpad squids. It was realized, however, that in some cases
when the same object is being requested by many clients at nearly the same time there can be
a race condition during which the database is accessed directly more than expected. A squid
option called “collapsed forwarding” was added in Squid v 2.6 that resolves this problem, but
is incompatible with peer caching and it was chosen instead.

Figure 3. FroNTier central launchpad operated at CERN.



4. Cache Coherency

One important issue that must be dealt with in the system is that of cache coherency. Since
the Squid caches are populated automatically and have no connection to the state of the data
in the central oracle server it is possible for the cache to become stale. For the most part, this
problem is resolved by CMS policy that all objects put in to the database are never changed. If
conditions data is updated in the database a completely new tag identifier is stipulated and the
previous data is unchanged. The tag and the information about the time region of validity, or
Interval of Validity (IOV) are referred to as the metadata. The actual conditions data itself in
the POOL-ORA repository is called the payload. The relationship between the metadata and
the payload is illustrated in Fig. 4. By decree, data in conditions IOV can not change, therefore
caching is consistent. However, new IOV’s and payloads can be appended in order to extend
the IOV range and this is inconsistent with caching.

After considering many ideas, CMS has adopted the solution that all cached objects have
expiration times. There are two categories of object expiration:

• Short-lived: Metadata objects, including the pointers to payload objects, may change in
short time period, and

• Long-lived: Payload objects which never change.

The amount of time for short-lived and long-lived objects are adjusted according to where in
the CMS data model the data is being used. For example, in the online the calibrations change
quickly as new data is added for upcoming runs. At Tier-0, calibrations change on the order
of a few hours as new runs appear for reconstruction and at Tier 1 and above conditions data
may be stable for weeks. The value of the short and long expirations is controlled at the central
FroNTier server, so they can easily be tuned as needed.

Figure 4. CMS organization of Conditions data and metadata.

5. Deployment and Operation

The number of sites with working FroNTier Squids installed is charted in Fig. 5. Deploying squids
for CMS began in late 2005 when 10 centers were used for initial testing. In 2006 additional
sites were prepared between May and October in preparation for the Computing, Software and
Analysis Challenge (CSA06). More sites are being deployed throughout the summer and fall
of 2007 in preparation for the ongoing CSA and perhaps as many as 20-30 sites will be added.
There are several options for installing the squids but a tarball and scripts provided by CMS is
the most popular. Very few problems have been experienced with the installation procedures
CMS provides.

The system has been heavily used by CMS for the last year. The daily requests to the
FroNTier launchpad and information delivered by it are charted in Figures 6 and 7. These charts



Figure 5. FroNTier Squid deployment at CMS Tier-0, 1, and 2 sites.

reflect the total activity of production, development, and testing. The number of daily requests
varies significantly but a peak day was observed in April when over 100 Million were served.
This was anomalous and about two orders of magnitude above what is expected, nevertheless it
verifies that the system operates stably even under extreme load. During the monitoring period
charted there was at least one day with 100 GB of data delivered to remote sites. Of course in
this system the requests observed on the launchpad represent only a small fraction of the total
client requests satisfied mostly by remotely deployed squid caches.

Figure 6. FroNTier central launchpad daily
requests satisfied since December 2006.

Figure 7. FroNTier central launchpad daily
data delivered since December 2006.

There are several approaches being used to monitor the system’s health and operation. The
squid logs produced on the launchpad are mined for statistics on requests origins, number of
requests, amount of data transferred, and response times for requests. All squids in the system
are polled every five minutes through their SNMP interface to collect and record information



Table 1. Requirements for conditions data delivery for High Level Trigger and Tier-0 Prompt
reconstruction Farm. Entries marked with an “*” indicate worst-case expectations.

Parameter HLT Tier0

Number of Nodes 2000 1000
Number of Processes 16k 3k
Startup < 10 sec all clients < 100 sec per client
Client Access Simultaneous Staggered
Cache Load < 1 Min N/A
Tot Obj Size 100 MB* 150 MB*
New Objects 100% / run* 100% / run*
Number of Squids 1 per node Scalable (2-8)

about the number of objects served, throughput, size of the cache, and cache hit performance.
In addition, as part of the Site Availability Monitoring (SAM), GRID jobs are automatically
submitted several times a day to all deployed sites to validate the integrity of the entire FroNTier
system. The success or failure of the SAM tests are collected and are available with other site
tests on SAM web pages.

