Analysing CM S
so! ware performance
using IgProf" OPro#le

and callgrind

Lassi A$Tuura

Northeastern University

With V$lnnocente and G$Eulisse
on behalf of the CM Sexperiment

CHEP %&&'
Victoria" BC' Canada
% September %&&'

W e use alot of money for computing

1% of 2008 CMS CPU budget
| 27 todaystop performing servers
(2! dual core Intel Xeon 5160 @ 3 GHz)

"e CMS computing model allows
25k SI2k! s/ eventfor reconstruction

l 8.3 son a3 GHz Intel Xeon 5160

In the CMS CSAO06 challenge we used
20k SI2k! s/ eventonttbar, however
with incomplete algorithms and no pile-up

"e very latest CMS reconstruction takes
~12k SI2k! s/ event(3.8 s on 3 GHz 5160)

for QCD 20-30GeV Gtandard candi®
with no pile-up

With pile-up the reconstruction
Is still well over the time budget!

Possible olutions

Decide inclusive QCD
wasrDso interesting after all.

Possible olutions

Drop a detector upgrade or two
and buy more computers.

Possible olutions

Improve software performance and
maybe even gain more physics capacity!

But that@ actually quite hard.

CMS release is currently 1.5M lines of code,
not including the external packages we use.
In the current phase of development, existing
code is modibed and new code is added faster
than we caranalyseand improve what is there.

' eessentia optimisation chalenge

Anayse &

v 3
"

Updated and
new code

Production

(" eother optimisation challenge)

@ut in our enthusasm, we could not resst a
radical overhaul of the system, in which al of its
major weaknesses have been exposed, analyzed,
and replaced with new weaknesses.O

BrueeLevadt

Reagjigea Alloation in
Optimizing Campila's

M oreoverE

Current state of the art video editing software is
capable of applying multiple video e#ects in real time.
"Is Is a good example of welbptimisedcode.

IS it realistic to assume we could reach
a similar degree of code performance?

If not, what isa realistic goal?
Which reality checkenchmark us?

Some interesting facts

Each major bug cuts production e$ciency
instantly by O(50%). "at@a tough envelope.

Memory is relatively cheap. Or was.
Chasing pointers is poison to the CPUs,
page table working set size is limited and

>>1 GB per job slot gets tenuous.

C++ is still relatively new in physics and Iin
terms of tool maturity. A lot of attention went
In the past into debating and honing OO designs
N not necessarily high-performance designs.

Recent CM S code performance projects

Algorithms Peaformance |mprovement
Evauation Optimal use of resouéces

To O I N

Frameworks -

e Measurement .

Analysis . Guidance

Reportmg: Purchasing optimal resoufrc

Measure don®guesd

7

O

Userdiable hard data and proper methodologies

Algorithms |

Frameworks

Performance

Evauation

Tools

Measurement
 Analysis | -

Reportrng |

I mprovement

Optlmal use of resources

M eaur ement

Analyss

Guidance

~ Purchasing optimal resourc

/

20000 ft view

Excellent newRemember the problems withleve©
optimisationscausing data from one event poisoning another?
Well, gone. Turns out to be a negligible problem in CMS
software, both by design and thanks/édgrind

Brilliant newsWe are making good progress towards the
computing model envelope! "e most important tracking
algorithms were speeded up!by3 and the high-level
trigger has demonstrated reconstruction within the
allotted 40ms/event budget.

So were there any bad news?

Well, think children and candy stores.
It @anoptimisationparadise.
We have much to gain.

It means we get to revise many design (\,g?py;ig)
decisions and to change nearly all the o
1.5M lines of code one way or anotNemot ot Pi
that the code wouldibe changed anyway ™«

And then there are guestions on some externals we use.

L et@dive into the details.

- What we found out.
- What we did about it.
- Tools and methods we used

- A glimpse at ongoing analyses.

e garting point

Job overhead
24%

Reconstruction
(including input)
62%

Real time 9206s
2 of 14 jobs crashed
(results up to crash)

We have discovered a single dominating factor:
a staggering memory allocation artkallocationrate.

Practicaly every CM S application alocates and deallocates memory a the
dizzying rate o 700k B 1M bloks pa ssond or about 1 GB and 10 M
alocations per event.

1/4th of al time spent in memory alocation (operatar new, mallog fresE),
1/3rd if we include memory and string shu%ing (grqoy, memay, E).

