
Analy sing CM S

so! ware per f or mance

using IgProf " OPro# le

and cal l gr ind

Lassi A$ Tuura

Northeastern University
With V$ Innocente and G$ Eulisse
on behalf of the CMS experiment

CHEP %&&'
Victoria" BC" Canada
%(' September %&&'

We use a lot of money for computing

1% of 2008 CMS CPU budget
! 27 todayÕs top performing servers

(2 ! dual core Intel Xeon 5160 @ 3 GHz)

"e CMS computing model allows
25k SI2k ! s / event for reconstruction
! 8.3 s on a 3 GHz Intel Xeon 5160

In the CMS CSA06 challenge we used
20k SI2k ! s / event on ttbar, however
with incomplete algorithms and no pile-up

"e very latest CMS reconstruction takes
 ~12k SI2k ! s / event (3.8 s on 3 GHz 5160)

for QCD 20-30GeV Òstandard candleÓ
 with no pile-up

With pile-up the reconstruction
is still well over the time budget!

Possible solutions

Decide inclusive QCD
wasnÕt so interesting after all.

Possible solutions

Drop a detector upgrade or two
and buy more computers.

Possible solutions

Improve software performance and
maybe even gain more physics capacity!

But thatÕs actually quite hard.

CMS release is currently 1.5M lines of code,
not including the external packages we use.

In the current phase of development, existing
code is modiÞed and new code is added faster

than we can analyse and improve what is there.

Production

Analyse &
Improve

Release

Updated and
new code

" e essential optimisation challenge

ÒBut in our enthusiasm, we could not resist a
radical overhaul of the system, in which all of its
major weaknesses have been exposed, analyzed,
and replaced with new weaknesses.Ó

Bruce Leverett
Register Allocation in
Optimizing Compilers

(" e other optimisation challenge)

M oreoverÉ

Current state of the art video editing software is
capable of applying multiple video e#ects in real time.

"is is a good example of well optimised code.

Is it realistic to assume we could reach
a similar degree of code performance?

If not, what is a realistic goal?
Which reality checks benchmark us?

Some interesting facts

Each major bug cuts production e$ciency
instantly by O(50%). "atÕs a tough envelope.

Memory is relatively cheap. Or was.
Chasing pointers is poison to the CPUs,
 page table working set size is limited and

>> 1 GB per job slot gets tenuous.

C++ is still relatively new in physics and in
terms of tool maturity. A lot of attention went

in the past into debating and honing OO designs
Ñ not necessarily high-performance designs.

Performance
Evaluation

Measurement

Analysis

Reporting

Improvement
Optimal use of resources

Guidance
Purchasing optimal resources

Algorithms

Systems

Frameworks

Data

Tools

Recent CM S code performance projects

Performance
Evaluation

Measurement

Analysis

Reporting

Improvement
Optimal use of resources

Guidance
Purchasing optimal resources

Algorithms

Systems

Frameworks

Data

Tools

Measurement

Analysis

ÒMeasure, donÕt guess!Ó
Use reliable hard data and proper methodologies

20Õ000 ft view

Excellent news: Remember the problems with ÒcleverÓ
optimisations causing data from one event poisoning another?

Well, gone. Turns out to be a negligible problem in CMS
software, both by design and thanks to valgrind.

Brilliant news: We are making good progress towards the
computing model envelope! "e most important tracking
algorithms were speeded up by ! ~3 and the high-level

trigger has demonstrated reconstruction within the
allotted 40ms/event budget.

So were there any bad news?

Well, think children and candy stores.
ItÕs an optimisation paradise.

We have much to gain.

It means we get to revise many design
decisions and to change nearly all the

1.5M lines of code one way or anotherÑ not
that the code wouldnÕt be changed anywayÉ

And then there are questions on some externals we use.

Production

Analyse &
Improve

Release

Updated and
new code

LetÕs dive into the details.

- What we found out.

- What we did about it.

- Tools and methods we used.

- A glimpse at ongoing analyses.

