
Leandro Franco

Efficient Access to Remote Data inEfficient Access to Remote Data in
High Energy PhysicsHigh Energy Physics

René Brun, Leandro Franco, Fons Rademakers

CERN

Geneva, Switzerland

 2Leandro Franco

RoadmapRoadmap

• Current Status

• Problem

• Taking Advantage of ROOT

• Solution

• Limitations

• Future Work

• Conclusions

 3Leandro Franco

MotivationMotivation

• ROOT was designed to process files locally or in local
area networks.

• Reading trees across wide area networks involved a big
number of transactions. Therefore, processing in high
latency networks was inefficient.

• If we want to process the whole file (or a big part of it),
it’s better to transfer it locally first.

• If we want to process only a small part of the file,
transferring it would be wasteful and we would prefer to
access it remotely.

 4Leandro Franco

Traditional SolutionTraditional Solution

• The way this problem has been treated is always the same (old
versions of ROOT, RFIO, dCache, etc):
• Transfer data by blocks of a given size. For instance, if a block of len 64KB

in the position 1000KB of the file is requested, it doesn’t just transfer the
64KB but a big chunk of 1MB starting at 1000KB.

1. Read(buf, 64kB, 1000KB)

2. Read(buf, 64kB, 1064KB)
• It is found in the cache
• Read it locally

len offset

Offset = 0 Offset = 1000KB

len = 64KB len = 1MB

• This works well when two conditions are met:
• We read sequentially

• We read the whole file.

Server SideServer SideClient SideClient Side
Read(buf, 64kB, 1 000KB)

Return the read-ahead buffer

 5Leandro Franco

Inside a ROOT TreeInside a ROOT Tree
• In data analysis those two

conditions don’t always apply.

• We can read only a small (and
sparse) part of the file and we
can read it non-sequentially.

• In conclusion, a traditional cache
will transfer data that won’t be
used (increasing the overhead).

Three branches are colored
in this example

With the command:

We have to read 2 branches (yellow and purple in
the picture) scattered through the file in 4800
buffers of 1.5KB on average.

•• The file in this picture is 267MB big.The file in this picture is 267MB big.
•• It hasIt has 1 tree with 152 branches.1 tree with 152 branches.

Tree.Draw(“rawtr”, “E33>5”)

Why are buffers in ROOT so small?

• They are 8KB big in this example (32KB
by default) but it becomes 1.5KB after
compression.

• We need to keep one buffer per branch
in memory. Trees can have hundreds or
thousands of branches nowadays.

 6Leandro Franco

Facing Various Latency ProblemsFacing Various Latency Problems 

• We have three different cases to consider:

Local disk accessLocal disk access LocalLocal area networkarea network Wide area networkWide area network

Network latencyNetwork latency

Disk latencyDisk latency

Context switchContext switch
One userOne user Client-ServerClient-Server

Multiple usersMultiple users

 7Leandro Franco

Facing Various Latency Problems Facing Various Latency Problems 

How can we overcome the problems in these three cases ?:

• Disk latency: Is an issue in all the cases but it’s the only one when doing local
readings.

• Can be reduced by reading sequentially and in big blocks (less transactions).

• Context switching: Is a problem for loaded servers. Since they have to serve
multiple users, they are forced to switch between processes (switching is
usually fast but doing it often can produce a noticeable overhead).

• Can be very harmful if it’s combined with disk latency.
• It helps to reduce the number of transaction and/or the time between them.

• Network latency: It increases proportionally to the distance between the
client and the server. It’s a big issue when reading scattered data through
long distances.

• Reducing the number of transactions will improve the performance.

 8Leandro Franco

Data Access Parameters Data Access Parameters 

file1

file2

file3

Disk latency is
smal l while
seeking for

sequential reads

But the time to
seek between two
fi les can be large

(>5ms)

Backward reads
can be as bad as

reads from a
different fi le

Disk Latency:

• Reading small blocks from disk in
the server might be inefficient.

• Seeking randomly on disk is bad.
It’s better to read sequentially if you
can.

• Multiple concurrent users reading
from the same disk generate a lot of
seeks (each one greater than 5ms).

• These considerations are less
important in a batch environment,
but absolutely vital for interactive
applications.

 9Leandro Franco

Data Access Parameters Data Access Parameters 

• Network Latency : The time it takes a packet to get from point
A to point B. Usually referred as RTT (round trip time), which is
the time it takes a packet to go from A to B and back.

