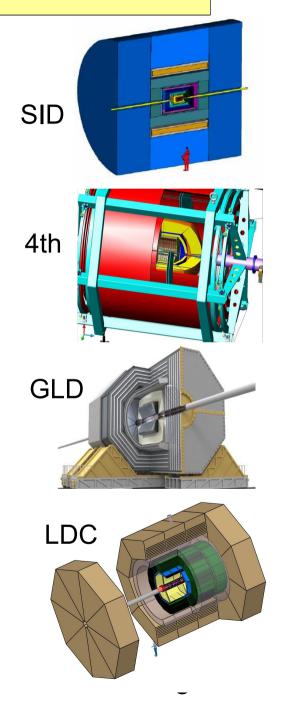
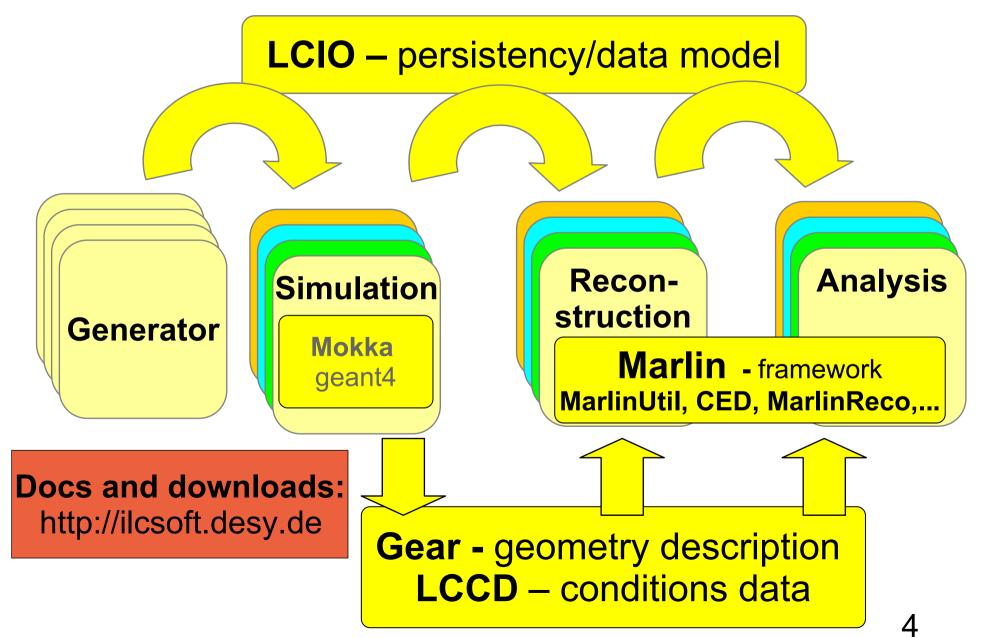