While we haveidentibPeda coupleof particularlyegregiougauses,
this problems not conPnetb any particularpackager codingstyle.
Nearlyall high energyphysicsC++ codewe haveexaminedpoth
CMSOown code and the externalswe use, have large-scaland
wide-spread issues with memory allocation and usage patterns.

Proble data rarely reveals sgnibcant number crunching in the applications.
" ereisin particular an odd attection for gringsamos everywhere.

In recentmonths our top optimisation priority has consistently
been the identibcation and addressing of memory issues.

' i1s often implies sgnibcant code changes. On the other hand the process
usualy revedls further important optimisation opportunities. the memory
usage patterns frequently mask genuinely interesting problems elsewhere.

"e Prstoptimisationstepwasverylow-hangingfruit, if not easy.
66% of all memory allocationswere by a matrix and vector
package used in the reconstruction algorithms.

Replacing the package with a more memory-e$ cient onein the most easly
accessble performance sengtive parts required changes to ~50 packages
and delicate changes such as switching from 1- to O-based indices. Work is
ongoing to complete the trangtion in code requiring more extendve e#ort.

Together with other optimisation opportunities discovered in the process
(caching computed values and magnetic beld lookups), the performance of
the tracking code was improved by factor of about three. Recongtruction as
a whole was sped up less due to unrelated less optimised algorithms

Introduced independently at the same time. " o B 0 e

e memory churn has many sources, packages developed with very di#erent
syles and methods exhibit the problem. W e identify some factors below.

BBtrings everywhere, and in just about every possible wrong way.

EBad method names, spaghetti logic, poor encapsulationand unclear object
ownershiprules. Developersare confusedabout which objectownswhat data, or
what stateobjectsmight bein, or the interactionsbetweendi#erent methodsare
too complexto track through, or it@unclearwhat a method doesor returns.Result
IS not reusing previous data and excessive cloning.

EManipulating veryexpensivebjectsby value.One verycommonpatternis using
containersof objectsthat contain,or arethemselvesgontainerssuchasvectorsof
(objectscontaining)vectorsmapsof strings,andsoon. Not passingoig parameters
and return values by value is mentioned in every text book, yet rather common.

BConstantlyrecalculatingralues Could be becauséhe local scopeknowstoo little
to e#ectivelyreusestateor to cacheexpensiveomputationsFrequently().y().z(O
call chainswhereintermediatecallsarenot ascheapasthe developethought. Can
iInvolve encapsulatiomgonetoo far and limiting usefulhorizonin the systemCan
beasidee#ectof shatteringthe codein thousand®f three-lineroutinesall overthe
place such that the compiler is unable to eliminate common sub-expressions.

At the systemlevel, largelLevel-1 and pagetablecachefl' LB9
Improve CMS software performancesubstantially.Deceptively
low CPU " memorybususe,<<1% of capacity,s perhapsbest
explained by the fact thathe CPU is mostly stalled.

" exe are, ettectivay, just restatements of the woeful sate of memory
management a#ars. " e bra level cache obvioudy takes the hit from
dereferencing al the millions of pointers we create. L arge page table caches
help mitigate the large, sparse memory page working sets.

% of cycles % of retired instructions
74%
60% . ;

E but when it does

_M os of the work, the entire
time, the CPU 23% - pipelineis Plled up

does nothingE 1% 79 1% for ashort while

B a= m
None I 2 3 I 2 3

instructions retired per cycle instructions retired per cycle

Could we extract three times the performance from exiging hardware?

Cycle capacity use estimate - cycles/instruction W h at I’%l Iy happenSr)

[l Computation

M Speculative A .08 0 g
[Memory stalls - On AMD Opteron 270, a QvideCand
[IBranch stalls resource-rich CPU, our apps are by far not
[JResource stalls Compute bound. AndySS of gdlsfollows.
A Measured 0.0 0.5 1.0 1.5

Memory stall analysis

gt:'DM::.s Surprisel Memory galsare for indrudions
1SS

L2 Miss _ (60%) and pagetableaarses (60%). Number
[IDTLB Miss of data pages asde, data accesses appear not
ITLB Miss 0% 20% 40% 60% 80% 100% to be problem or are masked by other issues

Resource stall analysis

Oth . . S .) ;
e e Resource stallsindicate a GviderOCPU with
[JReservation more resources could run the code faster.
[JLoad / store Except our galsare for memory. Oops.

