
Interactive Data Analysis with
PROOF
Bleeding Edge Physics with
Bleeding Edge Computing

Fons Rademakers, Gerri Ganis, Jan Iwaszkiewicz
CERN

LHC Data Challenge
• The LHC generates:

■ 40 million collisions per second

• Combined the 4 experiments record:
■ After filtering, 100 interesting collision per second
■ From 1 to 12 MB per collision ⇒ from 0.1 to 1.2 GB/s

■ 1010 collisions registered every year
■ ~ 10 PetaBytes (1016 B) per year
■ LHC data correspond to

20 millions DVD’s per year!
■ Computing power equivalent to

100.000 of today’s PC
■ Space equivalent to 400.000 large PC disks

DVD stack with one
year of LHC data!
(~ 20 Km)

Mt. Blanc
(4.8 Km)

LHC Data Challenge
• The LHC generates:

■ 40 million collisions per second

• Combined the 4 experiments record:
■ After filtering, 100 interesting collision per second
■ From 1 to 12 MB per collision ⇒ from 0.1 to 1.2 GB/s

■ 1010 collisions registered every year
■ ~ 10 PetaBytes (1016 B) per year
■ LHC data correspond to

20 millions DVD’s per year!
■ Computing power equivalent to

100.000 of today’s PC
■ Space equivalent to 400.000 large PC disks

Balloon
(30 Km)

Airplane
(10 Km)

DVD stack with one
year of LHC data!
(~ 20 Km)

Mt. Blanc
(4.8 Km)

LHC Data Challenge
• The LHC generates:

■ 40 million collisions per second

• Combined the 4 experiments record:
■ After filtering, 100 interesting collision per second
■ From 1 to 12 MB per collision ⇒ from 0.1 to 1.2 GB/s

■ 1010 collisions registered every year
■ ~ 10 PetaBytes (1016 B) per year
■ LHC data correspond to

20 millions DVD’s per year!
■ Computing power equivalent to

100.000 of today’s PC
■ Space equivalent to 400.000 large PC disks

Balloon
(30 Km)

Airplane
(10 Km)

Using parallelism is the only way to analyze this
amount of data in a reasonable amount of time

• Typical HEP analysis needs a continuous algorithm
refinement cycle

• Ranging from I/O bound to CPU bound
• Need many disks to get the needed I/O rate
• Need many CPUs for processing
• Need a lot of memory to cache as much as possible

HEP Data Analysis

Run over data set Make improvementsImplement algorithm

3

The Traditional Batch Approach

File catalog

Batch
Scheduler

Storage

CPU’s

Query

Split analysis job in N
stand-alone sub-jobs

Collect sub-jobs and
merge into single output

Batch cluster

• Split analysis task in N batch jobs
• Job submission sequential
• Very hard to get feedback during processing
• Analysis finished when last sub-job finished

Job splitter

Job

Job

Job

Job

Job Merger

Job

Job

Job

Job

Queue

Job

Job

Job

Job

4

The PROOF Approach

File catalog

Master

Scheduler

Storage

CPU’s

Query

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

• Cluster perceived as extension of local PC
• Same macro and syntax as in local session

• More dynamic use of resources
• Real-time feedback
• Automatic splitting and merging

5

PROOF Design Goals
• System for running ROOT queries in parallel on a large number

of distributed computers or multi-core machine
• Transparent, scalable and adaptable extension of the local

interactive ROOT analysis session
• Support for running long queries (“interactive batch”)

Where to Use PROOF
• CERN Analysis Facility (CAF)
• Departmental workgroups (Tier-2’s)
• Multi-core, multi-disk desktops (Tier-3/4’s)

6

PROOF Scalability on Multi-Core Machines

7

PROOF Scalability on Multi-Core Machines

7

PROOF Scalability on Multi-Core Machines

7

PROOF Scalability on Multi-Core Machines

7

PROOF Scalability on Multi-Core Machines

Running on MacPro with
dual Quad Core CPU’s.