# The LDC Software Framework for the ILC detector

Frank Gaede DESY CHEP 2007, Victoria Canada September 2-9, 2007

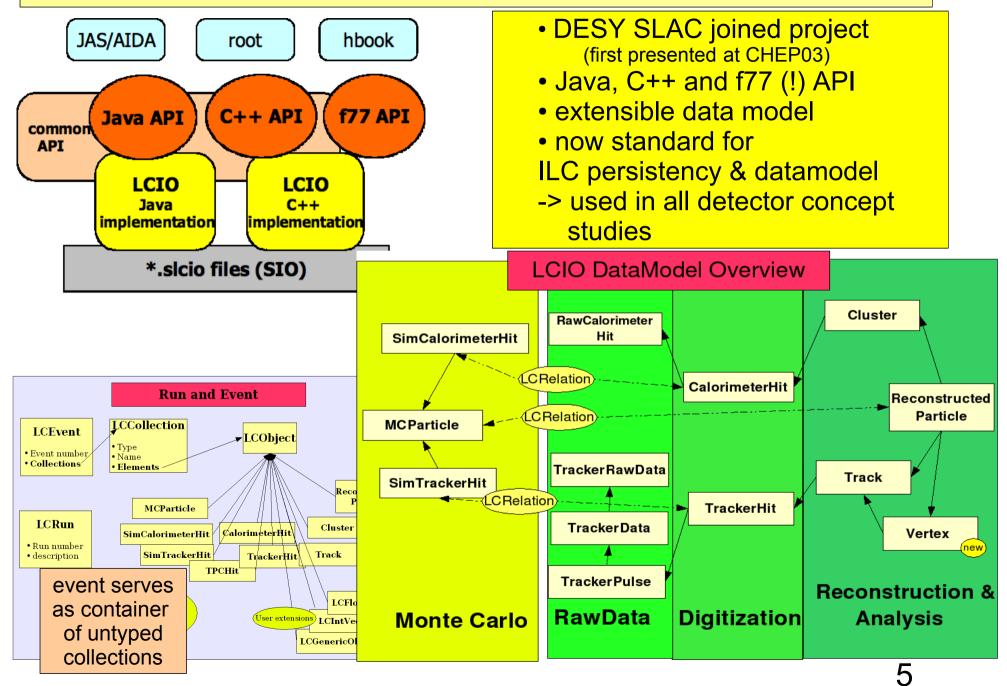
1


# Outline

- introduction overview
- LCIO persistency & datamodel
  - recent developments
- Marlin reconstruction framework
  - design/software architecture
  - new features
  - supporting tools
  - applications/results
- summary




## Introduction


- 4 international detector concept studies for the ILC ongoing
  - DCRs written this year
  - 3 LOIs planned for 2008 (joined LDC/GLD)
  - 2 EDRs planned for 2010
- 4 independent sw frameworks exist
  - some interoperability provided through use of common event data model/ file format LCIO
- "Marlin et al" is the LDC concept's framework
  - design presented at CHEP2006
  - this talk: Evolution of the framework



#### LDC sw-framework overview



#### LCIO: persistency & event data model



## LCIO new developments

- extended the event data model
  - introduced dedicated Vertex class
    - originally thought vertices as part of RecontructedParticles)
  - introduced raw data classes for tracking detector testbeams: TrackerRawData, TrackerData, TrackerPulse
- comand line tool (Java) for checking and manipulating events: dump, merge, split,...
- runtime extensions (next slides)
- under development
  - improve I/O performance
  - direct access: reading part of the event, split files,...
  - user defined data classes

# LCIO runtime extensions (C++)

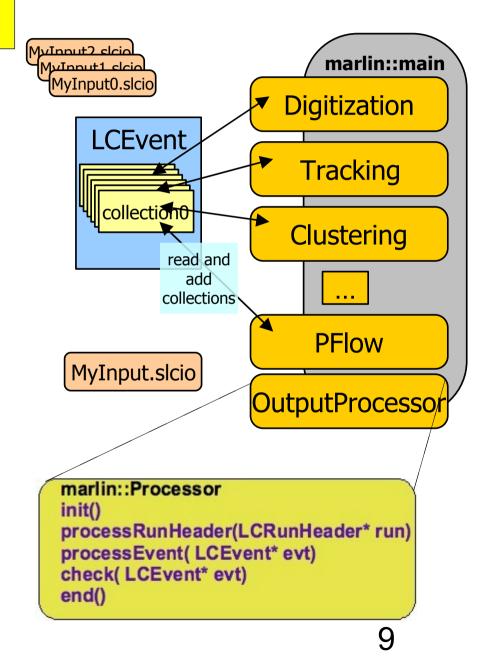
- Iong pending user request:
  - attach user objects to LCObjects
  - fast and easy creation of links (relations) between various LCObject subtypes, eg. TrackerHits and Track
- features
  - extension of the object with arbitrary (even non-LCObject) classes
  - extension of single objects or vectors, lists of objects
  - optionally ownership is taken for extension objects (memory management)
  - bidirectional relations between LCObjects
    - one to one
    - one to many
    - many to many

