
Grid data access on widely distributed worker nodes

using Scalla and SRM

Pavel Jakl1, Jerome Lauret2, Andrew Hanushevsky3, Arie Shoshani4,
Alex Sim4 and Junmin Gu 4

1 Nuclear Physics Institute ASCR, Prague, CZ 18086, Czech Republic
2 Brookhaven National Laboratory, Upton, NY 11973, USA
3 Stanford Linear Accelerator Center, Menlo Park, CA 94025, USA
4 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: pjakl@bnl.gov

Abstract. Facing the reality of storage economics, NP experiments such as RHIC/STAR have
been engaged in a shift of the analysis model, and now heavily rely on using cheap disks attached
to processing nodes, as such a model is extremely bene�cial over expensive centralized storage.
Additionally, exploiting storage aggregates with enhanced distributed computing capabilities
such as dynamic space allocation (lifetime of spaces), �le management on shared storages
(lifetime of �les, pinning �le), storage policies or a uniform access to heterogeneous storage
solutions is not an easy task.
The Xrootd/Scalla system allows for storage aggregation. We will present an overview of the
largest deployment of Scalla (Structured Cluster Architecture for Low Latency Access) in the
world spanning over 1000 CPUs co-sharing the 350 TB Storage Elements and the experience
on how to make such a model work in the RHIC/STAR standard analysis framework. We will
explain the key features and approach on how to make access to mass storage (HPSS) possible
in such a large deployment context.
Furthermore, we will give an overview of a fully "gridi�ed" solution using the plug-and-play
features of Scalla architecture, replacing standard storage access with grid middleware SRM
(Storage Resource Manager) components designed for space management and will compare the
solution with the standard Scalla approach in use in STAR for the past 2 years. Integration
details, future plans and status of development will be explained in the area of best transfer
strategy between multiple-choice data pools and best placement with respect of load balancing
and interoperability with other SRM aware tools or implementations.

1. Introduction
The amount of scienti�c data generated by simulations or collected from large scale experiments
have reached levels that cannot be stored in the researcher's workstation or even in his/her
local computer center. The amount of data is no longer meassured in megabytes, but instead it
scales in order from terabytes to petabytes. In the data analysis phase, the scientist typically
wants to extract a subset of the data based on some criteria. Typical and well known example
is Particle and Nuclear Physic data mining and analysis of detector data. The Data Acquisition
System in these detectors records information about collision events between particle beams.
The information is stored in multiple �les, where each �le contains information about thousands
of such events. Typical analysis of data involves searching for rare and interesting processes

� �

���� ���� ���� ���� ���� ���� ���� ����
�

����

	���

����

����

�����

���
�������

�
�
�
�
��
��
��
�
�
��
�
�
�

Figure 1. Raw data projection for the
STAR experiment

� �

����������	

�
��

��
��

	
�
�
��
�
�
�

���� ���� ���� ���� ���� ���� ���� ����
���

������

������

������

 �����

������

������

������

������

����
�!���"�"��

#���
	$�%�"�"��

Figure 2. RHIC computing facility
capacity pro�le

and is performed in multiple phases involving classi�cation and summarization. In addition,
the same data �les may be shared simultaneously by several di�erent groups of scientists with
di�erent interests.
A such real example is the STAR experiment, one of the four physics experiments at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), USA. In this
kind of experiment and science, the fraction of interesting data is usually very low and in order
to have a signi�cant statistical data sample, the experiment has generated enormous amount of
data since May/June 2000. The word enormous means magnitude of several Peta bytes (1015 of
byte) of data stored in over 10 millions of �les over past 6 years of collider's running. The picture
1 shows size expectations of data for up-coming years with regard to STAR physics program
and planned upgrades which generate increase of data to be taken.
Any experiment facing Peta bytes scale problems is in need for a highly scalable tape storage
system to keep a permanent copy of the data. In general, the tape system o�ers cheap and reliable
storage, but on opposite side very slow access and data needs to be migrated on temporary and
faster locations where could be available for physicist's analysis. Such a system resposible for
managing a temporary storage needs to full�l several requirements. In most cases, the temporary
and faster location has smaller capacity than the entire tape system and thefore it needs to make
decisions which �les should reside, which of them evict by taking into account user's access
pattern. This includes many features such as enhanced cache management containing advaned
techniques such as pinning of �les, lifetime for spaces and �les or assigning spaces with di�erent
capabilities.
We describe a system that was developed to perform desribed huge data access taking advantage
of two technologies used in distributed systems. The �rst is Scalla (Structured Cluster
Architecture for Low Latency Access) [1] designed for low latency data access in distributed
environment, and the second is Storage Resource Managers (SRMs) [2] that manage the space
usage of storage systems and the dynamic content of the storage.

