

Track-based alignment of the ATLAS Inner Detector

Sergio Gonzalez-Sevilla

Instituto de Física Corpuscular (IFIC)

On behalf of the ATLAS Inner Detector Alignment group

CHEP 07 2-7 September 07 Victoria, BC (Canada)

The ATLAS experiment

ATLAS Inner Detector

Subsystem	Pixel	SCT	TRT
Technology	Silicon pixels	Silicon microstrips	Gaseous drift-tubes
Intrinsic resolution	~14 μm (rφ) ~115 μm (z)	~23 μm (rφ)	~170 μm (rφ)

Inner Detector alignment requirements

- Physics motivations of the Inner Detector alignment requirements:
 - track parameters resolutions degraded < 20% by misalignments
 - systematic error M(W) < 15 MeV/c²
 - b-tagging, secondary vertices, etc...

 \Rightarrow alignment controlled to O(10) μ m or better

- Initial knowledge of the detector and hardware-based alignment:
 - Mounting and Survey measurements:
 - assembly measurements during detectors production
 - survey in assembly area and pit (eg: photogrammetric measurements ⇒ elliptical shapes in SCT barrels)
 - precisions: O(100) μm
 - Frequency Scanning Interferometry (FSI):
 - continous monitoring during ATLAS data-taking
 - deformations in shapes of mechanical structures (environmental cond.)
 - precisions: O(10) μm (3D points)
- Ultimate precisions reached with track-based alignment algorithms
- Challenge: 6 degrees of freedom (dofs) / module ⇒ entire system is ~36k dofs!

Alignment approaches (1/2)

- Several approaches to silicon (Pixel and SCT) and TRT alignment:
 - relative alignment of the TRT wrt silicon by track extrapolation
 - implementation of combined alignment silicon+TRT (momentum constraint)
- Algorithms implementations in the ATLAS software framework (Athena):
 - Robust:
 - centre residuals and overlap residuals
 - 2-3 dofs, many iterations
 - alignment corrections computed without minimizations
 - Global χ^2 :
 - in-plane residuals
 - 6 dofs, few iterations
 - large linear system (35k x 35k)
 - correlations accounted though internal track refit
 - Local χ²:
 - distance of closest approach
 - 6 dofs, many iterations
 - 6x6 matrices (module level)
 - correlations through iterating
 - TRTAlignAlg:
 - local and global approaches
 - calibrations required (TRT drift-time relations)

Minimization of χ^2 : $\chi^2 = \sum_{tracks} r^T V^{-1} r$ (inverse) covariance matrix residuals

Alignment approaches (2/2)

- Iterative algorithms:
 - integration into the ATLAS offline software chain
 - alternate computation of alignment corrections and track fitting

- Solving a large system of linear equations:
 - limiting factors: **size**, **precision** and **execution time**
 - fast methods:
 - sparse matrices
 - MA27 ⇒ less than 10 mins for 35k in a single CPU)
 - 64-bits parallel processing:
 - dense matrices (e.g. vertex constraint)
 - ScalaPack ⇒ 10 mins. for full Pixel system (12.5k) on 16 nodes (diagonalisation)

Alignment infrastructure

- Detector description in terms of geometrical primitives (GeoModel)
- Logical volumes grouped in hierarchical nodes
- Alignment infrastructure based on alignable nodes
- Three different levels:
 - level 1: entire subdetectors (whole Pixel, SCT & TRT barrel and end-caps)
 - level 2: silicon layers & disks, TRT modules
 - level 3: silicon modules (individual straw displacements foreseen)

Algorithms validation: CTB

- Combined Testbeam (2004)
- ATLAS barrel slice ⇒ detectors from all different ATLAS subsystems
- Data-taking program:
 - e, π , μ , γ ; 2 up to 180 GeV/c
 - without and with B-field (1.4 T)
- ~20M validated events for the ID

SR1 Cosmics (1/2)

Scintilator 1

 Combined SCT+TRT cosmic runs in SR1 surface assembly area (2006)

Scintillators trigger, no B-field ⇒ MCS @ low p

• Barrel sectors: 22% SCT, 13% TRT

~400k events recorded

SCT

SR1 Cosmics (2/2)

Alignment improves SCT hit efficiency!

CSC and **CDC**

- Computing System Commissioning (CSC) and Calibration Data Challenge (CDC)
- Simulation of calibration and physics samples
- Testing the ATLAS software chain (computing model)
 - calibration and alignment procedures
- Realistic detector description:
 - misalignments at all levels (translations+rotations)
 - shifted and rotated magnetic field
 - extra-material

	Translations	Rotations
Level 1	O(1 mm)	O(0.1 mrad)
Level 2	O(100 μm)	O(1 mrad)
Level 3	O(100 μm)	O(1 mrad)

Convergence and residuals with CSC

Sx (mm) • Multimuon sample: 0.2 Robust 10 muons/event Iteration • σ_{xy} = 15 μ m ; σ_z = 56 mm • Momentum spectrum : [2; 50] GeV/c Algorithms converging, residuals ok Perfect **Iteration 4** SCT barrel layer 1 residuals nwTrk Nom IT0 nwTrk Nom IT1 8 ∆ Z [mm] Global χ^2 nwTrk Nom IT2 TRT layer 0 nwTrk Nom 1T4 nwTrk Ideal = -0.064 $\sigma = 0.073$ $= 1 \mu m$ $\mu = -0.019$ $\sigma = 0.040$ σ = 12 μ m = -0.004 $\sigma = 0.015$ $\mu = 0.000$ $\sigma = 0.012$ $\mu = -0.001 \quad \sigma = 0.012$ As-built -0.5 100 **TRTAlignAlg** -0.04 0.04 -0.02 0.02 mm iteration er

Global deformations and weak modes

- Sagitta distortions (weak modes)
- Bias in track parameters ⇒ but helical path mantained!