to be used in reconstruction and analysis algorithms - no persistency

#### LCIO runtime extensions

```
// a simple int extension
struct Index : LCIntExtension<Index> {} ;
```

extensions and relations identified through a tagging class T


8

```
// a many to many relationship between MCParticles
  struct ParentDaughter : LCNToNRelation<ParentDaughter,MCParticle,MCParticle> {} ;
2007
MCP
   MCParticle* mcp = dynamic_cast<MCParticle*>( mcpcol->getElementAt(i) ) ;
   //..
Sep 2-9,
   mcp \rightarrow ext < Index > () = i; // set an int
Canada
    const MCParticleVec& daughters = mcp->getDaughters() ;
    for(unsigned j=0 ; j< daughters.size() ; j++ ){</pre>
                                                                              for extensions use
2007, Victoria,
                                                                              ext<T>()
     // ---- set biderctional relation
                                                                              for relations use
      add_relation<ParentDaughter>( mcp, daughters[j] );
                                                                              rel<T::to>() and
                                                                              rel<T::from>()
Gaede, CHEP
    cout << " myindex = " << mcp->ext<Index> << endl ;</pre>
    ParentDaughter::to::rel_type daulist = mcp->rel<ParentDaughter::to>() ;
    for( ParentDaughter::to::const_iterator idau = daulist->begin();
      idau != daulist->end(); ++idau){
Frank
       cout << (*idau)->ext<Index>() << ", ";</pre>
     ł
     cout << endl ;
```

#### Marlin – core application framework

ModularAnalysis & Reconstruction for the LI Near Collider

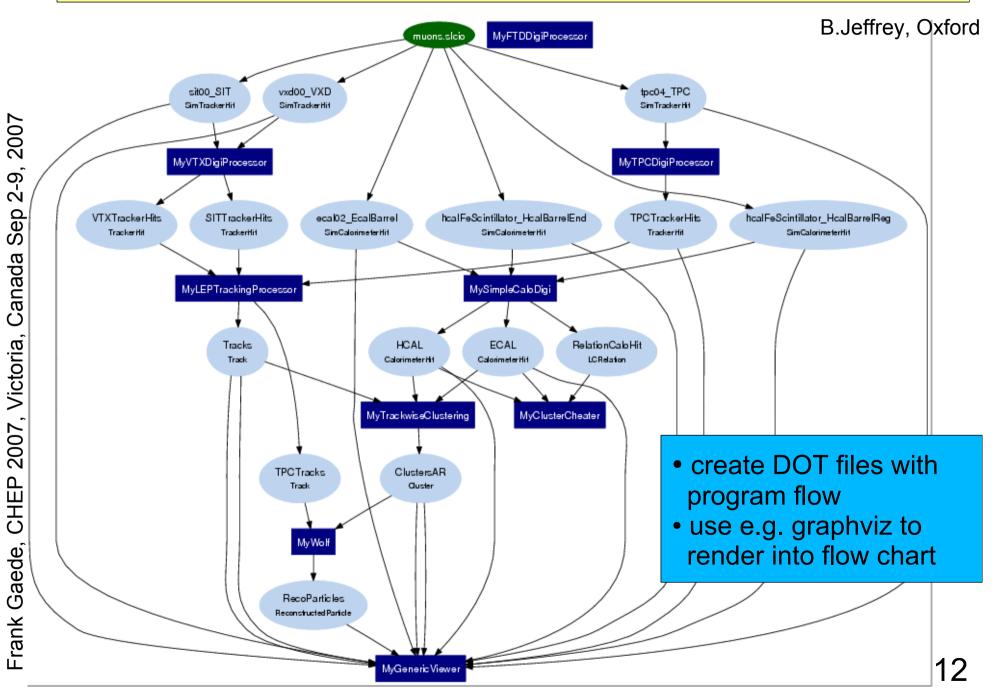
- modular C++ application framework for the analysis and reconstruction of ILC data
- LCIO as transient data model
- xml steering files:
  - fully configure application
  - order of modules/processors
  - parameters global + processor
- self documenting
  - parameters registered in user code
- consistency check of input/output collection types
- Plug & Play of modules



#### Marlin new developments

- Marlin fully functional since 2005
  - -> focus on increasing user, i.e. developer convenience
- introduced new build system: CMake
  - high level scripts for creating makefiles for common platforms Linux, MacOS, Windows
  - 'successor of GNU autotools', e.g. used by KDE
  - allows easy configuration of build process and options
- switched to shared libraries
- provide support for plugins
  - packages with processors built into shared libraries
  - Ioaded at program start up
  - no relinking of full application necessary
- MarlinGUI, flow charts, logging mechanism (next slides)

