

Control and analysis software

Presented at CHEP-2007
on behalf of Tile Collaboration
by Oleg Solovyanov, IHEP Protvino, Russia

Outline

- ATLAS Tile Calorimeter
- Cesium calibration system
- Software architecture
- Operation, results and performance
- Conclusions

Tile Calorimeter

View of ATLAS[1] calorimeter system. The TileCal[2] sampling calorimeter constructed of steel plates (absorber) and scintillating plastic tiles (active material). It is designed as one barrel and two extended barrel parts. All the three sections have a cylindrical structure divided in ϕ by 64 wedges.

Within modules there are a number of cells corresponding to the projective geometry

Front-end electronics [3] located inside module's girder

Cesium calibration system

- To calibrate and monitor the TileCal, a powerful (~10mCi) ¹³⁷Cs γ-source is used
- While the source moves in the detector inside calibration tubes by a flow of liquid, integrated PMT currents from front-end electronics are read out
- The use of a movable source allows to test the optical quality of the scintillators and fibers, to equalize the response of all the cells (<1%), to monitor each cell over the time and to provide the overall energy calibration [4]
- In order to transport the radioactive source in a safe and controllable way along the 10km of tubes inside the calorimeter, an elaborate source drive and monitoring system are needed [5],[6]
- An intelligent on-line software is required to perform the task of source movement and detector response analysis

Electronics layout

 Schematic view of sensors and control boards layout around the calorimeter

Control and readout scheme

Software requirements

- Control and operate the hydraulics, electronics and run the ¹³⁷Cs source through the whole Tile calorimeter sensitive volume
- Read out the integrated current of the PMTs, while the source capsule moves with the designed speed, perform readout switching when capsule passes from one module to another*
- Be capable to correct/adjust the run conditions according to current system status and on-line analysis information
- Visualize results of online analysis and the position of the capsule, and the physical conditions of the run
- Store raw and reconstructed data
- Communicate with detector control system and calibration databases
- Monitor status of the hardware components, perform their tests and calibration

^{*}readout is possible only from one module at a time

Electronics tests

To cope with system size, diversity and complexity of components, a set of tests has been developed with the help of ATLAS DVS framework [7], which allows to describe a hierarchy of components and their tests, to be executed in a sequential or parallel way, depending on the need.

- 10000 PMT channels in 256 front-end electronics "drawers"
- 500 source control sensors read out by 100 boards of 7 different types
- Electronics and their tests are described in configuration database
- Executed from command line or GUI
- Results provided in text or HTML format
- Expert system approach

Software architecture

- Readout and control processes running inside
 VME crates
- Information service (IS)[8],[9] as communication media between processes
- Embedded scripting facilities for program logics
- GUI, DB and other facilities for operator

Scripts

- Scripting facilities for program flow control and configuration add flexibility and ease of use for non-experts
- Embedded Python interpreter with extention library links together hardware objects and their representation inside Information service to share data between processes
- Configuration with Python scripts helps complex descriptions of different setups
- Standard scripts for control process algorithms and runtime behavior

```
# move source.py - move the source
global sinpath, switchpos, switchneg
global base_pump_speed, finger_from, finger_to, direction
global tube_from, tube_to
global source position
# determine contour size as number of modules between from
and to pipes
def contour_size(f,t):
    size = abs(pipes[t]-pipes[f])
    if size > 12: size = size-64
    return abs(size)
# find the last hitted sin
def find source(since=0):
    lastsin = '00'
    lasthit = since
    for s in sinpath:
        # anticlockwise direction
        if direction>0:
            if sin[s].hit>=lasthit:
                lasthit = sin[s].hit
                lastsin = s[:2] # leave 2 digit module name
        # clockwise direction
            if sin[s].hit>lasthit:
                lasthit = sin[s].hit
                lastsin = s[:2]
    return int(lastsin)
```

Python extention

- A set of Cs specific extention classes for Python
- Python object links together hardware component and IS representation
- Python object interacts with hardware
- Updates IS information
- Objects of Python "Info" classes, subscribed to the update, gets new state
- Information exchange between Python scripts running at different computers

IS classes

TileCs IS schema (part)

- An hierarchy of information service classes describes Cs specific hardware and software objects to share information between processes
- Many useful IS features
 - is_ls and is_monitor utilities
 - autogenerated C++ and Java bindings
 - command listener
 - server history "time machine"
 - server backup helps crash recovery

Control processes

- Hydra controls the drive and sensors via CANbus
- Moves the source
- Reacts to current source position to switch drive contours
- Provides information for other processes
- Executes commands received from GUI or other processes
- Uses scripts to change configuration and control logics

DAQ

- DAQ process read out PMT responses and control front-end electronics via CANbus
- Switches front-end module readout based on current source position
- Provides data to the analysis and recording processes via IS

DCS and safety

- To fulfill the task of save and controlled operation an interface to detector control system (DCS) is required
- DDC package [10] of ATLAS TDAQ is used to retrieve and send high voltage and other important information, like temperatures, power supply status
- Source position, run status is provided for experiment operators (SLIMOS, etc.)