" e starting point

We have discovered a single dominating factor:
a staggering memory allocation and deallocation rate.

Practically every CM S application allocates and deallocates memory at the
dizzying rate of 700k Ð 1M blocks per second or about 1 GB and 10 M
allocations per event.

1/4th of all time spent in memory allocation (operator new, malloc, freeÉ),
1/3rd if we include memory and string shu%ing (strcpy, memcpy, É).

While we have identiÞed a couple of particularly egregious causes,
this problem is not conÞned to any particular package or coding style.
Nearly all high energy physics C++ code we have examined, both
CMSÕ own code and the externals we use, have large-scale and
wide-spread issues with memory allocation and usage patterns.

ProÞle data rarely reveals signiÞcant number crunching in the applications.
" ere is in particular an odd a#ection for strings almost everywhere.

In recent months our top optimisation priority has consistently
been the identiÞcation and addressing of memory issues.

" is often implies signiÞcant code changes. On the other hand the process
usually reveals further important optimisation opportunities: the memory
usage patterns frequently mask genuinely interesting problems elsewhere.

"e Þrst optimisation step was very low-hanging fruit, if not easy.
66% of all memory allocations were by a matrix and vector
package used in the reconstruction algorithms.

Replacing the package with a more memory-e$ cient one in the most easily
accessible performance sensitive parts required changes to ~50 packages
and delicate changes such as switching from 1- to 0-based indices. Work is
ongoing to complete the transition in code requiring more extensive e#ort.

Together with other optimisation opportunities discovered in the process
(caching computed values and magnetic Þeld lookups), the performance of
the tracking code was improved by factor of about three. Reconstruction as
a whole was sped up less due to unrelated less optimised algorithms
introduced independently at the same time.

! #241 ! #374

" e memory churn has many sources; packages developed with very di#erent
styles and methods exhibit the problem. We identify some factors below.

ÐStrings everywhere, and in just about every possible wrong way.

ÐBad method names, spaghetti logic, poor encapsulation and unclear object
ownership rules. Developers are confused about which object owns what data, or
what state objects might be in, or the interactions between di#erent methods are
too complex to track through, or itÕs unclear what a method does or returns. Result
is not reusing previous data and excessive cloning.

ÐManipulating very expensive objects by value. One very common pattern is using
containers of objects that contain, or are themselves, containers, such as vectors of
(objects containing) vectors, maps of strings, and so on. Not passing big parameters
and return values by value is mentioned in every text book, yet rather common.

ÐConstantly recalculating values. Could be because the local scope knows too little
to e#ectively reuse state or to cache expensive computations. Frequently Òx().y().z()Ó
call chains where intermediate calls are not as cheap as the developer thought. Can
involve encapsulation gone too far and limiting useful horizon in the system. Can
be a side e#ect of shattering the code in thousands of three-line routines all over the
place such that the compiler is unable to eliminate common sub-expressions.

At the system level, large Level-1 and page table caches (TLBs)
improve CMS software performance substantially. Deceptively
low CPU " memory bus use, <<1% of capacity, is perhaps best
explained by the fact that the CPU is mostly stalled.

" ese are, e#ectively, just restatements of the woeful state of memory
management a#airs. " e Þrst level cache obviously takes the hit from
dereferencing all the millions of pointers we create. Large page table caches
help mitigate the large, sparse memory page working sets.

M ost of the
time, the CPU
does nothingÉ

É but when it does
work, the entire

pipeline is Þlled up
for a short while

Could we extract three times the performance from existing hardware?

What really happens?

On AM D Opteron 270, a ÒwideÓ and
resource-rich CPU, our apps are by far not
compute bound. Analysis of stalls follows.

Surprise! Memory stalls are for instructions
(60%) and page table accesses (60%). Number
of data pages aside, data accesses appear not
to be problem or are masked by other issues.

Resource stalls indicate a ÒwiderÓ CPU with
more resources could run the code faster.
Except our stalls are for memory. Oops.

