
CASTOR2: Design and Development
of a Scalable Architecture for aof a Scalable Architecture for a

Hierarchical Storage System at CERN

Olof Bärring, Rosa María García Rioja, Giuseppe Lo Presti, Maria
Isabel Martin Serrano, Sébastien Ponce, Giulia Taurelli, Dennis Waldron

CHEP 2007, Victoria, September 4th, 2007

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Outline

• Overview
• Architecture

– Main system’s components
– Workflow of a job
– Features

• Software design choices
– Code generation facilityg y

• Conclusion

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 2

Overview

• CASTOR: a Hierarchical
Mass Storage SystemMass Storage System
– Transparently storing data on tape
– Handling tape drives/robots
– Handling a disk cache

• Latest developments (CASTOR2) motivated by
LHC requirements:

For LHC Achieved (Aug 07)

Disk cache size
(# of files on disk)

O(PB) 2 PB (7.8M)

Tape archive size 10 PB/yr 8 PB total

Aggregate I/O rate O(10 GB/s) 7 GB/s

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 3

CASTOR Client Functionality

• Interfaces
File access– File access

– Prestaging (i.e. recall from tape)
– QueryingQuerying

• File access protocols
– RFIO (POSIX API native access)– RFIO (POSIX API, native access)
– ROOT
– XROOT (provided by SLAC)XROOT (provided by SLAC)
– GridFTP v1, v2 coming

• Grid enabledGrid enabled
– SRM interfaces v1.1 and v2.2 (provided by RAL)

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 4

Outline

• Overview
• Architecture

– Main system’s components
– Workflow of a job
– Features

• Software design process
– Code generation facilityg y

• Conclusion

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 5

Architecture Overview

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 6

Server-side Detailed View

Request
Handler

Stager Logic
Stager

Scheduler

Monitoring

Stager
Catalog

Name
Server

Catalog

Mi t &Migrator &
Recaller

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 7

Workflow of a Put Request

S d PUT
Tape Server

RHClient NameServer

Sends PUT
Request

p

Migrator

Stores file
locationStores Request

Stager

Migrator

TODO ? Data transferStager
Catalog

Ready for data

Schedules
transfer Job

Disk Server
Data transfer

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 8

Workflow of a Get Request

S d GET
Tape Server

RHClient NameServer

Sends GET
Request

p

Recaller

Gets file
locationStores Request

Stager

Recaller

TODO ? Data transferStager
Catalog

Triggers

Data Ready

Disk Server
Data transfer

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 9

Architectural Features

• Scheduled access to storage resources
Achieve predictable performance– Achieve predictable performance

• Pluggable framework
Request scheduling delegated to a pluggable– Request scheduling delegated to a pluggable
third party scheduler, e.g. Maui or LSF

– Externalized policies governing resource p g g
matchmaking

• Disk server autonomy and automation
– In charge of local resources: file system selection

and execution of garbage collection
Resiliency to hardware failures– Resiliency to hardware failures

– Streamlined deployment

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 10

Why Database Centric?

• Reliability
C t b li t d diff t d– Components can be replicated on different nodes

– Atomicity, state persistency and backups
handled by the DBhandled by the DB

• Scalabilityy
– Components can be replicated on different nodes
– Daemons are stateless

• Memory footprint independent of load

– Limited by DB
• No risk from the space point of view
• CPU is the limit. A lot of tuning done in collaboration

with CERN database experts
CERN - IT Department

CH-1211 Genève 23
Switzerland

www.cern.ch/it 11

with CERN database experts

Outline

• Overview
• Architecture

– Main system’s components
– Workflow of a job
– Features

• Software design choices
– Code generation facilityg y

• Conclusion

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 12

Design Choices

• High level requirements translate into the
following main design choicesfollowing main design choices
– Service-oriented framework

I t ti ith UML D i th d l– Integration with UML Design methodology
– Autogenerated database access layer

• A software framework is in place, which p
provides all the needed facilities

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 13

Service-oriented Framework

• Usage of the FactoryFactory Design Pattern
• Notion of ServicesServices and ConvertersConverters• Notion of ServicesServices and ConvertersConverters

– A ServiceService provides an internal functionality (e.g., connection
to the database))

