
Scaling CMS data transfer
system for LHC start-up

Lassi A. Tuura
Northeastern University

With B. Bockelman, D. Bonacorsi, R. Egeland, D. Feichtinger,
S. Metson and J. Rehn on behalf of the CMS experiment

CHEP 2007
Victoria, BC, Canada
2-7 September 2007

Before diving ahead…

Cheat sheet for data transfers math

12 MB/s ≈ 1 TB/day ≈ 500 files/day ≈ 30 TB/month

1.2 GB/s ≈ 100 TB/day ≈ 50’000 files/day ≈ 3 PB/month

Average CMS file size is likely to be ~2 GB

Related content at this conference
#352—"e CMS data and workflow management system
#369—CMS experiences with computing, software and analysis challenges
#280—"e CMS LoadTest 2007: an infrastructure to exercise
 CMS transfer routes among WLCG Tiers

#277—CMS CSA06 experience at INFN
#281—Computing operations at CMS facilities
#288—Exercising CMS dataflows and workflows in computing
 challenges at the Spanish Tier-1 and Tier-2 sites
#325—"e CMS dataset bookkeeping service

CMS PhEDEx data transfers
Total data volume month by month

 Scale of CMS data transfers (I)

 Scale of CMS data transfers (II)

CMS has exercised the data placement and transfer system
PhEDEx continuously since 2004 in preparation for LHC start-
up. With one year to start-up, we approach the expected “real”
transfers in scale, but not yet the full complexity.

We currently transfer at 1.2 GB/s ≈ 100 TB/day global average
rate. Next year the we expect the busiest days to reach a global
aggregate of 200 TB ≈ 100’000 files a day between CERN and
the Tier-1 and Tier-2 centres. In addition come transfers to all
the 170 institutes and some 3’000 personal computers.

At present 7 Tier-1s, 49 Tier-2s and 12 Tier-3s are involved,
representing ~40% of the institutes involved in CMS.

CMS PhEDEx data transfers
Year 2007 day by day average rate

 Sustained operation

We operate the data transfer system as if the experiment was
already running. We have had two service outages exceeding 24
hours in the last two years. Another CMS data management
component caused both by initiating a poorly rehearsed upgrade.

100 TB/day

Lesson on how not to
upgrade CMS data

management components

CMS PhEDEx data transfers
Year 2007 day by day average quality

Focus of this presentation

"e main sources for our progress have been a robust, scalable and lock-free
data transfer system combined with a remarkable manpower investment to
commission the data transfer service. "is presentation covers the former. "e
plot above, showing the ratio of successful file transfer attempts, illustrates why
the latter has been, and continues to be, indispensable.

 #280  #369

So how do I make a
distributed data transfer

system scalable and robust?

Solution A

Hire a group of clever developers.
$3M later you have a well-working system.

Solution B

"e rest of this talk might save
you some of the $3M…

 ?

System
architectureTechnical

architecture

Validation
processes

Database
engineering

Key ingredients used in CMS
Essential factors for scalable distributed data transfer system

System architecture

System architecture determines the performance envelope. It is
critical to address the core scalability and reliability concerns at
the architecture level. "e top three most important transfer
related issues resolved by CMS are listed below; please refer to
the conference paper for further detail and other issues.

Restricting the problem scale. "e data transfer system only tracks data
actually in transfer. We divide datasets into 5-10 TB file blocks to reduce
the complexity of data placement decisions by a factor of ~1’000.

Keeping local information local to the site. Transfers are operated at each
participating site, giving control where it belongs and improving operations
and support efficiency. CMS uses only trivial file catalogues; the only on-site
service contacted by transfers and jobs is the storage system, and we worry
about consistency with one less database.

Isolating problems. Because data transfers are critical and their operation
is spectacularly labor-intensive, we aggressively protect working transfers
from failure regions and actively prevent errors from slowing down the
system as a whole. Problem diagnosis and remediation is left to humans as
grid middleware rather thoroughly obfuscates what actually happened.