Latency between CERN and SLAC: 160ms (RTT)

 10Leandro Franco

Data Access Parameters Data Access Parameters 

• Bandwidth: It’s the channel capacity, measured in bits/seconds
(it can be seen as the diameter of the pipe). For the rest of the
talk, we assume this is not an issue.

 11Leandro Franco

ProblemProblem

• While processing a large (remote) file the data has, so far,
been transferred in small chunks.
• It doesn’t matter how many chunks you can carry if you will only read them

one by one.

• In ROOT, each of those small chunks is usually spread
out in a big file.

• The time spent exchanging messages to get the data
could be a considerable part of the total time.

• This becomes a problem when we have high latency
connections (independently of bandwidth).

 12Leandro Franco

Network LatencyNetwork Latency

Client Server

Time

Request
in transit

Latency

Response
time

Process
time

Total time = n (CPT + RT + L)

n = number of requests
CPT = process time (client)
RT = response time (server)
L = latency (round trip)

The equation depends on both variables

• The fi le is on a CERN machine connected to the CERN LA N at 100MB/s.

• A is on the same machine as the fi le (local read)
• B is on a CERN LA N connected at 100 Mbits/s and latency of 0.3 ms (P IV 3 Ghz).
• C is on a CERN Wireless network at 10 Mbits/s and latency of 2ms (Mac duo 2Ghz).
• D is in Orsay; LA N 100 Mbits/s, WA N of 1 Gbits/s and a latency of 11 ms (3 Ghz).
• E is in A msterdam; LA N 100 Mbits/s, WA N of 10 Gbits/s and a latency of 22ms.
• F is connected via A DSL of 8Mbits/s and a latency of 70 ms (Mac duo 2Ghz).
• G is connected via a 10Gbits/s to a CERN machine via Cal tech latency 240 ms.
• The times reported in the table are real time seconds

client latency(ms) cache=0 cache=64KB cache=10MB

 A 0.0 3.4 3.4 3.4

 B 0.3 8.0 6.0 4.0

 C 2.0 11.6 5.6 4.9

 D 11.0 124.7 12.3 9.0

 E 22.0 230.9 11.7 8.4

 F 72.0 743.7 48.3 28.0

 G 240.0 >1800.0 125.4 9.9

Wide Area Network: this will be our main concern.

Tree.Draw(“rawtr”, “E33>5”);

Time taken to execute
this query

seconds

 13Leandro Franco

Taking Advantage of ROOT TreesTaking Advantage of ROOT Trees

ROOT Trees are designed in such a
way, that it’s possible to know what set
of buffers go together.

Three branches are colored in this example

 14Leandro Franco

TTreeCache TTreeCache Algorithm Algorithm 

• The key point is to predict data transfers.

Tree.Draw(“rawtr”, “E33>5”);

• The system (TTreeCache)
enters a learning phase.
• Every time a buffer is

read, its branch is
marked.

• After a few entries the
learning phase stops.

• Now we have a list of the
branches that will be
used during the analysis. rawtrE33

The learning phase canThe learning phase can
be tuned by the userbe tuned by the user

 15Leandro Franco

TTreeCache TTreeCache Algorithm Algorithm 

rawtrE33

• With the list of branches,
we calculate how many
buffers fit our local cache.

• We create a list with the
buffers to be transferred
(for each branch).

*Both branches add up to 4800
buffers of 1.5KB on average.

Both branches are marked but only
one is shown in the picture

 16Leandro Franco

TTreeCache TTreeCache Algorithm Algorithm 

rawtrE33

• Lists of branch buffers are sorted and merged to create a final list of request

Sorting

Merging

Sorting is not very important for networkSorting is not very important for network
latency but can be a big factor for disk access.latency but can be a big factor for disk access.

Data structures in memory contain the lists ofData structures in memory contain the lists of
lengths and offsetslengths and offsets for every branchfor every branch

 17Leandro Franco

Servers Require Protocol ExtensionsServers Require Protocol Extensions

Now we have a list of all the buffers
needed for this transfer (only as a set
of lengths and offsets):

Offset=0
Len=16

Offset=64
Len=32

• But this won’t be of much use if we can’t pass the full list to the server in just
 one transaction.
• For that, a new operation is needed (the protocol has to be extended) and
 since it resembles the standard “readv()” in unix systems we usually call it like
 that: vectored read. Although a more appropriate could be scattered read.

