

WLCG – Worldwide LHC Computing Grid

Where we are now & the Challenges of Real Data

CHEP 2007
Victoria BC
3 September 2007

Les Robertson WLCG Project Leader

WLCG - The Collaboration - 4 Experiments +

Tier-0 - the accelerator centre

- Data acquisition & initial processing
- Long-term data curation
- Distribution of data → Tier-1 centres

- 11 Tier-1 Centres "online" to the data acquisition process

 → high availability
- Managed Mass Storage -→ grid-enabled data service
- Data-heavy analysis
- National, regional support

Tier-2 - 112 Centres in 53 Federations in 26 countries

- End-user (physicist, research group) analysis where the discoveries are made
 - Simulation

WLCG depends on two major science grid infrastructures

EGEE - Enabling Grids for E-Science

OSG - US Open Science Grid

The Worldwide LHC Computing Grid Does it work?

CPU Usage accounted to LHC Experiments

accounted/pledged over past 12 months

62%

48%

Ramp-up needed over next 8 months

6 X

4 X

CPU Usage accounted to LHC Experiments July 2007

530M SI2K-days/month (CPU)

9 PB disk at CERN + Tier-1s

80 Tier-2s 45% 11 Tier-1s 35% CERN 20%

Sites reporting to the onth

Jobs accounted in Month

ATLAS+CMS Targets (jobs/month) End 2007 Mid 2008 3 M 9M

CMS Dashboard - Crab Analysis Jobs

Top 20 of 88 sites running at least one job

jobs per site

Mid-July → mid-August 2007

645K jobs (20K jobs/day)
 89% grid success rate

2007 - CERN → Tier-1 Data Distribution

Daily Report

(VO-wise Data Transfer From CERNCI To All Sites)
Revert Source/Dest Site(s)

Need a factor of 2-3 when the accelerator is running

(achieved last year for basic file transfers – but this year tests are under more realistic experiment conditions)

Average data rate per day by experiment (Mbytes/sec)

CMS PhEDEx - Transfer Rate

Maximum: 1510.96 MB/s, Minimum: 3

all sites ←→ all sites

Overall within 50% of the 2008 target

but not every site is reliable

and taking its share

T1_FZK_Buffer

T2_Bari_Buffer

T1_FNAL_Buffer

T1_RAL_Buffer

Baseline Services

The **Basic** Baseline Services – from the TDR (2005)

- Storage Element
 - Castor, dCache, DPM (with SRM 1.1)
 - Storm added in 2007
 - SRM 2.2 spec. agreed in May
 2006 -- being deployed now
- Basic transfer tools Gridftp, ...
- File Transfer Service (FTS)
- LCG File Catalog (LFC)
- LCG data mgt tools lcg-utils
- Posix I/O
 - Grid File Access Library (GFAL)
- Synchronised databases T0←→T1s
 - 3D project

- VO Boxes
- Application software installation
- Job Monitoring Tools

M4 data taking August 31

Throughput MB/s

Data transferred GB

Completed filetransfers

Total number of errors

Reliability?

SAM "critical" system tests

User Job Efficiency

- Job success rate excluding application errors
- Measured by job log analysis
- At present only for jobs submitted via the EGEE workload management system

Reliability

- Operational complexity is now the weakest link
 - Inconsistent error reporting -- confused by many layers of software - local system, grid middleware, application layers
 - Communications difficult -
 - -- sites supporting several (not just LHC) experiments and sometimes other sciences
 - -- experiments coordinating across a large number of sites
 - -- multiple sites, services implicated in difficult data problems
 - Sites have different histories, different procedures, different priorities
- → A major effort now on monitoring**
 - Integrating grid monitoring with site operations
 - Experiment specific dashboards for experiment operations and end-users

.. and on standard metrics - comparing sites, experiments

**Session on monitoring - Grid Middleware and Tools — Wednesday afternoon

Reminder – one of the conclusions from the plenary talk at CHEP'04 by Fabiola Gianotti

My 2 main worries today (as an LHC physicist and end-user):

- End-users not yet exposed to massive use/navigation of database and of GRID
 - \rightarrow what will happen when $O(10^3)$ physicists will simultaneously access these systems?
- Software and Computing Model developed for steady-state LHC operation (≥ 2009?)
 But: at the beginning they will be confronted with most atypical (and stressful) situations, for which a lot of flexibility will be needed:
 - -- staged, non-perfect, non-calibrated, non-aligned detectors with all sorts of problems
 - -- cosmic and beam-halo muons used to calibrate detectors during machine commissioning
 - -- machine backgrounds; higher-than-expected trigger rates
 - -- fast/frequent reprocessing of part of data (e.g. special calibration streams)
 - -- O(10³) physicists in panic-mode using and modifying the Software and accessing the database, GRID ...
 - ⇒ it is time for the Software/Computing to address the early phase of LHC operation, not to hinder the fast delivery of physics results (and a possible early discovery ...)

2

Are we approaching the Plateau of Productivity?

Middleware & services:

- Initial goals over-ambitious but we now have basic functionality, tools, services
- SRM 2.2 is late and storage management is hard
- Experiments have to live with the functionality that we have now

Usage:

- Experiments are running large numbers of jobs despite their (justified) complaints
- And transferring large amounts of data though not always to where they want it
- ATLAS has taken cosmic data from the detector to analysis at Tier-2s
- End-users beginning to run analysis jobs but sites need to understand much better how analysis will be done during the first couple of years → and what the implications are for data

Scalability:

- 5-6 X needed for resource capacity, number of jobs
- 2-3 X needed for data transfer

Reliability:

- Not yet good enough
- Data Transfer is still the most worrying despite many years of planning and testing
 - Many errors → complicated recovery procedures
 - Many sources of error storage systems, site operations, experiment data management systems, databases, grid middleware and services, networks,

• • • •

Hard to get to the roots of the problems

Are we getting there? Slowly!

Need continuous testing from now until first beams

- Driven by experiments with realistic scenarios, good monitoring and measurements
- and the pro-active participation of sites, developers, storage experts

After so many years --the beams are now on the horizon & we can all focus on
the contribution that we can make to extracting the physics