2. Storage model design
There are two coexistent methods for connecting disk-based storage to computing nodes for
fast data access. First, centralized storage that is a storage with many heterogeneous
servers connected to one single storage space. Usually they contain one or more hard disks,
often arranged into logical, redundant storage containers or RAID arrays connected over the
network to computing node. Second, distributed storage that is a storage that has many
geographically-dispersed disk drive units, usually spread over many hosts or servers. All the
hosts or servers are connected together through the network. The storage devices are part of the
host computer and directly attached to it. The computing nodes must therefore "physically"

contact the server (the host owning the storage) in order to connect to the storage device.
Although distributed storage introduce many components within a complex server/server and
server/clients layout, from economical statistics, the initial purchase price is cheaper by factor
of 10 comparing to the distributed storage. As a consequence, even though the implementation
of centralized storage is growing at a faster rate than that of distributed storage (mainly due
to the lack of ready-to-use solution to manage data distribution), its cost cannot compete to
the possibility o�ered by distributed storage solutions. When considering distributed disk, it
is important to understand what the data availability requirements are. In order for clients on
the network to access the storage device, they must be able to access the server it is connected
to, speaking nothing of getting information which server contact. If the server is down or
experiencing problems, it will have a direct impact on user's ability to access the data. In
addition, the server also bears the load of processing applications which can at the end slow the
IO throughput. Considering physics data and environment, the availability and data protection
aspects could be reduced by re-copying the lost data from master copy on the tape drive to the
other server. Speaking about scalability and capacity of distributed storage, one could imagine
linear growth of storage simultaneously with computing nodes, since the storage is attached.
There is no other need for extra hardware in order to increase the size of the storage. The
maintenance resources are reduced in case of distributed disk, since there is no need of having
two separated persons for maintaining computing and storage element, one person can serve both
of them. As a conclusion, the distributed storage seems as a better solution for physics data
and is bringing cheaper, scalable, capable solution, but on the other hand worse manageability,
sometimes called: "Islands of information". The di�culty relies on management of space spread
among multiple servers, not mentioning load balancing issue, obtaining highest performance and
scalability (since CPU and storage are now coexisting).
Driven by the need for vast amount of data and economics, the STAR software & computing
project has taken the decision to move toward to a distributed storage model infrastructure
as their primary storage solution as illustrated in Figure 2. This satis�es the needs of the
collaboration and the requirements for the upcoming years. This is not without challenge and the
next chapters will be focused on the architectural and technological aspects of the publication,
management and performing large scale data access on the distributed storage co-existing with
computing nodes.

3. Software challenges
In contrast to storage model challanges, one can imagine building a truly distributed network
data access system with no central bottleneck or single point of failure. There are many main
and basic features such a system must accomplish. One of them is data consistency, where the
system must provide mechanism in order to ensure that each user can see changes that others are
making to their copies of data. All of this together with single global unique name-space
which allows the name of a �le to look the same on all computers. The system should also
has
exible security module which would allow to use any security protocol (pwd, gsi etc.).
The system also should give a high degree of fault tolerance at the user's side to minimize
the number of jobs/applications failures after a transient or partial server side problem or any
kind of network glitch or damaged �les. In order to support incredible amount of data, mass
storage system integration is required in order to satisfy all user's requests for di�erent kinds
of data-sets. The system should contatin any load balancing mechanism in order to e�ciently
distribute the load between clusters of servers and preventing hot spots in the cluster. More
importly, when the storage element shares the same resource as computing element. One of
the most important requirements of such system is the scalability where the performance of
the system must scale with number of clients and servers and it needs to be able to support
thousands of clients simultaneously with no performance decrease or even with any short random

distuprtion of the entire system. Last, but not least it should have Grid support meaning an
ability to connect to other instances located in di�erent parts of the world. More precesily,
the capability to share and interchange data with other storage solutions. One of the solutions
partially complying with all these mentioned requirements, well known in HENP computing is
Scalla (Structured Cluster Architecture for Low Latency Access) aka Xrootd [3]. The purpose
of this paper is not dedicated to explanation of Scalla package architecture [1], but rather the
focus was given on features which this tool lacks and also to present a solution providing them.