6. Specific Challenges

Within CMS there are two specific areas that represent challenges to the FroNTier system;
the online High Level Trigger (HLT) filter farm and the offline Tier-0 prompt reconstruction
farm. Requirements for these two areas are summarized in Table 1. In the case of the HLT all
the conditions information needs to be loaded simultaneously into 16k processes running on 2k
hardware nodes in less than 10 seconds. In the worst case it is estimated that the amount of
conditions data needed is around 100 MB, and all of this could be refreshed every new run which
amounts to delivering 1.8 TB of data to the clients. In the case of the prompt reconstruction
farm of order 3k processes start in a non-simultaneous, or staggered, fashion. Although the
requirements are less stringent for the offline case the environment is less controlled than online,
and slightly different solutions are needed in the two cases.

6.1. Hierarchy of Squids

The solution developed for the HLT farm is to deploy a squid on each node, and a hierarchy of
squids to feed these squids. With the squid cache on each node loaded, the simultaneous start
of the 8 processes there is easily accomplished in under 10 seconds. An additional requirement
on this approach is to pre-load all the squid caches, in preparation for a run, in less than a
minute. Testing has been conducted using a small part of the online HLT farm to confirm that
these requirements can be satisfied. The configuration chosen has 6 tiers of squids with each tier
fanning out to four squids in the next tier. Three tiers of squids feed the 50 racks of nodes via
one non-blocking GBit network, and 3 tiers of squids within each rack feed the 40 constituent
nodes over separate non-blocking GBit networks. The current bottleneck is the conversion from
the database to HTTP in the FroNTier server, but this portion of the load time is still under
the one minute requirement.

6.2. Parallel load-balanced Squids

For the prompt reconstruction farm the time required to access 150 MB of conditions data
should be less than 1 % of the time for the entire job. This might translate into approximately



one minute and can easily be satisfied by a set of parallel squids configured with Round Robin
DNS load-sharing. It is believed that as many as eight parallel servers can be used effectively
with this type of load-sharing and the system is now being tested with four. In cases where
many farm jobs start together there may be bursts of accesses that slow the response to some
degree.

On multi-processor/multi-core machines, CPU resources are under utilized because a single
Squid process utilizes only one CPU. Multiple squids can be run on each machine employing
multiple network interfaces to greatly improve the effectiveness of each machine. Two approaches
have been examined, 1) Multi-homed where the machine looks like multiple nodes and uses
multiple network interfaces, and 2) Bonded interfaces where multiple network interfaces are
used together to increase the network throughput. The bonded approach was implemented
at Fermilab because it works best with the specific load balancing configuration being used
there. With this configuration, one multi-processor server using two GBit network interfaces
and running two squids, 200 MBps throughput can be achieved. Some sites, for now, prefer
simply adding more machines without special configurations to reduce network configuration
issues.

7. Summary

FroNTier is used by CMS for all accesses to conditions data and significant operational experience
has been gained over the last year. The ease of deployment, stability of operation, and high
performance make the FroNTier approach well suited to both online and offline environments.
The use of standard software, such as Squid and various monitoring tools, make the system
reliable, highly configurable and easy to maintain. There are currently 40 squid sites being
monitored and many more expected.

Recent testing has demonstrated that the requirements needed for the online environment
used by the CMS High Level Trigger filter farm can be met by pre-loading a hierarchy of squid.
Meeting the needs of the offline prompt reconstruction farm can also be met, and at Fermilab
running multiple Squids processes on a single server machine has been demonstrated to more
effectively utilize the resources available on modern servers.

8. Acknowledgments

We would like to thank DOE and NSF for support of the project under which this work was
conducted. This effort is the result of many within CMS working together to anticipate the
needs of the Experiment. The CMS Computing and Offline Software organization has provided
the overall data model and software framework in which FroNTier us used. We greatly thank
the numerous individuals within CMS and CERN IT who have contributed to its deployment,
testing, and operation.

References
[1] POOL-ORA home page: http://pool.cern.ch/
[2] D. Duellmann, et. al.,”Development Status and Plans for the LCG Common Database Access Layer CORAL,”

Proceedings of this conference. Also see the CORAL home page: http://pool.cern.ch/coral/
[3] Tomcat home page: http://tomcat.apache.org/
[4] Squid home page: http://www.squid-cache.org/
[5] SNMP home page: http://www.snmplink.org/
[6] MRTG home page: http://oss.oetiker.ch/mrtg/
[7] AWStats home page: http://awstats.sourceforge.net/