Another surprise! Instructions dominate
the number of Level-2 cache accesses. We
have found a process of 500 MB can include

 as much as 150 MB of code pages and several
algorithms have too large code working sets.

Two other major ÒcoreÓ issues, I/O performance and per-job
overheads, are still being analysed in further detail. We expect to
report at a later occasion on both, as well as on our analysis on
code size, compiler selection and impact of compiler options.

Other recent performance improvements

ÐReduction in framework overheads; AOD analysis target rate is 2kHz.

ÐUse of shower proÞle Þles optimised in simulation: simulation time
reduced to 25% in a#ected detector regions. In addition improved physics
settings and beneÞts from Geant4 optimisations in simulation. Ongoing
e#ort to optimise use of the magnetic Þeld.

ÐImproved performance for conditions data access.

We use three di#erent tools for performance analysis, depending
on the desired precision of results.

At the coarse end we simply time algorithm execution using CM S
framework timer facilities. " is is easily understood and done by every
physicist. M ost of the time we use IgProf as it is fast and provides a suitable
level of detail. For maximally detailed code scrutiny we use callgrind from
the valgrind family of tools.

For memory proÞling the only tools practically accessible to us are
IgProf and the valgrind family. We usually use IgProf. Its memory
proÞler has been instrumental in our analyses so far.

Most of our system level analysis was done using perfctr. We have
also used OProÞle, which is more widely installed, certainly very
usable for basic analysis, but lacks several critical features for the
level of detail we gathered. We are also learning to know pfmon.

IgProf is a proÞler tool developed by L. Tuura and G. Eulisse for
measuring and analysing application memory and performance
characteristics. It requires no changes to the application or the
build process, and no special privileges to run.

Few proÞlers are capable of correctly proÞling CM S' C++ software. IgProf
is a fast, light weight and correctly handles dynamically loaded shared
libraries, threads and sub-processes started by the application. I t generates
full call tree proÞles which can be Þltered in many ways in analysis stage.

"e main strengths of IgProf are its speed and e$ciency.

" e statistical performance proÞler adds ~40 M B to the memory usage and
negligibly (&1%) to the run time. " e accurate memory proÞler adds 50Ð75%
to the run time and ~250 M B to the memory use for a typical CM S task
loading ~400 shared libraries, running for an hour, using ~500 M B
memory and making ~1M memory allocation calls per second. IgProf is
typically 10Ð100 times faster than valgrind or callgrind.

IgProf Þlls a dire gap between valgrind and system level proÞlers.

In addition we have tools for proÞling the size of persistent data.
We developed a PerfReport tool suite for easy generation of
digestible performance reports from IgProf and callgrind.

We extended callgrind to handle full call-stacks, not just the gprof-
style call graphs. "e functionality was taken from IgProf.

For each release we run a release validation suite. We will soon
begin to generate a standard performance report for each release,
including canonical performance numbers for a Òstandard candleÓ
sample analysed with a well-deÞned reference process.

Performance report summary page

Performance report release comparison

Are we on the right track?

In the last half a year we have taken our Þrst steps at organised
and determined software performance scrutiny and improvement.

We are clearly only at the start of a very long road. I t could be said we have so
far mainly learned a productive method for understanding the performance
of our software, and how to make controlled improvements. " is in itself is
very encouraging however.

" ere appears to be room for competitive improvement on existing
hardware and even an option to extend the physics range.

Our unexpected Þndings conÞrm it is important to Þrst measure and analyse.

Are we on the right track?

"ere is clearly a lack of mature and e#ective tools for analysing
the performance of modern, complex software systems.

We are making publicly available the tools we Þnd useful ourselves: IgProf,
PerfReport and our improvements to callgrind. Our methodology for
measuring system level performance is also available to any interested party.

! e bottlenecks in your software may now be easier to Þnd!

We continue to watch with interest developments elsewhere: strategies and
tools of large open source projects such as KDE, Samba and L inux,
compiler evolution, and C++ support infrastructure. We follow closely the
gradual but signiÞcant developments taking place on the CPU market.