• This requires changes in the server side in addition to those in ROOT (client side) and
 the client must always check weather those changes are implemented, if not, it just
 uses the old method.
• We have introduced the changes in rootd, xrootd and http. The dCache team
 introduced it in a beta release for their server and the dCache ROOT client.

•• As mentioned before, here we have 2 branchesAs mentioned before, here we have 2 branches
composed of 4800 buffers.composed of 4800 buffers.
•• With a buffer of 1.5KB on average we wouldWith a buffer of 1.5KB on average we would
need to transfer 7MB.need to transfer 7MB.
•• If we have a cache of 10MB then we wouldIf we have a cache of 10MB then we would
need only one transfer.need only one transfer.

 18Leandro Franco

SolutionSolution

LTotal time = n (CPT + RT) +

The equation does not depend on the latency anymore !!!

n = number of requests
CPT = process time (cl ient)
RT = response time (server)
L = latency (round trip)

Client Server

Request
in transit

Latency

Process
time

readv()

Client Server
Time

Request
in transit

Latency

Response
time

Process
time

Total time = n (CPT + RT + L)

The equation depends on both variables

Perform big requests
instead of many small reads



TFile

TXNetFile

xrootd
client

xrootd
server

Parts modified with
this extension

(xrootd example)

 19Leandro Franco

Real MeasurementsReal Measurements
• The file is on a CERN machine connected to the CERN LAN at 1 00MB/s.
• A is on the same machine as the file (local read)
• B is on a CERN LAN connected at 1 00 Mbits/s and latency of 0.3 ms (P IV 3 Ghz).
• C is on a CERN Wireless network at 1 0 Mbits/s and latency of 2ms (Mac duo 2Ghz).
• D is in Orsay ; LAN 1 00 Mbits/s, WAN of 1 Gbits/s and a latency of 1 1 ms (PIV 3 Ghz).
• E is in Amsterdam; LAN 1 00 Mbits/s, WAN of 1 0 Gbits/s and a latency of 22ms (AMD64).
• F is connected v ia ADSL of 8Mbits/s and a latency of 7 0 ms (Mac duo 2Ghz).
• G is connected v ia a 1 0Gbits/s to a CERN machine v ia Caltech latency 240 ms.
• The times reported in the table are realtime seconds

client latency(ms) cachesize=0 cachesize=64KB cachesize=10MB

 A 0.0 3.4 3.4 3.4

 B 0.3 8.0 6.0 4.0

 C 2.0 11.6 5.6 4.9

 D 11.0 124.7 12.3 9.0

 E 22.0 230.9 11.7 8.4

 F 72.0 743.7 48.3 28.0

 G 240.0 >1800.0 seconds 125.4 9.9

One query to
a 280 MB Tree
I/O = 6.6 MB

 20Leandro Franco

Optical

switch

Root client

vinci1.cern

Rootd server

vinci2.cern

Chicago

160ms

New
York

120ms

LAN CERN

0.1ms

10 Gbits

WAN

Many thanks to Iosif Legrand
who provided the test bed for
this client (check out his poster
on efficient data transfers).

caltech

240ms

Interesting Case: Client GInteresting Case: Client G

 21Leandro Franco

Client G: ConsiderationsClient G: Considerations
• The test used the 10 GBits/s line CERN->Caltech->CERN with TCP/IP Jumbo

frames (9KB) and a TCP/IP window size of 10 Mbytes.

• The TTreeCache size was set to 10 Mbytes. So in principle only one
buffer/message was required to transport the 6.6 Mbytes used by the query.

• But even with these parameters (10Gb/s, jumbo frames, etc), we need 10
roundtrips to open the congestion window completely. With such a big latency,
this means 2.4 seconds spent in the “slow start” (next slide).

• To open the file, 7 messages are exchanged. This adds 1.6 seconds at the very
beginning of the connection.

• In addition, the TTreeCache learning phase had to exchange 4 messages to
process the first few events, ie almost 1 second.

• As a result more time was spent in the first 10 events than in the remaining
283000 events !!

• Further work to do to optimize the learning phase. In this example, we could
process the query in 5 seconds instead of 9.9.

 22Leandro Franco

• The test used the 10 GBits/s line CERN->Caltech->CERN with TCP/IP Jumbo
frames (9KB) and a TCP/IP window size of 10 Mbytes.

