

Sharing LCG files across different platforms

Cheng Yaodong, Wang Lu, Liu Aigui, Chen Gang

Institute of High Energy Physics, Beijing 100049, China

Yaodong.cheng@ihep.ac.cn

Abstract: Currently more and more heterogeneous resources are integrated into LCG. Sharing
LCG files across different platforms, including different OS and grid middleware, is a basic
issue. We implemented web service interface for LFC and pseudo LCG file access client by
using globus Java CoG Kit. This paper describes the architecture, implementation,
performance test and tuning and use scenario.

1. Introduction
Over the last few years, the grid has developed rapidly in the research community and many

business fields. LCG (LHC Computing Grid) led by CERN is one of the largest grid projects in the
world, whose goal is to integrate large geographically distributed computing fabrics into one virtual
computing environment for the LHC. Up to now, more than 240 sites are involved. Currently, it
mainly runs over Linux based operation system and gLite based grid middleware. In fact, more and
more heterogeneous resources are integrated into LCG. For example, many national grid
infrastructures, such as CNGrid in China which now has about 2,000 CPU, own a lot of computing
and storage resources. These resources are potentially a part of LHC data storage and analysis
infrastructure. Moreover, windows batch system, the compute cluster server (CCS) is gradually
adopted by some sites. It isn’t feasible to install LCG data management tool in all of these platforms,
so how to share LCG files across different platforms is a big challenge. It is mainly because:

• The main applications on LCG are data-intensive, which require or produce a large amount of
data. It is not possible to transfer these data only through Resource Broker;

• LCG data transfer system is based on Globus. However, some other grid middle wares are not
compatible with Globus, even without GSI security mechanism and GridFTP transfer tool. It
is not possible to access LCG files directly from arbitrary grid platform;

• LCG File Catalogue (LFC), which is a centric service, is accessible only on Linux OS for the
moment. If it is not accessible, data can’t be located, and transfer of LCG files is also
impossible;

• LCG users would like to use the same executable shell script regardless of the platform on
which the job is running. For example, “lcg-cp” is usually called before a LCG job runs, and if
the job is scheduled to a platform without the command, it can’t be executed successfully.

For above reasons, we can conclude, LCG data management system is necessary for data-intensive
applications and LCG DM should be transparent on multiple platforms. In order to meet the
requirements, a special across-platform tool which acts as LCG DM commands is very useful. Firstly,
we implemented web service interface for LFC, thus LCG files can be located on a variety of
platforms because web services [1] provide a standard means of interoperating between platforms. In

order to access LCG SE, a serial of pseudo LCG file access commands, such as lcg-cp, lcg-cr and so
on, are implemented by using LFC WS interface and globus Java CoG Kit [2].

In the rest of this paper, we describe the details of this tool, including architecture, implementation,
performance test and tuning, an example of use scenario. At last, we will give a conclusion.

2. Architecture and Implementation
The tool aims to share LCG files across different platforms, we call it GFISH (Grid File Sharing

system), which mainly includes two components, a WS-based server and pseudo LCG DM client
commands. The architecture is shown in figure 1.

Linux (SLC)

GFAL, LCG util

GFISH WS
(gsoap)

LFC
Server

LCG
SE

SRM, GridFTP,
RFIO…

MyProxy
Server

Linux, windows…

JVM

GFISH Client
(axis, CoG jglobus)

Figure 1: The architecture of GFISH

Pseudo LCG DM

In figure 1, the left side is the server based on SLC OS and LCG DM (GFAL, LCG_util and so on),

whereas the right side is the client and pseudo LCG DM commands which can run on a variety of
platforms. In fact, the client is only a fat jar package, and it can be downloaded easily to where LCG
DM commands are needed.

2.1. Server implementation
In HEP computing environment, users need to access not only grid files, but also local files, for

example files in CASTOR, when they run jobs on local cluster computing system. That is, users are
not always submitting their jobs to GRID. However, job scripts have to be modified according to
target computing system. In order to access files transparently, we implemented GFISH, which
invokes different protocol and interface according to the prefix of file name, for example, “/castor”,
“/grid”, “/dpm”, or “/afs”. Through using GFISH, user can submit the same job script to grid or local
cluster without any modification.

GFISH includes some commands and APIs. If theses APIs are used in GFISH WS, GFISH WS
server can access local and grid files transparently. Grid files, we define here, are those registered in
LFC server and stored in grid storage element. Thus, GFISH WS is an interface to LFC and some
other file systems. We use gSOAP Web services development toolkit [3] to implement GFISH WS
server. For the moment, the web service interfaces of a serial file system calls, such as access, chmod,
chown, stat, lstat, mkdir, rmdir, unlink, opendir, readdir, closedir, listreplicas, open, read, write, close
and so on, have been implemented.

2.2. Client implementation
Client is designed for users to access remote files, including grid files registered in LFC, across a

variety of platforms. We implement the client on basis of JAVA virtual machine. Axis [4] tool is used
to generate the JAVA client of GFISH web service interface described in file “gfishws.wsdl”. Thus,

gfish Java client can connect to the server easily, though the server is implemented in gSoap C/C++.
Secondly, we use CoG jglobus tool to initiate grid environment and tune performance (described in
later section). Based on the gfish client, some pseudo LCG DM commands, such as lcg-cr, lcg-cp, lcg-
rf, lcg-uf, lcg-rep, lcg-gt and so on, are implemented. These pseudo commands are possible shell
scripts on Linux, or bat files on Window. The client is packaged into a fat jar file, through which user
can access grid files like in LCG environment after he/she is authenticated.

2.3. Security
GFISH WS provides two methods to guarantee the security, one is session-based, and another is

GSI-based. The two methods are shown in figure 2.