4. Enabling MSS access in large deployment context
At STAR, the usual analysis is performed with the help of software called SUMS (STAR Uni�ed
Meta Scheduler). Each user has to describe its intend with special language as for example: input
to the task, location to store output of a task, program which will be used for processing etc.
Input to the task can be speci�ed as a list of �les or using meta-data query (energy, collision
etc.) to the STAR File catalog which resolves this query into particular physical data-sets.
According to the user's speci�cation, SUMS orders the data-sets, splits them into particular
jobs and submits them into preferred batch system queue. As one can imagine, there must be a
limitation of job's run-time to control resource sharing in such multi-user shared environment.
The usual practice to limit user's job run-time is having a hard limit in clock time. In simply
way, this means that job is killed when it is running too long time. This �nding comes to the
initial problem when a user accesses a �le from the tape system within a job. Delays are highly
expected and when the access and performance is not enough e�cient, the jobs is sooner or later
killed.
From our observation and usage at STAR, the average time to restore one �le from the tape
system was about � 24 minutes. By simple counting, when a user requests 1000 �les, we get
the time period of 400 hours. This number is almost impossible to adjust as a hard limit.
What about jobs requesting more then 1000 �les ? The one of the next facts con�rming very
slow performance for dynamic disk population is the plot showing performance of the system
DataCarousel [4] used for e�cient management of the unique system which needs to be shared
among many users requesting �les from/to tape system. In respect to STAR/RHIC experiment,
the tape system is represented by High Performance Storage System (HPSS).
The plot 6(a) shows performance in MB per second in relation to time range. Obviously, the
performance is in average 10Mb/s upon 9 tape drives. The theoretical limit for one tape drive
depends on drive technology being used (in STAR 9940b-� 30 MB/s, LTO-3-70-80 MB/sec).
Most of the STAR �les (around 98%) are located on 9940b tapes where 9 tape drives corresponds
to the theoretical data throughput of 270 MB/sec. All these observations call for studying key
parameters how to optimize and tune performance of the tape system.

5. Key parameters of tape system performance
There were performed several studies on how the performance of the tape system can be increased
and its key parameters in
uencing the e�ciency [5], [6]. From those studies, there are several
inquiries which directly a�ect the performance of one tape drive, but also parameters implicitly
in
uencing the overall aggregate performance of the system:

(i) measured maximum theoretical performance value per one drive (9940b 25-30 MB/s, LTO-3
70-80 MB/s)

(ii) the coupling to disk storage cache and the performance of it

(iii) the access pattern de�ned by user application and its disposal on e�cient managing of
multiple tape drives

(iv) the length of uninterrupted streaming of a �le from/to tape and per �le overhead on tape
seeking, both of which are a�ected by the �le size

The �rst testi�es about theoretical limit of a tape performance which is not possible to overcome,
for STAR case it is mostly 30MB/sec per one drive. The second consideration gives a small
e�ciency gain, since most raid arrays of disks have higher or comparable theoretical data
throughput limit as one tape drive or more. Hence, our interest is focused on last two bullets
which are in
uencing the performance at most and are directly connected to the usage of the
system rather than a con�guration of the system. The picture 3 shows two most important key
parameters of tape drive performance size of the �le and number of �les restored per one
tape mount.

5.1. File size parameter

The �rst parameter a�ects per �le overhead and it is related to seeking through the tape,
partly due to the time it takes to read/write two �le-marks between �les (4-5 seconds).