## MarlinGUI


#### J.Engels, DESY

\_ = ×

#### Marlin GUI

#### Eile -List of all Collections Found in LCIO Files Active Processors Active Processor Operations Name Type Name Add New Processor Type MCParticle MCParticle 1 MvAIDAProcessor AIDAProcessor 1 Edit Selected Processor 2 ecal02\_EcalBarrel SimCalorimeterHit 2 MyVTXDigiProcessor VTXDigiProcessor Delete Selected Processor 3 hcalFeScintillator\_HcalBa... 3 MyFTDDigiProcessor FTDDigiProcessor SimCalorimeterHit Deactivate Selected Processor 4 sit00\_SIT SimTrackerHit 4 MyTPCDigiProcessor TPCDigiProcessor Move Selected Processor Up 5 tpc04\_TPC SimTrackerHit 5 MyCheckPlotsBenjamin **CheckPlotsBenjamin** Move Selected Processor Down vxd00\_VXD 6 SimTrackerHit 7 LumiCalS\_LumiCal SimCalorimeterHit 8 MCParticle MCParticle QT based gui 9 SEcal01\_EcalBarrel SimCalorimeterHit convenient way to edit xml 10 SEcal01\_EcalEndcap SimCalorimeterHit 11 SHcal01\_HcalBarrelEnd SimCalorimeterHit Error Description from selected Processor steering files 12 SHcal01\_HcalBarrelReg SimCalorimeterHit Some Collections are not available checks consistency of input/ 13 SHcal01\_HcalEndCaps SimCalorimeterHit Collection [ftd01\_FTD] of type[FTDTrackerHit] is unavailable \* Following available collections of the same type were fo 14 STpc01\_FCH SimTrackerHit and output collections -> Name: [ftd02\_FTD] Type: [FTDTrackerHit] in processo 15 STpc01\_TPC SimTrackerHit editing processor parameters Collection [ftd02\_FTD] of type[FTDTrackerHit] is unavailabl \* Following inactive processors have a matching availabl -> Name: [MyTestProcessor] Type: [TestProcessor] browsing of LCIO collections -LCIO Files -> TIP: Activate the processor [MyTestProcessor] and se muons.slcio define processors/algorithms to be run zpole1.slcio Inactive Processors Inactive Processor Operations-Add New Processor Add New LCIO File Name Type 1 MyTestProcessor TestProcessor Edit Selected Processor Remove LCIO File MySimpleCaloDigi SimpleCaloDigi Delete Selected Processor -View Options Activate Selected Processor Hide Inactive Processors Hide Active Processor Errors Marlin GUI Tue Oct 17, 16:41 bin

#### Marlin program flow charts



## streamlog – logging library

- standalone logging library
  - shipped with Marlin but can also be used in non-Marlin cde
  - verbosity levels: DEBUG0-4, MESSAGE0-4, WARNING0-4, ERROR0-4
  - verbosity level and current namespace can be changed on the scope level (processor name in Marlin)
  - no runtime and space overhead for DEBUG messages when compiled with NDEBUG (production)
    - per compilation unit (plugin)
  - very little overhead (if-statement) for other messages
  - simple macro for replacing std::cout (std::ostream)

streamlog\_out( DEBUG ) << " digitizing hit : "</pre>

<< hit->getCellID() << std::endl ;

[ DEBUG "TrackDigitizer" ] digitizing hit : 12345678

## Marlin supporting packages

- the Marlin framework is completed by additional packages for
- description of detector geometry: GEAR
  - API for high level geometry description (xml files)
  - API for detailed material description (based on geant4)
- conditions data: LCCD
  - provide transparent access to conditions data in LCIO collections from:
  - DB (CondDBMySQL), simple files, DB snaphots, data stream
- utility software , math libraries, ...
  - MarlinUtil utility library
  - CED event display
  - RAIDA root AIDA implementation
  - CLHEP, gsl, cernlib,....

#### Applications of Marlin et al

- LDC detector optimization (MonteCarlo)
  - MarlinReco full reconstruction suite
    - Digitization Calo, TPC, Silicon, PatternRecognition/Tracking, clustering, ParticleFlow algorithms
       using the same
  - PandoraPFA
    - ParticleFlow algorithm
  - LCFIVertex

```
using the same core
framework for MC/offline
and testbeam/online
provides synergies for
both worlds
```