Figure 2: security in GFSIH WS

① ② ③ ④

A: session-based

GFISH Server

GFISH Client

① ② ③

B: GSI-based

GFISH Server

GFISH Client

Figure 2-A illustrates the session-based authentication method, the steps are:
① Client tells server the local user and password, myproxy information (server, user, and

password).
② Server authenticates the user and generates a session ID with corresponding information

stored in server and transfers the ID to client. Meanwhile, the server also gets user delegation
from myproxy server. Then client saves the ID in local storage.

③ During the session, Client calls services with given ID. Server get corresponding information,
such as local user and grid proxy, then use the information to connect third-part server, eg,
LFC and CASTOR.

④ Client and server destroy session when user logout explicitly or expired.
Figure 2-B illustrates the GSI-based authentication method, the steps are:
① Client and server do mutual authentication through client user proxy and server certificate.
② Server checks if the client is in the access list. If client is allowed, a new proxy of the client is

created.
③ Server uses new created proxy to connect third-party server in behalf of the client.

In term of session-based method, user is only required to login once, and the following operations
can be executed without spending much time on authentication. Thus, better performance can be
achieved but maybe security vulnerability exists. GSI-based method has good security, but requires
authentication on each operation.

3. Performance test and tuning
SOAP provides good interoperability between different platforms, but it has low performance on

transferring a large amount of data [5] because (1) encoding and decoding of SOAP message need
much time and (2) the encoded message is 4~8 larger than original. According to the reasons, we
perform some performance tuning of GFISH WS gSoap server as follows:

• Data encoding: XML for RPC arguments, base64Binary for small data, DIME for large data;
• Data compress: Compress data before transferring it;

• KEEP-ALIVE: It helps reduce time for HTTP connection;
• CHUNK: transferring data by block without need to compute the length the data;
• Buffer length: The micro SOAP_BUFFLEN of gSoap and the record size of GFISH read/write

affects the performance, and they should be set appropriate value.
In fact, the performance in GFISH WS includes two aspects, one is accessing metadata server, for

example, LFC server, and another is transferring data file. The two aspects are both measured. The
backend database of LFC is MySQL, GFISH WS server and LFC are running on the same machine at
IHEP (two dual-core Xeon CPU 3.0 /4 GB memory). The machine of testing “mkdir” and “rmdir” is
executed on lxplus.cern.ch which has about 250ms delay to IHEP. Data transfer testing is performed in
local area network. The results show in figure 3.

mkdir and rmdir

0

500

1000

1500

2000

2500

d
e
l
a
y
(
m
s
)

lfc
-m

kd
ir

gf
is

h-
m

kd
ir(

gs
i)

lfc
-rm

di
r

gf
is

h-
rm

di
r(

gs
i)

gf
is

h-
m

kd
ir(

ss
)

gf
is

h-
m

kd
ir(

ss
)

data transfer
(100Mbps LAN)

0

2

4

6

8

10

12

1 4 16 64 256 512 1024

file size(MB)

s
p
e
e
d
(
M
B
/
s
e
c
)

base64Binary DIME+Chunk+keeplive

Figure 3: Performance test result of GFISH WS

The operations “mkdir” and “rmdir” are selected to represent performance of metadata in left side

of figure 3. The delay of GSI-based method is very close to that of original operation lfc-*, while
session-based is very fast. GSOAP tuning is very useful in LAN environment (right side of figure 3),
about 42.3% increase than non-tuning, but it doesn’t help over high-latency network (it’s even lower
than “scp”, and result isn’t listed here). To improve the performance of transferring large files, gridftp
API in CoG jglobus tool is introduced in GFISH client, which can perform transfer from LCG SE
directly in multiple-stream mode and achieve high performance.

4. An use scenario
Here we take an example of interoperability between grid middleware. For the moment, the typical

method is to introduce a gateway between two grid middlewares as shown in figure 4. When a LCG
user submits a job though UI, the job may be scheduled into a virtual CE (that is gateway), then runs at
other grid platform (we call it unknown grid, and suppose it is not compatible with globus). The job
has to get or put files through gateway because unknown-grid can’t access LCG SE directly. If our
GFISH tool is used, the scenario is as follows (dashed lines describe the case after GFISH is
introduced into grid interoperability):

1) Before job script runs, it checks if “lcg-cp” command exists. If “lcg-cp” doesn’t exist, the
script download GFISH client jar package from GFISH web site. If it exists, go to step 3.

2) Retrieves the credential from the myproxy server that was previously stored by using
myproxy-init.

3) Executes LCG DM commands, such as “lcg-cp” to get file from LCG SE directly. These
commands are possible from GFISH client, not really from LCG.

5. Conclusion
More and more heterogeneous resources integrated into LCG bring great challenge to data

transferring across different platforms. This work aims to let user can access LCG files transparently
on a variety of platforms, mainly building a pseudo LCG DM environment, including GSI, LFC,
GFAL, lcg_util, gridftp and so on. The advantage of this tool is that the size is very small, about 6MB.
Thus, the tool can be downloaded on demand. However, it doesn’t help when the executable is
compiled and linked with GFAL or globus libraries together.

Gateway

LCG CE

Unknown Grid
UG Client

LCG RB

LCG
SE

LCG UI

Figure 4: An example of use scenario

GFISH WEB LFC GFISH Server

MyProxy

GFISH Client

References
[1] Web Service website: http://www.w3.org/2002/ws/
[2] CoG jglobus, http://dev.globus.org/wiki/CoG_jglobus
[3] gSOAP, The gSOAP Project, http://gsoap2.sourceforge.net/
[4] Axis: http://ws.apache.org/axis/
[5] R. van Engelen. Pushing the SOAP envelope with Web services for scientific computing. In

proceedings of the International Conference on Web Services (ICWS), pages 346–352, Las
Vegas, 2003.

