
Distributed Analysis using ASAP

C Munro1, J Andreeva2, J Herrala2, O Kodolova2 and A Khan1

1 Brunel University, Uxbridge, London UB8 3PH
2 CERN, CH-1211 Genve 23, Switzerland

E-mail: craig.munro@brunel.ac.uk

Abstract. ASAP is a system for enabling distributed analysis for CMS physicists. It was
created with the aim of simplifying the transition from a locally running application to one that
is distributed across the Grid. The experience gained in operating the system for the past two
years has been used to redevelop a more robust, performant and scalable version. ASAP consists
of a client for job creation, control and monitoring and an optional server side component. Once
jobs are delegated to the server it will submit, update, fetch or resubmit the job on behalf of
the user. ASAP is able to make decisions on the success of the users job and will resubmit
if either a grid or application failure is detected. An advanced mode allows running jobs to
communicate directly with the server in order to request additional jobs and to set the status
of the job directly. These features reduce the turnaround time experienced by the user and
increase the likelihood of success.

1. Introduction
ASAP[1] is a system that enables CMS physicists to perform distributed analysis using the Grid.
It consists of a client which prepares the jobs and a server which can process the jobs on behalf
of the user. ASAP has been used successfully for the past three years. The version that is
currently in production has been redesigned using the experience gained from earlier version
to provide a modular, cohesive, fully functional framework which can be easily maintained. In
operation ASAP interacts with many of the other components of the CMS system as shown in
Figure 1.

This paper will discuss the client and server in more depth and introduce the agent mode
which can reduce the turnaround time for the users jobs.

2. Client
Before using ASAP, users must already have a working CMSSW application and create a
configuration file for ASAP containing parameters such as the dataset to use, how many events
to process and where to store the output data. The client then performs all of the steps that are
required to execute that application on the Grid. The users libraries are packaged along with
any additional input data or files that are required on the Worker Node (WN). The configuration
file the user uses for CMSSW is also copied to the WN and altered so that each job will have
the correct input data and event range at runtime.

If the input data that the user requires is published ASAP contacts the CMS Dataset
Bookkeeping Service (DBS)[2] to obtain metadata about the dataset and the CMS Dataset
Location Service (DLS)[3] to obtain the location of each block of the dataset. Jobs are split

Figure 1. The major components and their interactions in the ASAP distributed system.

across this dataset according to its composition and the requirements of the user. Simulating
data, where each job has a different seed, and private data, where data is copied with the job
or from a Storage Element (SE), are also supported.

A wrapper script is created which will be executed on the WN to perform middleware
discovery, copy input data, create and run the application and store the output. The script
also checks for any errors and reports progress and problems to the CMS Dashboard[4].

Once everything has been created the task is stored and the user is given a task ID which can
be used to refer to that task. The user can then use the client to interact directly with the Grid
by matching, submitting, updating, cancelling or fetching output from the Grid. Operations
can be performed on the entire task or on a subset.

However, interacting directly with the Grid is a time-consuming process. Instead, most users
choose to delegate responsibility to the ASAP server which can then process and monitor jobs
on the users behalf.

3. Server
The ASAP server consists of four loosely coupled components: the interface, the delegation
service, the server itself and the database. For scalability each component can be located on a
separate machine provided there is a shared filesystem between them.

An Apache server is used as the interface for all client interactions due to its flexibility,
performance and security. There is an XML-RPC interface for client-server interaction and web
pages for additional user and administrator interaction. For example, users can inspect the logs
from completed jobs via their browser and then choose to resubmit them. All communication
between client and server is authenticated using the users Grid certificate. Client-server
operations are performed in bulk where possible to improve performance where large numbers
of jobs are being manipulated. The interface interacts with a MySQL database to register,
unregister and update jobs. Input and output files (that are not stored on a SE) are transferred
using HTTPS PUT and GET using the Gridsite[5] Apache module. Transfer directories are
protected by Grid Access Control Lists so only the owner of each task (or an administrator) can

read or write a directory.
In order to operate on the users behalf the server requires a copy of the users proxy. This

is acquired through the delegation service, a SOAP server which implements the Delegation
Interface. Before registering tasks with the server the client delegates a copy of the users proxy
to a MyProxy service and another to the delegation service. The delegation service then registers
the users proxy with the gLite Proxy Renewal Service which runs on the same machine. The
proxy renewal service can then contact MyProxy to ensure that the server maintains a valid
copy of the users proxy. VOMS proxies are supported by each component.