• tracks χ^2 (almost) blind to global deformations

Beamspot offset and d_0 vs ϕ_0

- Effect of global distortions: beamspot offset (primary vertex displaced)
- (transverse impact parameter) ⇔ (azimuthal angle) dependence

Fit $(d_0 \text{ vs } \phi_0)$	CSC Pixel Level 1	
$x_0 = (-0.655 \pm 0.005)$ mm	T _X = 0.600 mm	
$y_0 = (-1.045 \pm 0.004) \text{ mm}$	T _Y = 1.050 mm	

Removing global distortions

- Make use of all available information:
 - redundant measurements:
 - momentum measurement in the Muon Spectrometer
 - E/p relation from Calorimeters
 - external constraints (survey, FSI, common vertex, mass constraint, etc.)
 - different event topologies (cosmics, beam halo, etc.)

Summary

- Track-based alignment is required to help reaching the optimal performance of the experiment
- Different alignment algorithms implemented under the ATLAS software framework (Athena)
- Validation performed with simulation and CTB and Cosmics real data
- CSC and CDC Challenges with a realistic detector description
- Biases in track parameters from sagitta distortions
 - control and minimize their effects
 - importance of higher levels macro-structures alignment

Many thanks to the whole ATLAS Inner Detector alignment community !!

BACKUP

Status of the ID installation

- All Inner Detector systems (Barrel, EC-A and C) already installed !!
- Installation and commissioning of services

D EC-A (May 2007

- Survey of the detectors positioning on surface and down in the pit
- Shifts O(mm) between subsystems:
 - ID aligned <1 mm to the solenoid B-field axis
 - EC's shifts ~3 mm in z (thermal enclosures constraints)

The Global χ^2 approach

The method consists of minimizing the giant χ^2 resulting from a simultaneous fit of all particle trajectories and alignment parameters:

$$\chi^2 = \sum_{\textit{tracks}} r^T V_{\text{N}}^{-1} r \quad \text{where} \quad r \equiv (\vec{e}(\pi, a) - \vec{m}).\hat{k}$$
 Intrinsic measurement error + MCS

et us consequently use the linear expansion (we assume all second rder derivatives are negligible). The track fit is solved by:

$$\pi = \pi_0 + \delta \pi = \pi_0 - \left(\frac{\partial e^T}{\partial \pi_0} V^{-1} \frac{\partial e}{\partial \pi_0}\right)^{-1} \frac{\partial e^T}{\partial \pi_0} V^{-1} r(\pi_0, a)$$

while the alignment parameters are given by:

$$\frac{d\chi^2}{da} = 0 \implies \sum_{tracks} \frac{dr^T}{da} V^{-1} r = 0 \qquad \frac{dr}{da} = \frac{\partial r}{\partial a} + \frac{\partial r}{\partial \pi} \frac{d\pi}{da}$$

$$\frac{dr}{da} = \frac{\partial r}{\partial a} + \frac{\partial r}{\partial \pi} \frac{d\pi}{da}$$

$$\delta a = -\underbrace{\left(\sum_{tracks} \frac{\partial r^T}{\partial a_0} W \frac{\partial r}{\partial a_0}\right)^{-1}}_{\mathcal{M}} \underbrace{\sum_{tracks} \frac{\partial r^T}{\partial a_0} W r(\pi_0, a_0)}_{\mathcal{V}}$$

$$W \equiv V^{-1}\hat{W} \equiv V^{-1} - V^{-1}E(E^TV^{-1}E)^{-1}E^TV^{-1} \quad E \equiv \frac{\partial e}{\partial \pi_0}$$

The Local χ^2 approach

• Reduce the 36k x 36 system by looking ar 6x6 block matrices at the diagonal of the full size matrix:

$$\Delta \vec{a}_k = -\left(\sum_{tracks} \frac{1}{\sigma_{ik}^2} \left(\frac{\partial r_{ik}(\vec{a}_k)}{d\vec{a}_{k0}}\right) \left(\frac{\partial r_{ik}(\vec{a}_k)}{d\vec{a}_{k0}}\right)^T\right)^{-1} \cdot \left(\sum_{tracks} \frac{1}{\sigma_{ik}^2} \left(\frac{\partial r_{ik}(\vec{a}_k)}{d\vec{a}_{k0}}\right) r_{ik}(\vec{a}_{k0})\right)^T$$

- Asumptions:
 - unbiased track parameters
 - no correlations between modules
 - diagonal covariance matrix (no MCS)
- The missing correlations are restored implicitely by iterating

The Robust approach

- Use overlap residuals for determining relative module to module misalignments
- Measure r
 overlap residuals for each two overlaps
- Support-structures relative alignment
- Mean of overlap residual ≈ relative misalignment

ATLAS Combined TestBeam 2004

Frequency Scanning Interferometry

- Frequency Scanning Interferometry (FSI)
 - a geodetic grid of length measurements between nodes attached to the SCT support structure
 - all 842 grid line lengths are measured simultaneously using FSI to a precision < 1 mm
 - repeat every ten minutes to measure time varying distortions

Stephen Gibson

On-detector FSI System

Stephen Gibson

On-detector FSI System

Sagitta distortions

Bias on the transverse impact parameter