0% 20% 40% 60% 80% 100%

L2 cache accesses : : :
Another surprise! I ngructions dominate

[1Page table the number of L evel-2 cache accesses. We

Sﬁ::uctions have found a proessdf 500 M B an indude
asmud as150 M B o adepagesand severd

algarithmshavetoolargeadewarking sts

0% 20% 40% 60% 80% 100%

Two other major @oreQissues,|/O performanceand per-job
overheadsarestill beinganalysedn further detail. We expectto
report at a later occasionon both, aswell ason our analysison
code size, compiler selection and impact of compiler options.

Other recent performance improvements

EReduction in framework overheads, AOD analysstarget rateis 2kH z.

BUse of shower proble Ples optimised in smulation: Smulation time
reduced to 25% in a#ected detector regions. In addition improved physcs
settings and benebts from Geant4 optimisations in amulation. Ongoing
ettort to optimise use of the magnetic beld.

Bl mproved performance for conditions data access.

We usethreedi#erenttools for performanceanalysisdepending
on the desired precision of results.

At the coarse end we amply time agorithm execution usng CMS
framevak tima faalities " iIs is eadly undersood and done by every
physcis. M og of thetimewe use IgPrdf asit isfast and provides a suitable
level of detall. For maximally detailed code scrutiny we use allgrind from
the valgrind family of tools.

For memoryproblingthe only toolspracticallyaccessibl® usare
IgProfand the valgrindfamily. We usuallyusel gProf. Its memory
probler has been instrumental in our analyses so far.

Most of our systenievelanalysisvasdoneusingperfctr We have
alsousedOProblewhich is more widely installed,certainlyvery
usablefor basicanalysisput lacksseveractritical featuresfor the
level of detail we gathered. We are also learning to lpiimen

IgProf isa problertool developedy L. Tuuraand G. Eulissefor
measuringand analysingapplication memory and performance
characteristicslt requiresno changedso the applicationor the
build process, and no special privileges to run.

Few problers are capable of correctly probling CM S C++ software. | gProf
Is a faqt, light weight and correctly handles dynamicaly loaded shared
libraries, threads and sub-processes sarted by the application. It generates
full call tree probleswhich can be Pitered in many waysin analyss stage.

e main strengths of IgProfare its speed and e$ciency.

' e datidic@al pafamane proPe adds ~40 M B to the memory usage and
negligibly (&1%) to therun time. " e acurate manay proPla adds 50575%
to the run time and ~250 M B to the memory use for a typical CM S task
loading ~400 shared libraries, running for an hour, usng ~500 MB
memory and making ~1IM memory alocation cals per second. IgProf is
typically 102100 times faster than valgrind or callgrind.

IgProf Plls a dire gap betweaslgrindand system level problers.

In addition we havetools for problingthe sizeof persistendata.
We developeda PerfReporttool suite for easy generation of
digestible performance reports fragProfand callgrind.

We extendedallgrindto handlefull call-stacksot just the gprof-
stylecall graphs. "e functionality was taken frongProf.

For eachreleasewe run a releasgalidation suite.We will soon
beginto generatea standardperformanceeport for eachrelease,
including canonicaberformancenumbersfor a Gtandardcandl€©
sampleanalysedwvith a well-dePned reference process.

Performance report summary page

producer

cms::CkfTrackCandidateMaker

SeedGeneratorFromRegionHitsEDProducer

HcalSimpleReconstructor
MuonldProducer
SoftElectronProducer
cms::SiStripClusterizer
TrackProducer
cms::SiStripRecHitConverter
EcalWeightUncalibRecHitProducer
ElectronPixelSeedProducer
cms::BaseJetProducer
PixelMatchGsfElectronProducer
CSCRecHit2DProducer
cms::SiPixelClusterProducer
ESRecHitProducer
DTRecHitProducer

input| eventsetup

0.022
0.022

10.734

0.242
0.132
5.246
0.022
0.011
3.805
0.011
0.011
0.011
0.451
0.407
0.605
0.539

0.011
1.870
0.088
0.044
0.088
0.000
0.011
0.000
0.165
0.000
0.011
0.000
0.000
0.011
0.000
0.000

(total)
119.713
16.398
2.024
10.624
10.294
2.387
4.905
4718
0.506
2.804
1.947
1.595
0.935
0418
0.143
0.044

remainder
(thereof mem mgmt)

23.701
3.222
0.011
2.013
1474
1.078
1.001
1.496
0.033
0.715
0.319
0.011
0.165
0.220
0.000
0.000