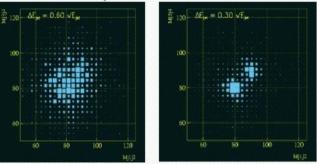
- ZVTop/ZVKin vertex finding and fitting algorithms
- various physics analyses ...
- testbeams (Data & MonteCarlo)
  - the LDC software framework has been adopted by and improved within the EUDET project for ILC testbeam infrastructure
    - Calice calorimeter
    - MarlinTPC TPC tracking
  - EUTelescope pixel telescope for silicon tracking

#### Reconstruction @ the ILC

- general ILC detector features:
  - precision tracking
  - precision vertexing
  - high granularity in calorimeters
    - ( Ecal ~1cm, Hcal ~1-5cm)
- important: very high jet-mass resolution ~30%/sqrt(E/GeV)

#### **Particle Flow**


- reconstruct all single particles
- use tracker for charged particles
- use Ecal for photons
- use Hcal for neutral hadrons


dominant contribution (E<50 GeV):

- Hcal resolution
- confusion term

$$\sigma_{E_{jet}}^{2} = \epsilon_{trk}^{2} \sum_{i} E_{trk,i}^{4} + \epsilon_{ECal}^{2} E_{ECal} + \epsilon_{HCal}^{2} E_{HCal} + \sigma_{confusion}^{2}$$
$$\epsilon_{trk} = \delta(1/p) \approx 5 \cdot 10^{-5}, \quad \epsilon_{ECal} = \frac{\delta E}{\sqrt{E}} \approx 0.1, \quad \epsilon_{HCal} \approx 0.5$$

three of the four detector concepts follow the PFA paradigm to reach the necessary energy resolution

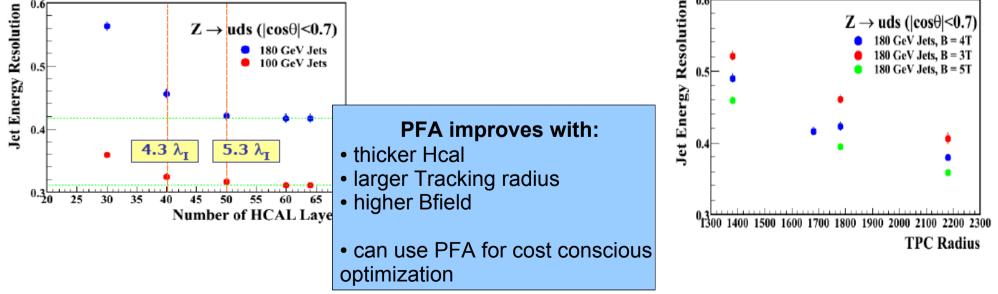




#### example: PandoraPFA (M.Thomson, Cambridge)

#### rms90

| 1111000          |                                              |                   |
|------------------|----------------------------------------------|-------------------|
| E <sub>JET</sub> | σ <sub>E</sub> /E = α/√(E/GeV)<br> cosθ <0.7 | σ <sub>E</sub> /E |
| 45 GeV           | 0.295                                        | 4.4 %             |
| 100 GeV          | 0.305 🔪                                      | 3.0 %             |
| 180 GeV          | 0.418                                        | 3.1 %             |
| 250 GeV          | 0.534                                        | 3.3 %             |
|                  |                                              |                   |


0.35 at LCWS06

# 'proof of concept' for PFA @ILC -> use for detector optimization

For jet energies < 100 GeV ILC "goal" reached !!!

**★**For a Gauge boson mass resolution of order  $~\Gamma_{W/Z}$ 

| E <sub>jj</sub> /GeV | α <b>(Ε</b> <sub>j</sub> ) | σ <sub>Ej</sub> /E <sub>j</sub> |
|----------------------|----------------------------|---------------------------------|
| 91                   | <b>&lt; 26</b> %           | <b>3.8</b> %                    |
| 200                  | < 38 %                     | 3.8 %                           |
| 360                  | < 51 %                     | 3.8 %                           |
| 500                  | < 60 %                     | 3.8 %                           |



#### managing ilc sw-installations

- ilc software requirements and complexity has grown
- ~30 packages with sometimes optional dependencies
- need for a tool to make installation and build process easier:
- ilcinstall (python)
  - script to install all of the LDC software in one go
  - fully configurable:
    - versions, dependencies/build options, links to existing packages/tools, e.g. root, CLHEP,...
    - define software releases
  - used for reference installations in afs (SL3/SL4)
  - together with plugin mechanism users can
    - Iink their package against these
    - update some packages w/o full rebuild

