The PHENIX Experiment in the RHIC Run 7

Martin L. Purschke, for the PHENIX Collaboration
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract.

PHENIX [1] is one of two large experiments at Brookhaven National Laboratory’s
Relativistic Heavy Ion Collider (RHIC). Previously, the PHENIX experiment had completed
very successful Runs that featured different beam species in RHIC. Since the previous Au+Au
run in 2004, we had improved the performance of the data acquisition system by introducing
several key technologies, such as distributed compression and multi-event buffering, that had
increased the event rate to 5KHz for the smaller collision systems that we measured since,
Cu+Cu, and p+p. However, this rate had yet to be reached in the largest and most demanding
collision system, Au+Au at 200AGeV.

Previously, the data logging capability had been demonstrated to exceed 600MB /s, although
this value had never reached in actual running. The RHIC luminosity and the smaller collision
systems before did not deliver enough data to saturate the logging capability. In this Run 7,
we exceeded the 600MB/s logging rate for the highest multiplicities, where we also reached the
current practical limit of 5 KHz event rate with the large events size.

We have in the past used GRID middleware tools to transfer substantial data volumes in
the order of 400TB off-site in order to make use of remote computing capacity in Japan, France,
and other sites in the US, and used this technology to achieve priority processing of triggered
events again in Run 7.

The Run 7 also introduced several new prototype detectors in the experiment, a new
high-resolution Time-of-Flight detector, a reaction plane detector, a Muon Piston Calorimeter,
and, as a prototype, a Hadron Blind Detector that is designed to tag the background from
conversion electrons and improve the photon and electron measurement capability of the
PHENIX apparatus

We will describe the ingredients which made those highest rates possible, and show some
performance figures.

1. Introduction

PHENIX [1] consists of 4 large spectrometer arms, two central arms and two forward Muon
arms (Fig. 1). There is a total number of about 500,000 readout channels, giving a typical event
size of about 220KB/event before compression. The typical sustained readout rate was about
5KHz for the Copper-Copper system, and 5KHz for the the proton-proton system:.

The computers in the data acquisition are running the Linux operating system. They are
connected through a Gigabit network, wit a 10G uplink to the HPSS-based tape robot system
which is located at the RHIC Computing Facility about 1.5 miles away from the experimental
site. The incoming data are first stored on local buffer buffer disks in the countinghouse. This
allows to ride out short service interruptions of the tape robot, and allows to send the data
to the tape system at a steady rate, leveling the ebb and flow of the data rate from the data
acquisition, which tends to deliver data in bursts. The buffer disks have a capacity of about
40TB, which allows the buffering of about 36 hours worth of data.

During this time, the data are also available for various monitoring, calibration, and early-
stage analysis tasks.

Ty
= e
T DETECTOR
]
S BEAMEEAN %
COUNTER
T
:

TIWE OF FLIGH
‘ TECTI

DETECTOR

ELECTROMAGNETIC
CALORINETER [

Figure 1. Overview of the PHENIX experiment.

2. Ingredients To Achieve the Highest Performance

Over the previous 3 Runs, we introduced new features or removed bottlenecks and steadily
improved the maximum event rate and data handling capability. We also improved the efficiency
of the operations and increased the uptime of the experiment. Among the key improvements
are

e Multi-Event Buffering
e distributed data compression
e improvements in the data handling code

e improved error recovery procedures

2.1. Multi-Event Buffering

One of the major accomplishments in Run 5 was the commissioning of the so-called Multi- Fvent
Buffering. The front-end electronics stores the data samples in analog memory units (AMU),
which hold the data for about 40 us until a Level-1 trigger decision is formed. Once the trigger
decision arrives, the digitization of the respective memory cell starts. The Multi-Event buffering
allows to store up to 4 events in the AMU before raising the busy, which leads to a significant
reduction in the data acquisition dead time. The effect is shown in figure 2. One can see the
almost linear relationship of the maximum DAQ livetime as a function of the event rate for the
Runs without the Multi-Event buffering. Since PHENIX is a rare-event experiment, after all,
one cannot easily increase the data rate at the expense of DAQ livetime. In Run 5, with the
multi-event buffering working, the data points are well to the right and above the line, showing
a high data rate with a simultaneous high DAQ livetime.