Figure 3. File size and multiple �les per
tape mount vs e�ciency of the HPSS

This corresponds to processing about 10 000
�les/day. In order to overcome this limitation, the
�le size should be such that the time it takes to
read/write the �le on tape is signi�cantly more
than the overhead (say a factor of 10). For a
30MB/s 9940B drive, this is about 1 - 1.5GB.
For LTO-3 streaming at 80MB/s this corresponds
to 4GB. As mentioned before, tape drives have
a rate that they stream at, that is, they continue
writing (reading) at this rate without starting and
stopping as long as data is written (read) at this
rate or faster. A drive will stop streaming to
write/read a �le-mark. Keeping a drive streaming
provides the best rate possible and does not wear
the drive as much as the continual starting and
stopping when not streaming. A drive will not
stream for very long when small �les are written
to it, or if the rate the �le is being provided is slower than the drive theoretical maximum
streaming rate. Files which are being used for analysis at STAR are MicroDST �les and its
average size is � 88 MB. One can easily distinguish from the plot 3 that by increasing the �le
size up to 1 GB, the performance e�ciency gain is 40%.

5.2. Number of �les per tape mount parameter

The second parameter is directly a�ected by the access pattern of the application which requests
�les from/to tape system. Here, for simplicity we consider this application as Scalla/Xrootd
system. However, the access pattern is far behind the system itself, users who performs the
analysis are the "generators" of the access pattern. Moreover, the access pattern is de�ned
partially by user's intend of requested �les, but also by Scalla/Xrootd system, since the system
can have some of the �les already on the disk and therefore doesn't need to access them from
the tape.
By observing the plot 3, we can see that an increase of multiple �les per one tape mount, we can
boost the performance by 35%. However, this scenario is not feasible in real world production
of huge amount of data and �les spread over many tapes. The most likely number is 10 �les per
tape mount which corresponds to 10% gain of performance e�ciency upon 88MB �les. However,
the growth sharply accelerates when the size increases and the performance is more than 60%.
The Scalla system uses another software tool to manage an access to HPSS, it is called
DataCarousel. The integration of this tool within Scalla architecture is well described in [4],
but we will describe the purpose of this system in more details for further understanding. The

1 drive of
HPSS

List of files (ideally files
from the same tape)

File 1 on tape 1

File 2 on tape 1

File 3 on tape 1

File 4 on tape 1

File 5 on tape 1

File 6 on tape 1

File 7 on tape 1

File 8 on tape 1

File 9 on tape 1

File A on tape 2

File B on tape 2

File C on tape 2

File D on tape 2

File E on tape 2

File F on tape 2

File G on tape 2

File H on tape 2

File D on tape 2

Job A Job B

Mount a tape 1 [File 1] 1

2

Mount a tape 2 [File A]

1

Dismount
tape 2

2

1

2

Reading from tape 1

Reading from tape 2

Mount a tape 1 [File 2]

Dismount
tape 1

Dismount
tape 1

Mount a tape 2 [File B]

Dismount
tape 2

1

Mount a tape 1 [File 3]

!!! EACH MOUNT/DISMOUNT
~30 s !!!

List of files (ideally files
from the same tape)

!! TO ACCESS A FILE ON
THE TAPE ~58s !!

Figure 4. The hassle of two jobs for
HPSS drive

Read a tape 1 [File 3]

1 drive of
HPSS

List of files (ideally files
from the same tape)

File 1 on tape 1

File 2 on tape 1

File 3 on tape 1

File 4 on tape 1

File 5 on tape 1

File 6 on tape 1

File 7 on tape 1

File 8 on tape 1

File 9 on tape 1

File A on tape 2

File B on tape 2

File C on tape 2

File D on tape 2

File E on tape 2

File F on tape 2

File G on tape 2

File H on tape 2

File D on tape 2

Job A Job B

Mount a tape 1 [File 1] 1

2

1

2

1

2

Reading from tape 1

Reading from tape 2

Read a tape 1 [File 2]

Mount a
 ta

pe 2
 [F

ile
 A

]

Dismount
tape 1

1

List of files (ideally files
from the same tape)

1

2

2

Rea
d a

tap
e 2

 [F
ile

 D
]

Read a tape 1 [File 3]

!!! WE GAIN ~60s FOR
EACH OF THE FILE !!!