TOTAL

119.746
18.290
12.846
10910
10.514

7.633
4.938
4.729
4476
2815
1.969
1.606
1.386
0.836
0.748
0.583

Performance report release comparison

Top 20 libraries
— 164.34 (28.350 %) 196.97 14’943 libe.so.6 [more]
(-51.208 %) (-2.555 %) (-99.487 %) (-51.208 %) The tem appears not to have moved.
62.58 (10.792 %) 216.81 5689 1libCint.so (moxe) 2
58.14 (10.029 %) 269.71 5287 libCorxe.so [more) 3
32.98 (5.689 %) 39.82 2099 libletectorDescriptionCore.so [more) 4
27.04 (4.865 %) 116.986 2459 libstde++.s0.6 [more) 5
26.39 (4.552 %) 30.75 2'400 1libz.so.l [more) 6
23.61 (4.073 %) 48.61 2147 1d-linux.s0.2 [(more)
% 17.89 (3.086 %) 17.89 1627 libm.so.6 [more)
(67.300 %) (1.947 %) (99.674 %) (67.388 %) [0S A0 hae Toved oy e =t by 4 ranks. .
11.32 {1.953 %) 133.62 1030 libCintex.so [more) 9
11.08 (1.911 %) 29.99 1008 1libTrackingToolsTrajectoryState.so (more) 10
B8.47 (1.461 %) 55.39 771 libRecoTrackerTkDetLayers.so [more] 11
ﬁ:b 4]: 7.68 (1.321 %) 17.89 697 1libTrackingToolsKalmanUpdators.so [more)
: : 12
(+131.420 %) (+1.018 %) (-09.799 %) (+131.581 %) ;gm'f::s";"m‘pg‘;}tg‘n‘f‘gs‘fp 20 before.
— 6.79 (1.171 %) 38.81 618 libTrackingToolsMaterinlEffects.so [more) 13
(-56.222 %) (-0.252 %) (-99.812 %) (-566.201 %) The tem appears not to have moved.
8.07 {1.047 %) 7.50 552 libMagneticFieldInterpolation.so [more) 14
5.54 (0.956 %) 12.79 504 1libTrackingToolsAnalyticalJacobians.se [more)
& = (60.173 %) (0.321 %) (99.785 %) (60.158 9;) [n'e tem has moved down the list by 2 ranks. =
Former absolute position: 15.
4.77 (0.823 %) 7.15 434 libGeometryTrackerGeometrybuilder.so (more) 16
4.75 (0.819 %) 8.99 432 libGeometryCaloGeometry.so [more]
@ T (+202.548 %) (+0.675 %) (-08.695 %) (+202.008 %) 1S element was not in the top 20 before. i
Former absolute position: 51.
? # 4.70 (0.811 %) 5.18 428 libDataFormutsthath.so [more)
(+46900.000 %) (+0.810 %) (87.953%) (+42700.000 %) g::fxsgm’p::wn‘?#g? 20 before. .
4.52 (0.780 %) 9.05 411 libTrackPropagationSteppingHelixPropagator.so [more]
@ o @sn e s s was ot s o 20t .
4.50 (0.776 %) 185.48 410 1libTree.so [more)
78.683 (13.564 %) nfa nfa {others} 21

Total cost in this list {formerly): 1089.87
Total costin this list: 579.69 (-46.811 %)

In the last half a yearwe havetakenour Prststepsat organised
and determined software performance scrutiny and improvemer

Wearedearly only at thegart of aveylongroad. It could be said we have so
far mainly learned a productive method for understanding the performance
of our software, and how to make controlled improvements. " isin itsdf is
very encouraging however.

' ee appears to be room for competitive improvement on exising
hardware and even an option to extend the physcsrange.

Our unexpected Pndings conbPrm it isimportant to br4 measureand analyse

"ere Is clearlyalack of matureand e#ectivetools for analysing
the performance of modern, complex software systems.

W e are making publicly available the tools we Pnd useful oursalves: | gProf,
PerfReport and our improvements to calgrind. Our methodology for
measuring system level performance isaso availlable to any interested party.

I ebatleneksin your sftwaremay now beeasa tobnd!

W e continue to watch with interest developments elsewhere: srategies and
tools of large open source projects such as KDE, Samba and Linux,
compiler evolution, and C++ support infrastructure. W e follow closaly the
gradual but sgnibcant developmentstaking place on the CPU market.