## Summary & Outlook

- Marlin is a modular C++ application framework for the analysis of ILC data based on LCIO, used in
- LDC detector optimization studies (particle flow)
- ILC testbeam programs
- recently the focus has been on improving the usability
- MarlinGUI, installation scripts, runtime extensions
- actively used by the community, eg.
- PandoraPFA package demonstrates the PFA concept
- ongoing and upcoming testbeams require further developments and adaption (LCIO-persistency)

further details @ software portal: http://ilcsoft.desy.de/

# Frank Gaede, CHEP 2007, Victoria, Canada Sep 2-9, 2007

#### additional material

## interoperability with other ILC SW

|                   | Description                                 | Detector                  | Language              | IO-Format                  | Region  |
|-------------------|---------------------------------------------|---------------------------|-----------------------|----------------------------|---------|
| Simdet            | fast Monte Carlo                            | TeslaTDR                  | Fortran               | StdHep/LCIO                | EU      |
| SGV               | fast Monte Carlo                            | simple Geometry, flexible | Fortran               | None (노SF)                 | ማ  ፍር በ |
| Lelaps            | fast Monte Carlo                            | SiD, flexible             | C++                   | SIO, LCIO                  | ntyl    |
| Mokka 🛌           | full simulation – Geant4                    | TeslaTDR, LDC, flexible   | C++                   | 1901-1910                  | ΕU      |
| Brahms-Sim        | Gealth - full simulation                    | T                         | Fortran               | LCIO                       | EU      |
| SLIC              | Lii oimulali00 - Cont4                      | SiD, flexible             | C++                   | LCIO                       | US      |
| LCDG4             | full simulation – Geant4                    | SiD, flexible             | C++                   | SIO, LCIO                  | US      |
| Jupiter           | full simulation – Geant4                    | JLD (GDL)                 | C++                   | R Contraction              |         |
| Brahms-Reco       | reconstruction framework<br>(most complete) | ToeleTDA                  | Forme                 | LCIO                       | EU      |
| Marlin            | reconstruction and analysis                 | Flexible                  | C++                   | LCIO                       | - EU    |
| hep.lcd           | reconstruction framework                    | SiD (flexible)            | Java                  | SIO                        | US      |
| •                 | reconstruction framework                    |                           | Juvu                  |                            |         |
| org.lcsim         | (under development)                         | SiD (flexible)            | Java                  | I CIO                      | US      |
| Jupiter-Satelites | reconstruction and analysis                 | JLD (GDL)                 | C++                   | Root                       | AS      |
| LCCD              | Conditions Data Tookit                      | All                       | C++                   | MySQL, LCIO                | EU      |
| GEAR              | Geometry description                        | Flexible                  | C++ (Java?)           | XML                        | EU      |
| LCIO              | Persistency and datamodel                   | All                       | Java, C++,<br>Fortran | -                          | AS,EU,U |
| JAS3/WIRED        | Analysis Tool/ Event Display                | All                       | Java                  | xml,stdhep,<br>eprep,LCIO, | US,EU   |
|                   |                                             |                           |                       | cprop,2010,                |         |
|                   |                                             |                           |                       |                            |         |
|                   |                                             |                           |                       | $\smile$                   |         |
|                   |                                             |                           |                       |                            |         |
|                   |                                             |                           |                       |                            |         |

- almost all international ILC software uses/based on LCIO
  - provides some basis for interoperability
  - possibly develop tighter common, multiple language
    - (Java/C++) framework in the future !?

#### Gear

```
- <gear>
```

\_ <!-Example XML file for GEAR describing the LDC detector</pre>

#### **GE**ometry **A**PI for **R**econstruction

- <detectors>

- <detector id="0" name="TPCTest" geartype="TPCParameters" type <maxDriftLength value="2500."/>

<driftVelocity value=""/>

<readoutFrequency value="10"/>

<PadRowLayout2D type="FixedPadSizeDiskLayout" rMin="386.0" maxRow="200" padGap="0.0"/>