Rea
d a

tap
e 2

 [F
ile

 C
]

Rea
d a

tap
e 2

 [F
ile

 B
]

Figure 5. A pre-staging e�ect on HPSS
drive

DataCarousel (DC) is an HPSS front-end which main purpose is to coordinate requests from
many un-correlated client's requests. Its main assumption is that all requests are asynchronous
that is, you make a request from one client and it is satis�ed \later" (as soon as possible). In
other words, the DC aggregates all requests from all clients (many users could be considered
as separate clients) and re-order them according policies, and possibly aggregating multiple
requests for the same source into one request to the mass storage. Policies may throttle the
amount of data by group (quota, bandwidth percentage per user etc.), but also perform tape
access optimization such as grouping requests by tape ID. Currently, the policy is based on
satisfying following strategy which is the tape with the largest number of �les requested. The
second strategy is driven by user priorities where scalla has the highest priority over the other
users, since all �les are requested within waiting jobs.
To achieve e�cient performance from/to tape system using DC, one needs to submit "enough"
long list of �les to allow creating reasonable sorting and queries according to location of a �le
on a tape. This is obviously in clash with scalla "random" access and sequential processing of
user's list of �les. The picture 4 shows the hassle of two jobs for one HPSS drive where the
excessive mounting of the same tape is a consequence of the sequential processing.
For simplicity, lets assume just on HPSS drive and two jobs, but there are always more then
2 jobs and one HPSS drive in real production scenario. Each of the jobs has list of �les to be
processed where the �les are likely on the same tape due to assumption that alphabetical order
sorted by SUMS means �les on the same tape. Likely means that there is no con�dence that �les
has to be on the same tape, HPSS doesn't o�er any attribute how to ensure that �les will reach
the same tape. For the next explanation, lets also assume that �les on the list are presented
nowhere on Scalla system and needs to be always requested from the tape system.
First Job A requests its �rst �le from the list, the "Tape 1" is mounted for the "File 1" and �le
is read from tape to disk cache and transferred from cache to a node where job can process the
�le. Obviously, in the meantime where HPSS transfers the "File 1", the "Tape 1" is dismounted
to satisfy the request of the second Job B where the "Tape 2" is mounted for the "File A".
This situation is repeated for second �les from lists and both jobs, it goes as following:

(i) mount "Tape 1" for "File 2"

(ii) dismount "Tape 1"

(iii) mount "Tape 2" for "File B"

(iv) dismount "Tape 2"
...

(v) mount "Tape 1" for "File 9"

(vi) dismount "Tape 1"

(vii) mount "Tape 2" for "File D"

(viii) dismount "Tape 2"

From the pattern, it is transparent that the same tape is mounted and dismounted constantly
during a �xed period of time. As was mentioned before, this is counted to sequential processing
where requests are arriving to DC system one after one and the optimization of tape sorting is
therefore ine�cient, since the list for sorting and making queries is too short. It should be also
mentioned that each one mount and dismount together takes in average about � 60 seconds. A
question here is: "How we can increase the number of �les for e�cient sorting per tape in DC

when using Scalla system ?".
Evidently, there is a solution in form of publishing the whole list of �les to the system before
starting to process them. This ensures the increment of �les in DC and prevent the sequential
processing defect on the tape system.For this purpose, we have implemented new feature to
Scalla system called Pre-Staging.
The picture 5 shows the e�ect of the pre-staging feature on the HPSS drive. It assumes that
all �les are not presented on the Scalla system cache. Since the client publishes the whole list
before processing, all �les arrive to the system at one time and the one tape can be e�ciently
used to satisfy all requests from the same tape and therefore same job. Within this solution
and example, the gain is 60 sec per each of the �le from the list, in total for 9 �les it is 360 sec
= 6 minutes.

6. Results of pre-Staging

(a) Performance Before (b) Performance After

(c) Mounting e�ciency Before (d) Mounting e�ciency After

Figure 6. The comparison of before and after using pre-staging

We have built a set of monitoring plots to monitor the e�ciency of multiple �les per tape
and the size of the �le in relation to performance of the HPSS system. The monitoring set

combines values from production database of HPSS system and DataCarousel database. It
gives a illustration of mentioned parameters in relation to performance and time statistic of
hours, days and weeks. Following pictures 6 show time before and after releasing pre-staging.
When looking on �rst 2 upper plots, there is visible 50% improvement on the performance. This
is consequence of increase in average number of �le per tape mount observed from the bottom
plots.