The main component is the ASAP server itself. Interacting with the Grid is a major
bottleneck with each command taking several seconds, some level of concurrency is therefore
very desirable. The server is implemented in Python using the Twisted[6] library. The server
selects jobs from the database and launches the appropriate command for each job. Twisted
does not block on commands, instead it adds a callback which is executed when the command
is completed. This callback can then process the output of the command and take any
further action that is necessary. Processing multiple commands in this way provided a simple,
performant method of interacting with the Grid.

If the server detects a failure in a job that is submitted, either in the Grid itself or in the
application it can perform resubmission a configurable number of times. If the error is terminal
then the job will not be resubmitted any more. If it is due to a problem at a certain site then
that site will be avoided the next time the job is resubmitted.

4. Agents
Each job within a task only differs from another by the arguments that are given to the wrapper
on the WN. For example, input files and number of events. It is therefore very simple for one
job within a task to run another given the new arguments. A script is executed on the WN
which controls the execution of the jobs and communicates with the ASAP server via secure
XML-RPC calls. The script requests the arguments for any job in the task which has not yet
successfully finished. Once the agent starts executing, a call is made to change the status of the
job so that the another agent or the server no longer selects it. Two threads are created; one
where the job executes and another which sends a periodic ‘heartbeat’ back to the server so that
we know that the job is still alive. If the executable finished successfully the output logs are
compressed and sent back back to the server for analysis. If the job is not considered a success
the status of the job is changed so that another agent can execute it. If a certain time limit
is passed without contact from the Agent the job will be resubmitted in the normal manner.
Output data from each job is stored on a SE as before. The agent can then request another job
from the server, for the same task, at the same site (in the case where input data is required)
and the process is repeated. If no more jobs are available the agent periodically polls the server
until it receives a job or a certain time limit is reached. This process is completely transparent to
the user who still interacts with their jobs in the same manner as before via either the command
line client or the monitoring web page.

Figure 2 compares the turnaround time for a users task using the traditional ‘push’ model and
the new ‘pull’ model. The main advantage of the pull model is that it reduces the turnaround
time for the users task. Tasks are frequently delayed by several jobs which do not begin to run
for a disproportionally long time. The agents are able to complete these jobs without waiting for
the original jobs to start. Additional savings are made by marking jobs as complete as soon as
the output is available. Figure 2 compares the time from job registration for 100 jobs simulating
5 events using (a) the original method of job submission and (b) the agent method. In each
case jobs are matched then submitted with any failing jobs resubmitted. The average run time
is 5913 and 2895 seconds for the original and agent model respectively. Figure 2(a) illustrates
the problem when a small proportion of the jobs delay the completion of the entire task. That

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000

Jo
bs

Time (s)

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000

Jo
bs

Time (s)

Figure 2. Figure caption for first of two sided figures.

behaviour is eliminated when using the agents.

5. Conclusion
ASAP has been successfully used by CMS physicists for several years. The client allows users
to package their applications, locate data and create jobs. Users can choose to use the client
to interact directly with the Grid or to delegate responsibility for their tasks to the ASAP
server. The server can process and monitor the users jobs and perform resubmissions in the case
of failure. The agent mode can significantly reduce the turnaround time for the user task by
avoiding the overheads that are traditionally present in the Grid.

Acknowledgments
Thanks to everyone who has used ASAP or contributed support or ideas. Craig Munro would
also like to thank the Science and Technologies Research Council for his funding.

References
[1] J. Andreeva, C. Cirstoiu, J. Herrala, M. Lamanna, T.S. Chen, S.C. Chiu, A. Berejnoi, O. Kodolova, and

C. Munro. CMS/ARDA Activity within the CMS Distributed System. In Proceedings of Computing in
High Energy Physics (CHEP 2006), 2006.

[2] L. Lueking. The CMS Dataset Bookkeeping Service. In Proceedings of Computing in High Energy Physics
(CHEP 2007), 2007.

[3] A. Fanfani. Distributed Data Management in CMS. In Proceedings of Computing in High Energy Physics
(CHEP 2006), 2006.

[4] J. Andreeva. Grid Monitoring from the VO/User perspective. Dashboard for the LHC experiments. In
Proceedings of Computing in High Energy Physics (CHEP 2007), 2007.

[5] A. McNab. The gridsite security architecture. In Proceedings of Computing in High Energy Physics (CHEP
2007), 2007.

[6] Twisted. http://www.twistedmatrix.com.