• The TTreeCache size was set to 10 Mbytes. So in principle only one
buffer/message was required to transport the 6.6 Mbytes used by the query.

• But even with these parameters (10Gb/s, jumbo frames, etc), we need 10
roundtrips to open the congestion window completely. With such a big latency,
this means 2.4 seconds spent in the “slow start” (next slide).

• To open the file, 7 messages are exchanged. This adds 1.6 seconds at the very
beginning of the connection.

• In addition, the TTreeCache learning phase had to exchange 4 messages to
process the first few events, ie almost 1 second.

• As a result more time was spent in the first 10 events than in the remaining
283000 events !!

• Further work to do to optimize the learning phase. In this example, we could
process the query in 5 seconds instead of 9.9.

Client G: ConsiderationsClient G: Considerations

File Opening
Learning Phase

Slow Start

Data Transfer
&

Analysis

 23Leandro Franco

Limitation Limitation : Slow Start: Slow Start

• TCP Algorithms:
• Slow Start

• Congestion Avoidance

cwnd < threshold: cwnd = 2 * cwnd (exponential growth at the beginning)

cwnd > threshold: -> Congestion Avoidance

cwnd > threshold: cwnd = cwnd + 1 / cwnd (linear growth after that)

After timeout: -> Slow Start (threshold=cwnd/2 , cwnd=1)

* Check out Fabrizio’s talk for
more detai ls

Max window size:

64KB

RTT : 100ms

Big transfer (200MB)

TCP Works well
with:

•Small delays
•Big transfers

With big latency,
bigger windows and
larger transferences
are needed.

Slow start
(more than 1 s)

* 300KB/s at the end of
the slow start.

Window SizeWindow Size

64KB64KB

0s0s TimeTime 2minutes2minutes

 24Leandro Franco

Limitation Limitation  : Transfer size : Transfer size

• To transfer all the data in a single request is not realistic. The best we
can do is to transfer blocks big enough to improve the performance.

• Let's say our small blocks are usually 2.5KB big, if we have a buffer of
256KB we will be able to perform 100 requests in a single transfer.

• But even then we will be limited by the maximum size of the congestion
window in TCP (in our examples it was 64KB, which is the default in
many systems).

 25Leandro Franco

MaximizingMaximizing it out: Parallel Socketsit out: Parallel Sockets

8 sockets
10MB cache

1 socket
64KB cache

rootd server

• It is a good option for fat pipes
(long delay/bandwidth).

• The results are similar to those
obtained by increasing the TCP
congestion window.

• Performance increases with the
size of the cache but a big cache
may not be worthwhile for small
queries.

• Available in different transfer
servers like rootd and xrootd.

 26Leandro Franco

Current and Future WorkCurrent and Future Work

• With this new cache, we were able to try another improvement:
Parallel Unzipping. We can now use a second core to unzip the
data in the cache and boost the overall performance.

• We are in close collaboration with Fabrizio Furano (xrootd) to
test the new asynchronous readings.
• A modified TTreeCache is used and the readv() is replaced by a bunch of

async requests.

• The results are encouraging* and we would like to improve it further with
an async readv() request. This would reduce the overhead of normal async
reads and allow us to parallelize the work.

• Still some work to do to fine tune the learning phase and file
opening (reduce the opening to 2 requests).

• Understand how new technologies like BIC-TCP can improve the
slow start.

* Check out Fabrizio’s talk for
more detai ls

 27Leandro Franco

ConclusionsConclusions
• Data analysis can be performed efficiently from remote locations

(even with limited bandwidth like an ADSL connection).
• The extensions have been introduced in:

• rootd, http, xrootd(thanks to Fabrizio* and Andy), dCache (from version
1.7.0-39) and Daniel Engh from Vanderbilt showed interest for IBP
(Internet Backbone Protocol).

• In addition to network latency, disk latency is also improved in
certain conditions. Specially if this kind of read is done atomically
to avoid context switches between processes.

• TCP (and all the its variants seen so far) are optimized for “data
transfer”, making “data access” extremely inefficient. More work
is needed in collaboration with networking groups to find an
efficient way for data access.

• We have to catch up with bandwidth upgrades and change the
block sizes according to that (more bandwidth, bigger block
transfers and bigger TCP windows).

* Check out Fabrizio’s talk for
more detai ls