Technical architecture (I)

"e technical architecture choices depend more on personal
experience. It is entirely reasonable for others to derive a sound
design by making other choices. We feel the following were
important.

High-availability well-tuned central “blackboard” database at CERN.
Our transfer system is agent-based. "e agents communicate solely via the
database. We have been very pleased with the service provided by CERN.

Level-triggered asynchronous state manipulation. We use no direct
agent-to-agent communication. Hundreds of concurrently running agents
store their current state in the database, effectively objects in different
stages of state machine execution. Database is updated only when a task is
completed successfully. Work is exclusively defined by the difference of
desired and current state of the objects – we never queue task messages or
send back responses. "is is error-resilient, immune to losing work
requests, and most importantly, lends itself to autonomous and self-healing
computing. However the (big) challenge is to make state and operations on
it cheap enough at the scales we need.

Technical architecture (II)

Defensive error handling. (Apparently) unlike most grid services, we
assume errors happen all the time, everywhere. Our fault handling strategy
significantly increases the experiment’s effectiveness. We squelch
unnecessary noise, swallow uninteresting transient failures and retry later,
let error-prone systems cool off by backing off, hibernate backlog to curb
system load, pace backlog handling to avoid recovery surges, and probe
system stability before committing new work after sustained failures.

Hierarchical monitoring. We find effective transfer operation depends on
the availability of extensive monitoring data on both current and historical
performance conditions, applied to various user groups. A sizeable fraction
of PhEDEx is dedicated to a hierarchical monitoring system and a web site
providing a view of everything going on. !e key to making monitoring data
harvesting and access cheap was the division of the system into monitoring zones.
In each zone a “well informed” agent captures a state snapshot at a time it
knows to be economical. "e snapshots propagate from the “hot” zones up
a monitoring hierarchy so the web site and system internal decision making
can make use of it. A variable-resolution time series summarises the data
for frequent use. Time series access is optimised, it is as reasonable to query
performance data spanning years as it is for the last 24 hours.

Database engineering (I)

Database engineering begins when you begin translating your sound design
into an actual product. Here are a few techniques that really helped us along.
A few more can be found in the paper.

Do do the basics. Use bind variables and big enough row arrays for query fetches
and uploads; remove all but required indices until measurements show one is
needed; use the database for work – don’t implement the database engine in your
application; commit at intervals most economical for I/O including redo. Schema
design stops at entity modeling only in classes; include physical storage and data
organisation parameters in yours. Evaluate the query execution engines in your
database, and make sure they use the right parametres.

Measure, analyse and understand. Ignorance is a poor base for a design. It is also
inexcusable. Use the existing tools to find out what is going on and adapt your design
accordingly. Excellent Oracle resources: Tom Kyte’s books, Automatic Workload
Repository reports, Enterprise Manager.

Address locking, row contention and cluster cache coherence traffic. Table and
index partitioning helps reduce number of rows touched by a query. "is can help
with both lock contention and cluster coherence traffic as different clients will be
pushed to access physically distinct storage. We also define a data ownership model
which defines for every row in every table at all times exactly which agent owns that
row. Only the row owner is allowed to update the data. In our “state machine”
schema this was easily done and reduced row lock contention and cache coherence
traffic noticeably.

Split state machine tables

An unusual twist to table design…

Our hottest table is unusually organised. Instead of having an object state
column, we have a main table defining the objects and a small auxiliary index-
organised table per possible state. Presence of rows in the auxiliary tables
indicate the state the object has reached. Creating a “state row” passes the
baton to the next agent and the previous agent is no longer allowed to access the
row in any way. Once the baton exits the hot path, the last agent cleans up
in an optimal manner as it knows the rows will never be accessed again.

"is yields a high throughput for several reasons. Firstly, it capitalises on
Oracle’s good insert performance and avoids weaker update performance.
Secondly, it generates little redo and implicitly guarantees perfect read
consistency. "irdly the row ownership rules eliminate row lock contention
and most cache coherence traffic.

