

Replication and Load Balancing Strategy of STAR's RDBM

"So divinely is the world organized that every one of us, in our place and time, is in balance with everything else." --Johann Wolfgang von Goethe

Michael DePhillips, Mikhail Kopytine*, Jerome Lauret

*Kent State University

9/7/2007

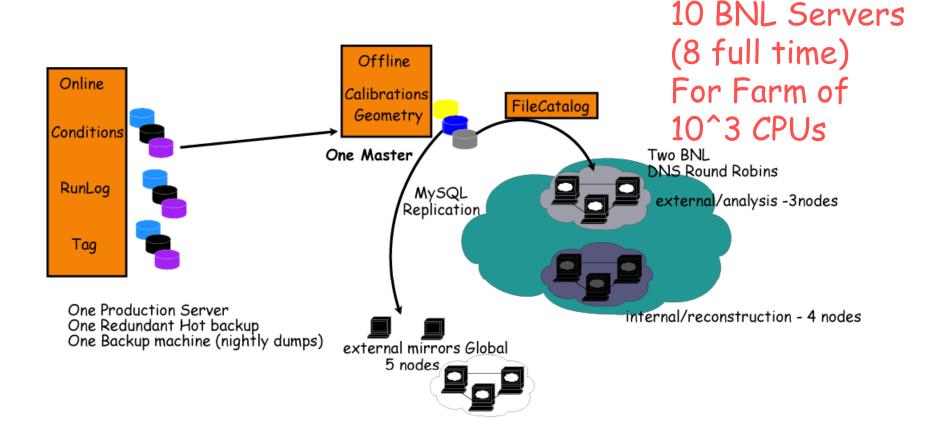
Computing in High Energy and Nuclear Physics 2-7 September 2007, Victoria B.C. Canada

Problem Statement

- Our original plan laid out a simple (naive), but effective, configuration...
 - Policies were minimal (almost ad-hoc)
 - No "real" enforcement
- As usage grew, availability and QOS was being jeopardized
 - Improvements on an as-needed basis
 - With no definitive path forward
- Some resources were underused

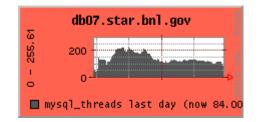
Project Motivation

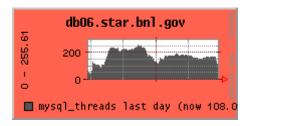
- To optimize the usage and maximize the throughput of STAR's database servers.
- Establish connection policies with a flexible configuration
 - Configurations need to be altered quickly (minutes)
- Be able leverage a global distribution of dbs
 - Improve db services to areas without database resources
 - Include, into the load balancing, sites/areas that do have databases
- Leverage different grades of hardware

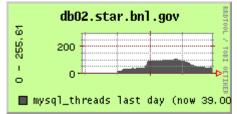

Original Server Configuration

- MySQL Master/Slave Replication
 - Distribute the load to as many slaves as possible
- DNS Round Robin with two distinct / isolated pools... (analysis/production)
- Service administered via a distributed, small configuration file (XML -format)
- Scaling plan was to add nodes as needed

Server Topography


9/7/2007	•
----------	---


Computing in High Energy and Nuclear Physics 2-7 September 2007, Victoria B.C. Canada



DNS results

Would be useful to switch/swap/mix in DNS land, however, that's at an institution level

- For Stress relief Low Hanging Fruit -
 - DB Optimization methods
 - Hardware tweaking
 - Query optimization
 - API code optimization

when these were exhausted, and the usage increased frustration escalated

X

Alternatives/Solutions

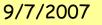
- Buy some new nodes
 - Scalable solution?
 - Ignores the lack of balance between the two pools
- Commercial Load Balancer
 - STAR requirements are dynamic and less predictable
 - global slaves
 - heterogeneous hardware
 - Many different types of tasks
 - Feature limited
- Software

9/7/2007

X

7

Design Decisions


- Backward Compatible
- Configurations will use a more sophisticated XML which added libxml2 as a dependency
- Increase flexibility
 - Allow for the heterogeneity of the pools
 - Use XML configuration to define additional groupings and their attributes
 - Two stages local then global

Programmed Flexibility / Features

- Time of day
 - Day/Night where Night = 11pm to 7am EST
- Day of week
- Weighting factor (machine "power")
- Connection limits
- Pools defined by different criteria
 - Type of usage (e.g., production)
 - Users (e.g., development)
 - Type of Access (e.g., read or write)

Computing in High Energy and Nuclear Physics 2-7 September 2007, Victoria B.C. Canada

10

uction" user = "recco" accessMode = "read"> D ame="db2.star.bnl.gov" port="3333"/>

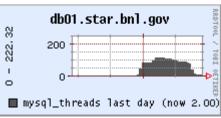
Local XML-snip

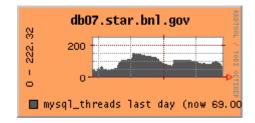
</Server>

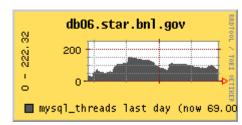
</Server>

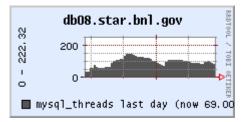
DB_CONFIG_LOCAL Location is defined on login env variable

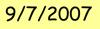
Ad-hoc flexibility








XML+Load Balancer (c++)


- The API then parses makes a connection "show processlist", counts the number of threads, picks the lowest and makes the At Most 0.020 seconds connection
- Results:

Computing in High Energy and Nuclear Physics 2-7 September 2007, Victoria B.C. Canada

Phase 2 – Global db Access

- Two choices for Users with a "personal" copy of the STAR environment
 - Maintain a slave (e.g., MIT, YALE, ...)
 - Prior to the LB access one of two db farms BNL/PDSF
 - Load Balance between these available nodes and also "entice" these smaller slave-owners to offer-up some db access

Global - Assessing Remote Sites

Second XML file

- GLOBAL_CONFIG (if local is not found and GLOBAL is defined)
 - list of available node/farms are remote

CAVEATS

- Rigid enforcement of policies become very important
 - Institutions may be more inclined offer up a node as a "good neighbor" with specific policy assurances
 - only available "at night"
 - maximum of N connections.
- Firewall Needs an open port.
- Granularity is greater because it chooses between the open port configuration (i.e., gateway DNS name) - which then uses DNSround robin

Next Version

- Fine tune Load Balancing decisions
 - Incorporate CPU and I/O
 - Leads to more automated DBA monitoring other API enhancements
 - Closing connections to remove sleeping MySQL threads
- Abstracting LB code away from database application
- Incorporate into our Online DB Nodes
 - Standalone
 - Online API (requests will be more specific)
- Weave it into a Monitoring Application

Summary

- We took a typical early approach to db distribution and created a policy based, centrally managed, load balanced system that can provide and maintain:
- availability
- complete usage of all available hardware
- policies are feature rich
- and a presents clear path to the future with regard to improvements, abstraction and scaling.
- All with very low overhead