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Overview

• CASTOR: a Hierarchical
Mass Storage SystemMass Storage System
– Transparently storing data on tape
– Handling tape drives/robots
– Handling a disk cache

• Latest developments (CASTOR2) motivated by
LHC requirements:

For LHC Achieved (Aug 07)

Disk cache size
(# of files on disk)

O(PB) 2 PB (7.8M)

Tape archive size 10 PB/yr 8 PB total

Aggregate I/O rate O(10 GB/s) 7 GB/s
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CASTOR Client Functionality

• Interfaces
File access– File access

– Prestaging (i.e. recall from tape)
– QueryingQuerying

• File access protocols
– RFIO (POSIX API native access)– RFIO (POSIX API, native access)
– ROOT
– XROOT (provided by SLAC)XROOT (provided by SLAC)
– GridFTP v1, v2 coming

• Grid enabledGrid enabled
– SRM interfaces v1.1 and v2.2 (provided by RAL)
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Architecture Overview
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Server-side Detailed View
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Workflow of a Put Request
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Workflow of a Get Request
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Architectural Features

• Scheduled access to storage resources
Achieve predictable performance– Achieve predictable performance

• Pluggable framework
Request scheduling delegated to a pluggable– Request scheduling delegated to a pluggable 
third party scheduler, e.g. Maui or LSF

– Externalized policies governing resource p g g
matchmaking

• Disk server autonomy and automation
– In charge of local resources: file system selection 

and execution of garbage collection 
Resiliency to hardware failures– Resiliency to hardware failures

– Streamlined deployment
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Why Database Centric?

• Reliability
C t b li t d diff t d– Components can be replicated on different nodes

– Atomicity, state persistency and backups
handled by the DBhandled by the DB

• Scalabilityy
– Components can be replicated on different nodes
– Daemons are stateless

• Memory footprint independent of load

– Limited by DB
• No risk from the space point of view
• CPU is the limit. A lot of tuning done in collaboration

with CERN database experts
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Design Choices

• High level requirements translate into the 
following main design choicesfollowing main design choices
– Service-oriented framework

I t ti ith UML D i th d l– Integration with UML Design methodology
– Autogenerated database access layer

• A software framework is in place, which p
provides all the needed facilities
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Service-oriented Framework

• Usage of the FactoryFactory Design Pattern
• Notion of ServicesServices and ConvertersConverters• Notion of ServicesServices and ConvertersConverters

– A ServiceService provides an internal functionality (e.g., connection 
to the database))

– A ConverterConverter translates the content of an object to a different 
representation (e.g., from memory to database)

C t l l h i l d d d• Central place where services are loaded and 
instantiated

Dynamic loading of the needed services via shared libraries– Dynamic loading of the needed services via shared libraries
– Allows for dynamic configuration

castor::IService *svc =
Services::service(“StreamCnvSvc”, castor::SVC_STREAMCNV);
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Integration with UML 

• Use of UML design methodology
S d A ti itS d A ti it di t d ib th–– Sequence and ActivitySequence and Activity diagrams to describe the 
workflow and the information flow
StateState diagrams to describe the status lifecycle–– State State diagrams to describe the status lifecycle 
and evolution of all the stateful entities

• e g a request a disk copy a tape copye.g. a request, a disk copy, a tape copy…

–– Class Class diagrams to design in details the software 
componentsp

–– Class Class diagrams to also describe the database 
model: all entities must be made persistent

• special case of an E-R model mapped to
a set of classes
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The Code Generation Facility

• Goals
– Automate some facilities (object printing C++ introspection)– Automate some facilities (object printing, C++ introspection)
– Automate streaming and DB access, providing an 

homogeneous abstraction layer for any entity
– Ease maintenance

• Input
– A standard UML Class Diagram

• Tools
U b ll UML M d ll– Umbrello UML Modeller
(Open Source, www.umbrello.org)

– Custom extensions maintained by the Castor teamy
• Standard UML tools don’t usually provide much more than just 

empty C++ or Java class declarations
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Autogenerated Implementation
class MessageAck : public virtual IObject {
…
private: *.hppC++ code

/// Status of the request
bool m_status;
/// Code of the error if status shows one
int m_errorCode;

void castor::MessageAck::print(…) const {
…
stream << indent << "status : “

<< m status << std::endl; *.cpp<< m_status << std::endl;
stream << indent << "errorCode : “

<< m_errorCode << std::endl;

• Generated skeletons also contain basic facilities
(e g printing)(e.g., printing)

• A C interface is provided as well
• SQL code is generated as in DB design tools
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Autogenerated ConvertersConverters

virtual void createRep(IAddress*, IObject*);Streaming
Stream*Cnv.hpp/cpp

void … StreamMessageAckCnv::createRep(…) {
…
ad->stream() << obj->type();

Streaming
code

ad->stream() << obj->ipAddress();
ad->stream() << obj->port();
ad->stream() << obj->id();

virtual void createRep(IAddress*, IObject*);

Db*Cnv.hpp/cpp

void … StreamMessageAckCnv::createRep(…) {
…
const std::string insertStmStr =

"INSERT INTO Client (ipAddress port id) ";
… and 
DB code

INSERT INTO Client (ipAddress, port, id)… ;
…

insertStmt = createStatement(insertStmStr);
…

i tSt t t U d t ()
CERN - IT Department

CH-1211 Genève 23
Switzerland

www.cern.ch/it 18

insertStmt->executeUpdate();



Example

• Reading a request from a socket and
storing it in the dbstoring it in the db

castor::IObject* obj = sock->readObject();
…
castor::BaseAddress ad;castor::BaseAddress ad;
ad.setCnvSvcName(“DbCnvSvc”);
…

() R ( d bj)svcs()->createRep(&ad, obj);

Core of the Request Handler code
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Conclusion

• CASTOR 2 software architecture proved
to be able to scale up to LHC requirementsto be able to scale up to LHC requirements
– CERN Tier-0, Tier-1 sites

7 GB/ t i d k 7 8M di k id t– 7 GB/s sustained over a week, 7.8M disk resident 
files, PB-size disk cache, 10K concurrent 
transferstransfers

• Mature infrastructure, focus on tuning
S l t ff t ll f– Several parameters affect overall performance

– Ongoing work to sustain target throughput
of O(10 GB/s)of O(10 GB/s)

• Questions? www.cern.ch/castor
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