7

Multi-Tier Architecture

Adapts to wide
area virtual

clusters

Geographically
separated domains,

heterogeneous
machines

Network performance
Less important VERY important

Optimize for data locality or high bandwidth data server access

8

Recent Developments
• Dataset management

■ Global and user data sets
■ Disk quotas
■ For more see talk 444 on ALICE CAF developments

• Load balancing
■ New packetizers

• Scheduling
■ User priority handling on worker level
■ Central resource scheduler
■ Abstract interface
■ Selection of workers based on load (CPU, memory, I/O)

• Generic task processing
■ CPU instead of data driven

9

Load Balancing: the Packetizer
• The packetizer is the heart of the system

• It runs on the master and hands out work to the workers
■ Pull architecture: workers ask for work
■ No complex worker state in the master

• Different packetizers allow for different data access policies
■ All data on disk, allow network access
■ All data on disk, no network access
■ Data on mass storage, go file-by-file
■ Data on Grid, distribute per Storage Element
■ …

• The goal is to have all workers end at the same time

10

Original Packetizer Strategy
• Each worker processes its local files and processes packets

from the remaining remote files (if any)
• Fixed packet size
• Avoid data servers overload by allowing max 4 remote

workers to be served concurrently

• Works generally fine, but shows tail effects for I/O bound
queries, due to a reduction of the effective number of
workers when access to non-local files is required

11

Issues with Original Packetizer Strategy
• Processing rate

during a query

• Resource utilization

12

Where to Improve
• Focus on I/O bound jobs

■ Limited by disk or network bandwidth
• Predict which data servers can become bottlenecks
• Make sure that other workers help analyzing data from

those servers
• Use variable packet sizes (smaller at end of query)

13

Improved Packetizer Strategy
• Predict processing time of local files for each worker
• For the workers that are expected to finish faster, keep

assigning remote packets from the beginning of the job
• Assign remote packets from the most heavily loaded file

servers
• Variable packet size

14

Improved Packetizer: Results
• Processing rate during a

query

• Resource utilization

15

Improved Packetizer: Results
• Processing rate during a

query

• Resource utilization

Up to 30%
improvement

15

Why Scheduling?
• Controlling resources and how they are used
• Improving efficiency

■ Assigning to a job those nodes that have data which needs to be
analyzed

• Implementing different scheduling policies
■ E.g. fair share, group priorities & quotas

• Avoid congestion and cluster grinding to a halt

16

PROOF Specific Requirements
• Interactive system

■ Jobs should be processed as soon as submitted
■ However when max. system throughput is reached some jobs have to be

postponed

• I/O bound jobs use more resources at the start and less at the
end (file distribution)

• Try to process data locally
• User defines a data set not the number of workers
• Possibility to remove/add workers during a job

17

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

External
Scheduler

MasterClient

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

External
Scheduler

MasterClient

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

External
Scheduler

MasterClient

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

External
Scheduler

MasterClient

Job

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

External
Scheduler

MasterClient

Job

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

Packetizer

External
Scheduler

MasterClient

Job

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

Packetizer

Data set
LookupExternal

Scheduler

MasterClient

Job

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

Packetizer

Data set
LookupExternal

Scheduler

MasterClient

Job

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

Packetizer

Data set
Lookup

Start workers

External
Scheduler

Workers

MasterClient

Job

18

Starting a Query With a Central Scheduler

Cluster
status

User
priority,
quotas

Packetizer

Data set
Lookup

Start workers

External
Scheduler

Workers

MasterClient

Job

job

job

job

18

Scheduler Development Plans
• Interface for scheduling "per job”

■ Special functionality will allow to change the set of nodes during a
session without loosing user libraries and other settings

• Removing workers during a job
• Integration with a third-party scheduler

■ Maui, LSF

19

User Priority Based Scheduling

• User priority based worker level scheduling
■ Simple and solid implementation, no global state
■ Group priorities defined in a configuration file
■ Group priorities can also be obtained from a central scheduler via the

master
■ Configuration tested currently at the CAF by ALICE

• Scheduling performed on each worker independently
• Lower priority processes slowdown

■ Sleep before next packet request
■ Use Round-Robin Linux process scheduler

20

Generic Task Processing
• CPU instead of data driven
• Uses the established PROOF infrastructure to distribute jobs (i.e.

selectors, input lists, output lists, PAR files, etc.)
■ Monte Carlo, image analysis, etc.
■ Output files in the output list will be automatically merged

• First version will be coming later this year

21

Growing Interest by LHC Experiments
• The ideal solution for fast AOD analysis, easy to deploy on cluster or a

bunch of multi-core machines
■ ALICE CAF
■ ATLAS

■ BNL, Wisconsin
■ CMS

■ FNAL

22

Conclusions
• The LHC will generate data on a scale not seen

anywhere before
• LHC experiments will critically depend on parallel solutions to

analyze their enormous amounts of data
• Grids will very likely not provide the needed stability and

reliability we need for repeatable high statistics analysis

23