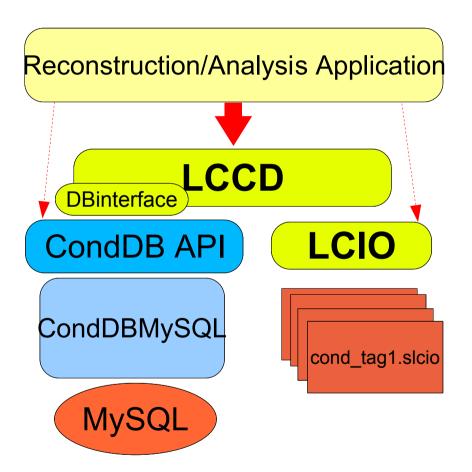
<parameter name="tpcRPhiResMax" type="double"> 0.16 </para
<parameter name="tpcZRes" type="double"> 1.0 </parameter>
<parameter name="tpcPixRP" type="double"> 1.0 </parameter>
<parameter name="tpcPixRP" type="double"> 1.0 </parameter>
<parameter name="tpcPixRP" type="double"> 1.4 </parameter>
<parameter name="tpcPixZ" type="double"> 1.4 </parameter>
<parameter name="tpcIonPotential" type="double"> 0.00000003
</detector>

```
<detector name="EcalBarrel" geartype="CalorimeterParameters">
<layout type="Barrel" symmetry="8" phi0="0.0"/>
<dimensions inner_r="1698.85" outer_z="2750.0"/>
<layer repeat="30" thickness="3.9" absorberThickness="2.5"/>
```

<layer repeat="10" thickness="6.7" absorberThickness="5.3"/></detector>

<dimensions inner\_r="320.0" outer\_r="1882.85" inner\_z="2820. <layer repeat="30" thickness="3.9" absorberThickness="2.5"/> <layer repeat="10" thickness="6.7" absorberThickness="5.3"/> </detector>

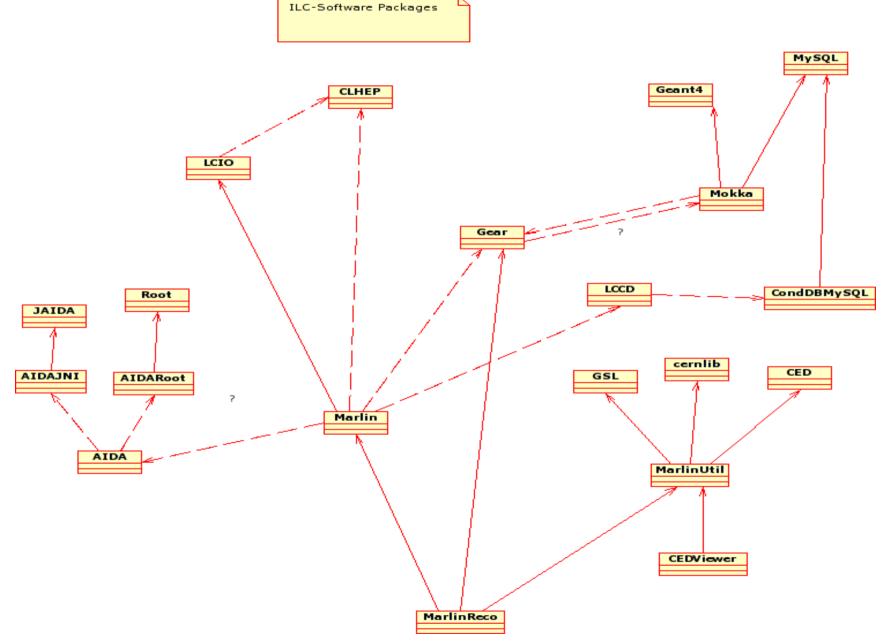
</detectors> </gear>


compatible with US - compact format

well defined geometry definition for reconstruction that

- is flexible w.r.t different detector concepts
- has high level information needed for reconstruction
- provides access to material properties - planned
- abstract interface (a la LCIO)
- concrete implementation based on XML files
  - and Mokka-CGA planned

#### LCCD inear Collider Conditions Data Toolkit


- Reading conditions data
- from conditions database
- from simple LCIO file
- from LCIO data stream
- from dedicated LCIO-DB file
- Writing conditions data
- tag conditions data
- Browse the conditions database
  - through creation of LCIO files
  - vertically (all versions for timestamp)
  - horizontally (all versions for tag)



LCCD is used for the conditions data of the ongoing ILC testbeam studies

23

#### software package dependencies