[DAQLivetime vs. Rate |

P
w
o
s 08~ ll PHENIX is a rare-event
E Tk experiment, after all -- you don’t
L r want to go down this path
E06—4
_“';‘ Leo & Run2 Au+Au
- Ly ®
-
04— }' A e Run3 d+Au
L . R,
e - . e Run4 Au+Au
02| e®
[ot
oL a®e | O P R EPEET R
[+] 1000 2000 3000 4000 S000 6000
Event Rate (Hz)
‘ DAQ Livetime vs. Rate |
=
(=4
=
s
c
2
S
o
w
Q
£
e Run2 Aut+Au
= * Run3d+Au
* Run4 AutAu
* Run5 CutCu
Run7 AutAu
Cog%ae |0 v v i v b
00 1000 2000 3000 4000 5000 6000
Event Rate (Hz)

Figure 2. The effect of the Multi-Event Buffering. The figures show the data acquisition
livetime as a function of the event rate for various runs. In the upper figure, for our runs without
multi-event buffering, a sharp edge can be seen that represents the almost linear dependence
of the maximum livetime for a given event rate. In the lower figure, multi-event buffering
significantly increasing the livetime, the the points from Runs 6 and 7 extend well across that
line.

2.2. Data Compression

When the PHENIX Raw Data Format (PRDF) was specified, we found that utilities such as gzip
could further compress the already zero-suppressed data by more than a factor of two. Using
gzip however, one would need to restore the whole data file to its uncompressed length before
reading it, which is undesirable. We therefore specified a compressed raw data format where
the data could be read and uncompressed on the fly. The raw data stream consists of buffers of
about 16MB but variable length, and the length is always a multiple of 8KB. A typical buffer
holds between 50 and 100 events. Originally this was put in place to increase the data integrity
(if a corrupt buffer is encountered, one can salvage the subsequent buffers but skipping 8KB
records until either the next buffer header or the end-of-file is found). The compression works
on this buffer level. A complete buffer, including its header, is compressed by some algorithm.

This is what a file normally looks like

[Dbier| ourer |[auer| cuter |[TRURRT[ourer
- CO'I::C'?ESS % l:xc:‘:e: E‘c’!vr % El:r;vp?zgségv iot:efges payload
% % % This is what a file then looks like

On readback:

7
/// L» _ Original uncompressed buffer restored
7] inflate

Figure 3. The compression works on buffers. A complete buffer, including its header (denoted
in yellow) is compressed. It receives a new buffer header, and is written out this way. On
readback, the original buffer is restored.

The result, typically much smaller than the original buffer, gets a new buffer header and is
written out to the file instead (fig. 3). The buffer header makes this a legitimate buffer as far
as the transport layers of the system are concerned. On readback, the buffer is recognized as as
one which holds another compressed one as its payload, which gets uncompressed. The original
buffer is thus restored, and passed on to the next software layer, just as if it had been read from
the file. In this way, the compression is handled at a relatively low layer in the I/O system, and
completely transparent to the rest of the system.

Traditionally, we used the same algorithm internally used by the gzip utility, “compress2”,
which is readily available on most systems. However, while this algorithm achieves a good
compression ratio (the compressed buffer shrinks to about 45% of its original size), it is also
rather CPU-intensive, which makes it too slow to be usable in the online system. We searched
for a different algorithm which has properties comparable to compress2, but is much faster.
We wanted an open-source algorithm which is robust, adheres to a published standard, and
is available on most systems. We identified the family of the LZO algorithms [2] as a good
candidate, and settled on the lzo_Iz algorithm. It achieves a compression of about 60% of the
original size on a typical buffer (slightly worse than compress2) but is at least 4 times faster (to
compress one minute worth of data, lzo_I1z takes one minute, while compress2 takes 4 minutes).

This is still a considerable amount of CPU cycles, but the work is distributed over all ATP’s
in the system, which compress each buffer before sending it to the logger.

In this way, we fit about 40budget. In addition to increasing the number of events, this has
allowed to postpone the turn-on of the Level-2 trigger. Rather than discarding events, we have
used the Level-2 trigger to write interesting events out to a different data stream, which is made
available for priority analysis.

3. Accomplished Rates

The improvements are visible in figure 4, which shows the combined data rate in MB/s and a
function of time, for the first 4 hours of a RHIC fill. This is the data rate that was written to
the buffer disks. At the highest luminosities at the begin of RHIC, we are able to write close to
600MB/s of data to disk.

Network throughput from the DAQ (30s average) |

500

400

300

200

100

0

Figure 4. The aggregate data rate, in MB/s, that was written to disk during a RHIC fill. At
the highest luminosities at the start of a fill, the data rates is almost 600MB/s. The gaps in

10:00 10:30 11:00

11:30 12:00

12:30

data writing are the starts of a new run of the data acquisition.

References

13:00 13:30

time (June 16, 2007)

[1] K. Adcox et al, PHENIX detector overview, Nucl. Instr. Meth A 499, 2003, pp 469-479.

[2] M. Oberhumer, The Lempel-Ziv-Oberhumer data compression library,
http://www.oberhumer.com/opensource/1zo