– A ConverterConverter translates the content of an object to a different
representation (e.g., from memory to database)

C t l l h i l d d d• Central place where services are loaded and
instantiated

Dynamic loading of the needed services via shared libraries– Dynamic loading of the needed services via shared libraries
– Allows for dynamic configuration

castor::IService *svc =
Services::service(“StreamCnvSvc”, castor::SVC_STREAMCNV);

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 14

Integration with UML

• Use of UML design methodology
S d A ti itS d A ti it di t d ib th–– Sequence and ActivitySequence and Activity diagrams to describe the
workflow and the information flow
StateState diagrams to describe the status lifecycle–– State State diagrams to describe the status lifecycle
and evolution of all the stateful entities

• e g a request a disk copy a tape copye.g. a request, a disk copy, a tape copy…

–– Class Class diagrams to design in details the software
componentsp

–– Class Class diagrams to also describe the database
model: all entities must be made persistent

• special case of an E-R model mapped to
a set of classes

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 15

The Code Generation Facility

• Goals
– Automate some facilities (object printing C++ introspection)– Automate some facilities (object printing, C++ introspection)
– Automate streaming and DB access, providing an

homogeneous abstraction layer for any entity
– Ease maintenance

• Input
– A standard UML Class Diagram

• Tools
U b ll UML M d ll– Umbrello UML Modeller
(Open Source, www.umbrello.org)

– Custom extensions maintained by the Castor teamy
• Standard UML tools don’t usually provide much more than just

empty C++ or Java class declarations

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 16

Autogenerated Implementation
class MessageAck : public virtual IObject {
…
private: *.hppC++ code

/// Status of the request
bool m_status;
/// Code of the error if status shows one
int m_errorCode;

void castor::MessageAck::print(…) const {
…
stream << indent << "status : “

<< m status << std::endl; *.cpp<< m_status << std::endl;
stream << indent << "errorCode : “

<< m_errorCode << std::endl;

• Generated skeletons also contain basic facilities
(e g printing)(e.g., printing)

• A C interface is provided as well
• SQL code is generated as in DB design tools

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 17

• SQL code is generated as in DB design tools

Autogenerated ConvertersConverters

virtual void createRep(IAddress*, IObject*);Streaming
Stream*Cnv.hpp/cpp

void … StreamMessageAckCnv::createRep(…) {
…
ad->stream() << obj->type();

Streaming
code

ad->stream() << obj->ipAddress();
ad->stream() << obj->port();
ad->stream() << obj->id();

virtual void createRep(IAddress*, IObject*);

Db*Cnv.hpp/cpp

void … StreamMessageAckCnv::createRep(…) {
…
const std::string insertStmStr =

"INSERT INTO Client (ipAddress port id) ";
… and
DB code

INSERT INTO Client (ipAddress, port, id)… ;
…

insertStmt = createStatement(insertStmStr);
…

i tSt t t U d t ()
CERN - IT Department

CH-1211 Genève 23
Switzerland

www.cern.ch/it 18

insertStmt->executeUpdate();

Example

• Reading a request from a socket and
storing it in the dbstoring it in the db

castor::IObject* obj = sock->readObject();
…
castor::BaseAddress ad;castor::BaseAddress ad;
ad.setCnvSvcName(“DbCnvSvc”);
…

() R (d bj)svcs()->createRep(&ad, obj);

Core of the Request Handler code

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 19

Outline

• Overview
• Architecture

– Main system’s components
– Workflow of a job
– Features

• Software design choices
– Code generation facilityg y

• Conclusion

CERN - IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it 20

Conclusion

• CASTOR 2 software architecture proved
to be able to scale up to LHC requirementsto be able to scale up to LHC requirements
– CERN Tier-0, Tier-1 sites

7 GB/ t i d k 7 8M di k id t– 7 GB/s sustained over a week, 7.8M disk resident
files, PB-size disk cache, 10K concurrent
transferstransfers

• Mature infrastructure, focus on tuning
S l t ff t ll f– Several parameters affect overall performance

– Ongoing work to sustain target throughput
of O(10 GB/s)of O(10 GB/s)

• Questions? www.cern.ch/castor
CERN - IT Department

CH-1211 Genève 23
Switzerland

www.cern.ch/it 21

Q