GUI

- QT application
- Allows to manipulate with any single valve as well as to send high level commands
- Receives information from all the sensors and visualize status of the system in real time
- Have important playback feature: full history can be replayed in accelerated mode

Data analysis

- Almost all TileCal modules are different, so sophisticated analysis software is required to achieve calibration with required precision
- Raw data taken during the run saved to a file in form of ROOT trees for easy access and visualization.
- Analysis can be started during the run as soon as data from one calorimeter module are available
- Response in every cell is calculated and results are used in iterative equalization procedure.
- Global data quality flag from analysis process might be taken into account by control process (e.g. to send capsule back to some particular bad module or to stop the run)
- Results are visualized in GUI and stored in the database

Cell response to the passing source

Operations

- From sketch to the program logics – scripting facilities provide a way for easy algorithm and sequence encoding by non-experts in programming
- No need for program recompilation to change logics
- Developed a set of scripts for operational steps, like water filling, run preparation, source location, etc.

RUN operation scenario

Preparation

- □ FE electronics tests: pressure sensors, SINs, garage sensors, 3U-crates etc.
- Safety checks: locate the source, air pressure leak test
- Functionality of the equipment: hydraulic drive, garage locks etc.
- Control of liquid flow: pump, air pressure, detector local pressures etc.
- Water filling: fill detector volume with liquid from the water storage tanks

Cs RUN

- Run the source capsule at a desired speed, keeping an eye on its current position with SIN sensors and detector response
- Collect PMT responses and store it along with the online analysis of the correctness of the information
- Adjust the source movement, data readout and online analysis modes according to the current run conditions (situation)

Post run tasks

- □ Water draining: pump, air pressure, detector local pressures
- Safety checks: garages, source location, source blocking

Results

- Cesium calibration system is installed in the ATLAS experiment cavern, commissioning is ongoing
- Regular electronics tests verified the integrity and stability of the components
- Dummy source runs allowed to check system functionality and operational logic before introducing the radioactive source to the still busy environment of experiment installation

Performance

- 100Hz trigger frequency
- Data flow rate relatively small, ~20 KB/s
- The full Tile Calorimeter barrel scan normally should take about 8 hours and produce ~300 MBs of raw data
- Several runs per year are planned, after initial series of runs for optical quality verification, primary equalization and calibration effort

Conclusions

- A system to calibrate and monitor ATLAS Tile Calorimeter with a movable radioactive source, driven by liquid flow, has been installed in the ATLAS pit
- Online software has been developed, using ATLAS TDAQ components for database, information exchange, electronics tests, communication with detector control systems, etc.
- Scripting facilities allowed for quick prototyping and modification flexibility by non-experts
- GUI provided operator with clear status and control, and history mechanism for post-run problem analysis
- Data analysis software with online response
- Good performance has been achieved for data taking and online analysis, to cope with the task at the speed of source travel
- Many thanks to all Tile collaboration and ATLAS TDAQ group

References

- [1] ATLAS Technical Proposal CERN/LHCC/94-43 LHCC/P2, Dec 1994.
- [2] Tile Calorimeter TDR CERN/LHCC 96-42, Dec 1996.
- [3] K. Anderson et al., 4th Workshop on Electronics for the LHC Experiments, Rome, 1998. Front-end electronics for the ATLAS Tile Calorimeter.
- [4] G.Blanchot et al., ATL-TILECAL-94-044, Dec 1994. Cell Intercalibration and Response Uniformity Studies Using a Movable Cs137 Source in the TILECAL 1994 Prototype.
- [5] E.Starchenko et al., NIM A 494 (2002) 381-384, ATL-TILECAL-2002-003, Nov 2002. Cesium Monitoring System for Atlas Tile Hadron Calorimeter.
- [6] N.Shalanda et al., NIM A 508 (2003) 276-286, Radioactive source control and electronics for the Atlas tile calorimeter cesium calibration system
- [7] A. Kazarov et al. 2003 Conference for Computing in High-Energy and Nuclear Physics (CHEP 03), La Jolla, California, 24-28 Mar 2003. Verification and Diagnostics Framework in Atlas Trigger/DAQ.
- [8] M. Caprini et al. ATLAS Technical note 31, Feb 1997. Information service for Atlas DAQ Prototype -1.
- [9] S.Kolos et al., CHEP 2004, Interlaken, Switzerland, 27 September 2004, Experience with CORBA communication middleware in the ATLAS DAQ
- [10] H. Burckhart et al. International Conference on High Energy and Nuclear Physics, Beijing (China), September 2001, p. 109-112., Communication between Trigger/DAQ and DCS in ATLAS