Hot table split
Avoiding row sharing

Hot shared table row

A Insert

B

EDelete

C D

Update

- Row lock contention for row state update
- False row sharing with mass row operations
- Rows ping-pong in the database cluster cache

on update if agents connected to different servers
- Vulnerable to limited row update performance

Hot tables: our problem

Hot table split
Avoiding row sharing

Hot shared table row

A Insert

B

EDelete

C D

Update

+ Cheaper locking due to read-only rows
+ No mass updates, no false row sharing
+ Rows stay put in database cluster cache

or are shared read-only to all nodes
+ Capitalises on insert performance

A Insert

B

E

Delete

C D

Main row + state rows
N+1 tables for N states

Passing the baton
through hot path

Hot tables: our solution

Performance analysis using Oracle Enterprise Manager
Oracle Enterprise Manager (I)

Performance analysis using Oracle Enterprise Manager
Oracle Enterprise Manager (II)

Performance analysis using Oracle Enterprise Manager
Oracle Enterprise Manager (III)

But wait… if you didn’t test it,

It Doesn’t Work!

Debugging is hard

“Debugging is twice as hard as writing the code
in the first place. "erefore, if you write the code
as cleverly as possible, you are, by definition, not
smart enough to debug it.”

Brian W. Kernighan

Data transfer validation

CMS operates three PhEDEx instances in parallel at all times: a
developer instance, an integration and commissioning instance
and the main production instance. In addition to major
computing challenges approximately once a year, the developers
perform a detailed design validation on average twice a year.

"e validation is performed always before releasing a major schema
upgrade and from time to time to verify accumulated patches have not
introduced undesirable side effects. "e validation takes place on an
isolated, dedicated database cluster. Once the final results have been found
repeatable, the findings are written up as a technical report. "e CERN
database administrators are involved and decide whether the schema may
be released to the production service.

Validation tests both verify functionality and error handling, and stress test
realistic behaviour with problem sizes exceeding expected peak load by a
factor of about 100. "e system is required to handle the load gracefully in
order to pass the test.

PhEDEx 2.5 validation
Examples of reported metrics

Some validation results

 !

Comparison with other projects

CMS has extensive experience with grid transfer technologies. We have used
all grid transfer services very soon after release in large scale validation tests,
including all the LCG service challenges. We have communicated back our
findings promptly. How does the CMS approach to data transfers compare
with those of other LHC experiments and grid projects?

PhEDEx was designed to address data placement and reliable transfers. "e LHC
experiments arrived together at the conclusion that currently there is no demand for
a middleware product for data placement: this function is tightly coupled with the
experiment computing models, policies and dataset bookkeeping systems.

Portions of EGEE’s FTS were modeled after PhEDEx, a significant departure
from designs in previous grid projects. FTS was expected to replace the lowest data
transfer layers of PhEDEx. After a strained initial relationship, that is now largely
the case at the EGEE sites.

ATLAS and CMS, apparently independently, have arrived at similar conclusions
on high-level data management concepts. Both place data at sites as a deliberate
policy action, not reactively in response to jobs. "e data “subscription” processes
are similar. Both have data units larger than files but smaller than datasets and an
agent based transfer management design.

Conclusions

We have prepared for CMS start-up by continuously pushing our
data transfer system to ever larger scales, both in technical ability
and actual daily operation. Nevertheless the work continues.

"e storage system and data transfer commissioning work continues to
push for scale, and more importantly, for quality.

Some aspects of our computing model remain to be exercised at full scale.
"e major CMS challenge for 2007, CSA07, will exercise the largest
ensemble of workflows and services yet. Regular transfers to smaller
institutes and desktops are only starting about now.

Development will continue to improve in particular the PhEDEx web site,
the main hub for data transfer operations. Many higher-level data
management concepts are not yet packaged conveniently. "ere is
increasing demand for making various administrative and operations tasks
easier, and to enable ever more control of the system via the web interface.

We are beginning to draw plans for new challenges in 2009 and beyond.

If I may dream a bit…

My main concern in a nutshell

“What we have here is a case of too many
pieces of software trying to outsmart

each other and the user loses.”

Robert Lipe
GCC list, Oct 1998