7. Integrating Scalla/Xrootd with SRM
While the Scalla seems to perform extremely well and satisfy STAR's most immediate needs, such
as a storage solution serving high-performance, scalable, fault-tolerant access to their physics
data, it could itself be improved and extended.
For example, Scalla does not move �les from one data-server to other data-server or even from
one cache to other cache within one node, but always restore �les from MSS. This may be slow
and ine�cient in comparison with transferring the �le from other node or cache, not involving
any tape mount or other delays intrinsic to MSS. Additionally, the system is not able import �les
from other space management systems (as dCache, Castor [7]) or even across the grid. There
are no advanced reservations of space, other users can collate the space in the meantime while
the restore from MSS operation is still ongoing (in fact, we have observed failures related to the
lack of space, likely related to such timing issues). There are no extended policies per users or
role based giving advanced granting of permissions to a user. There is no concept of pinning
the �les, requested �les can be evicted to release a space. This makes un-practical additional
features such a pre-staging (essential for e�cient co-scheduling of storage and computing cycles).

In addition, there are other middle-ware designed for the space management and only for the
space management. Speci�cally, the grid middle-ware component called Storage Resource
Managers (SRMs) [2] has for function to provide dynamic space allocation and �le manage-
ment on shared distributed storage systems. SRMs are designed to manage space, meaning
designed to negotiate and handle the assignment of space for users and also manage lifetime of
spaces. In addition of �le management, they are responsible for managing �les on behalf of user
and provide advanced features such as pinning �les in storage till they are released or also even
manage lifetime of �les that could be removed after speci�c time. SRMs also manage �le sharing
with con�gurable policies regulating what should reside on storage or what to evict. One of the
powerful features of SRMs is ability of bringing the �les from other SRMs, local or at remote
locations including from other site and across the Grid . In fact, SRMs de�nes a fully speci�ed
protocol aims to handle and negotiate requests and movements. Note that SRMs themselves
do not move �les: they negotiate space and orchestrate �le movements using standard transfer
tools (gsiftp etc.) and it keeps a track of transfers and recover them from failures.
SRM has to be conceived as revolutionary protocol de�ning standard for communicating and
sharing information over various storage systems (di�erential by architecture design, feature
capabilities or even hardware structure etc.)
We understand the term \SRM-aware storage solution" as an software suite implementing par-
ticular version of SRM protocol. By this time, there are various implementations of SRM inter-
face: CASTOR[7], DPM[8], dCache [9], StoRM[10], BeStMan and DRM,TRM,HRM -
Berkeley implementation of SRM interface v1.1 [11].
The Berkeley implementations have been chosen as the implementation of SRM protocol fully
satisfying requirement mentioned above in 7 and the most suitable implementation with exactly
distinguish components of appropriated functionalities.
Berkeley implementation of SRM v1.1 comes with 3 types of storage resource managers: Disk
Resource Manager (DRM) manages one or more disk resources, Tape Resource Man-
ager (TRM) manages the tertiary storage system (e.g. HPSS) and Hierarchical Resource

Manager (HRM=TRM+DRM) stages �les from tertiary storage into its disk cache. The im-
plementation of SRM v2.2 is called BeStMan which is able to manage disk resources together
with tertiary storage system.
On the other hand, while DRM, TRM, HRM or BeStMan do manage space e�ciently and can
talk to other SRM implementations (bringing for example �les from other caches or SRM-aware
tools), they know nothing of load balancing capabilities and they do not perform data aggre-
gation or provide any global view of storage space, all of which was showed as a key advantage
of Scalla/Xrootd system. We therefore proposed to leverage these technologies and integrate to
Xrootd and SRM back-end for managing space.
Scalla/Xrootd system becomes responsible for managing the disk cluster seen on picture 7, creat-
ing and maintaining global namespace spread over several mutually independent nodes, making
load balancing decisions in case of multiple replicas of a �le or choosing a node in case of staging
request from MSS, handling requests from client, queuing or recover them in case of failure etc.

Supervisor

First 64 servers Next 64 servers

Supervisor Supervisor

Next 64 servers

Redirector layer

Supervisor layer

Dataserver layer

Up to 64 nodes

DNS round robin

HPSS layerHPSS

HRM layer

Coordinates requests
(Sorting, re-queuing failures, ...)

HRM + GridFTP
server

Xrootd+DRMXrootd+DRM Xrootd+DRM Xrootd+DRM
Xrootd+DRM

Xrootd+DRM Xrootd+DRM Xrootd+DRMXrootd+DRM

gsiFTP transfer

Figure 7. Global picture of Scalla and
SRM v1.1 interaction

Upon integration with SRM v1.1, the DRM responsi-
bility relies on managing the disk cache as for example
allocation of a space for newly incoming �les, creat-
ing/releasing pin for a �le being used/unused, mak-
ing purging decisions in case of multiple possibilities
and strategies etc. The HRM becomes responsible for
managing the MSS such as coordinating requests to
unique system, sorting requests according to multiple
strategies (tape sorting, user priorities etc.), queuing
requests and recover them in case of failure. The inte-
geration for SRM v2.2 follows the same picture where
one node is picked up and con�gured with ability to
manage tape resource.

7.1. Binding systems together

Both systems have their own inner architecture and
the task of integration lies on the question on how to
bind them together. The Scalla system (exactly xrootd server) has its own internal structure
shown in Fig. 8(a). It is composed of multiple components, each component serves a discreet
task. Fortunately, this
exible layered architecture and interfaces [1] allows us to easily replace
unwanted ones by another implementation incorporating SRM protocol has as it is showed in
the Figure 8(b). Pictures show components architecture for both versions of SRM interface
(v1.1 [12], v2.2 [13]) It is obvious from the Figure 8 that the most importnat component for
the integration is the oss component responsible for providing access to the underlying �le
system. Therefore, the oss component was externalized as a plugin o�ering easy overwriting
the actual meta-data and data access calls (such as Open, Create, Stage, Close etc.). We have
introduced new plugin called OssSrm containing derived classes of the oss base classes, where
methods contain direct calling of HRM or BeStMan client API methods. For instance, following
examples demonstrate the logic:

� Create() - uses DRM or BeStMan to create a �le (allocation, pinning the �le)

� Stage() - uses DRM/HRM or BeStMan to retrieve a remote �le from MSS

� Open() - informs DRM or BeStMan that the �le is in use (i.e. pinning of the �le)

� Close() - informs DRM or BeStMan that the �le is no longer in use (i.e releasing the pin
of the �le)

xrd

xroot

ofs authorization

oss / srm

DRM

authentication
XROOTD

odcOptional
(included in
distribution)

Additional

Application

HRM

(a) Components architecture of
xrootd server with DRM/HRM
implementation

xrd

xroot

ofs authorization

oss / srm

BeStMan

authentication
XROOTD

odc Optional
(included in
distribution)

Additional

Application

(b) Xrootd server with BeSt-
Man implmentation

Figure 8. The overview of binding the Scalla and SRM

Conceptually, the xrootd server has several requirements for �le management or data access
calls summarized in following use cases:

� open a �le already located in the cache

� open a remoted �le located in MSS

� create a new �le and do not archive it to MSS

� create a new �le and archive it to MSS

� create a new �le and archive it to MSS with an speci�c delay

� modify an existing �le located in the cache

� modify an existing �le located in the cache and archive it to MSS

� modify an existing �le located in the cache and archive it to MSS with the speci�c delay

� migrate an existing �le from the cache to MSS

The reason for the need of delayed archiving in xrootd is that the application may want to
wait till a bunch of �les are generated before archiving, or it wishes to modify/append �les
before they are migrated to archive. In order to provide all functionalities without changing the
SRM API, the \hint" parameter de�ned in API was used (for example: MODIFY = true or
COPY = true).

7.2. Status of integration

Mentioned use-cases were implemented for both versions of SRM interface. SRM v1.1 supports
one physical cache partition per a node where the e�ort in additional development was moved
into version 2.2. Scalla and SRM v2.2 is released in alpha version at the time of this paper
supporting multiple cache paritions per a node. Future work will be focused on testing this
solution in large scale and possibly further development to increase the stability and reliability
of this solution.

8. Summary
During this paper, we gave brief overview on di�culties on managing huge amnout of data
and presented a software solution able to accomlish de�ned goals. Large amount of paper is
dedicated to studying the performance of tape system with respect to this software solution.
We have concluded that one of the most costly aspects of dealing with robotic tape systems
is the time it takes to mount and dismount a tape. This is typically in the range of 60 - 80
seconds with current technology. Another latency problem is searching for a �le on a tape,
which can also take 20 - 40 seconds depending on the tape size and the search speed and also

size of the �le consuming the tape. This time exponencially grows when the size of the �les is
close to 0. Avoiding these delays results in a large performance gain. To achieve this bene�t,
a scheduling system can be used that has the
exibility to stage �les in tape-optimized order
over many clients. The scheduling system must have information on �le location on tapes (i.e.,
which tapes, and location on the tape). We have therefore presented such a system called
\DataCarousel" having all these capabilities. However, the system does not have a global view
of the �les needed for an entire job. We have found a way of publishing the intend of entire job
and makes the tape-optimization e�cient enough.
Even if the whole system (Scalla + DataCarousel) is now able to handle the stress of requests
to HPSS, it can be still improved in the way of cache management. The cache management has
been proved very strongly by the grid-middleware component called \SRM" and we presented
a plan on how to integrate the Scalla system with this grid middle-ware including components
architecture as well as cluster architecture. Till this time, a alpha version of this exists and
there still lots to �nish such as large scale test and possible further development to increase the
stability of this solution. We will continue on working on this front and hope to present real
results soon.

9. Acknowledgment
This work was supported in part by the HENP Divisions of the O�ce of Science of the U.S.
DOE; the U.S. NSF and by grants of GACR 202/07/0079 and LC07048.

References
[1] Hanushevsky A and Weeks B 2006 Scalla: Scalable cluster architecture for low latency access, using xrootd

and olbd servers White paper URL http://xrootd.slac.stanford.edu/papers/Scalla-Intro.htm

[2] Shoshani A, Sim A and Gu J 2003 Storage Resource Managers: Essential Components for the Grid (Kluwer
Academic Publishers) chap In Grid Resource Management: State of the Art and Future Trends, pp 321{340

[3] Dorigo A, Elmer P, Furano F and Hanushevsky A 2005 Proc. WSEAS'05
[4] PJakl, JLauret, Hanushevsky A, Shoshani A and Sim A 2006 Proc. of Computing in High energy and nucler

physics (CHEP'06)
[5] Panzer-Steindl B 2005 Some calculations for the sizing of tape storage performance Tech. rep. CERN-IT
[6] FNAL Performance to/from tape http://www-isd.fnal.gov/UserPerformanceGuidlines.html
[7] Bcarring O, Couturier B, Durand J D, Knezo E and Ponce S 2004 In Proceedings of the 12th NASA Goddard

vol 21st IEEE Conference on Mass Storage Systems and Technologies pp 345{359
[8] Stewart G A, Cameron D, Cowan G A and McCance G 2007 Australasian Symposium on Grid Computing

and Research vol 68 (Ballarat, Australia)
[9] Fuhrmann P 2004 dCache, the overview White paper URL http://www.dcache.org

[10] Corso E, Cozzini S, Donno F, AGhiselli, LMagnonii, MMazzucato, Murri R, PPRicci, Terpin A, VVagnoni,
RZappi and HStockinger 2006 Proc. of Computing in High energy and nucler physics (CHEP'06)
(Mumbai,India)

[11] Sim A, Gu J, Shoshani A and Natarajan V 2004 SSDBM (IEEE Computer Society) pp 403{ ISBN 0-7695-
2146-0

[12] Bird I, Hess B, Kowalski A, Petravick D, Wellner R, Sim A and Shoshani A 2001 Common storage resource
manager operations SRM collaboration internal documents SRM speci�cation version 1.0

[13] Perelmutov T, Petravick D, Corso E, Magnoni L, Gu J, Badino P, Barring O, Baud J P, Donno F, Litmaath
M, Witt S D, Jensen J, Haddox-Schatz M, Hess B, Kowalski A and Watson C 2007 The storage resource
manager interface speci�cation (version 2.2) SRM design version 2.2

